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Abstract: In this paper we consider the optimal control problem for a insurance company. Our objective is to maximize the expectation
of discounted dividends and its terminal value which represents the company liquidation value upon the time of bankruptcy. The surplus
of the insurance company is governed by the Brownian motion with a constant drift and a diffusion term. The company can manage
its risk exposure simultaneously through proportional reinsurance. Apart from the proportional reinsurance, the insurance company
also pays out dividends with bounded dividends rate. With the help of the stochastic dynamic programming approach, we solve the
control problem of maximizing the expectation of discounted dividends and the terminal value. We first construct a solution to the
HJB equation and then verify that the solution of the HJB equation is indeed the optimal value function for our problem. We also give
explicit expressions of the optimal strategies.
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1. Introduction

With the development of economy and finance theory,
mathematical instruments get increasingly more attention
in both theoretical and practice fields(see [1]). Among
this mathematical instruments, recently, stochastic
optimal control theory is widely used in asset pricing and
actuary calculation(see [2]). In this paper, an optimal risk
exposure and dividends distribution for the insurance
company, whose surplus process is assumed to be
controlled by diffusion model, will be studied.
The research on optimal dividend problem can be traced
back to [3], who proposes the solution of maximizing the
expectation of the discounted dividends in discrete time
settings. [4,5] develops De Finetti’s contribution and
makes it sensible to economists. [6,7] discuss the optimal
dividends-payment strategies for the classical risk model
in continuous time settings.
[8,9] consider the optimal dividend problem with a
bounded dividend rate. [10] study the proportional
reinsurance policies and dividends pay-out for a diffusion
model. The diffusion model with excess-of-loss

reinsurance and dividends pay-out is considered by [11].
[12] take the influence of bankruptcy value into account
when investigating diffusion models with proportional
reinsurance. They incorporate the model by assigning a
value P to the bankruptcy of the company, and make a
detailed study of how to maximize the total discounted
value of the company wealth and the liquidation value P
of the company. When P is negative, the company is fined
for going into bankruptcy, and when P is positive, it is
interpreted as the value has accrued from the sale of
non-liquid assets.
In this paper, we consider the problem of maximizing the
expectation of the sum of the discounted dividends and
the bankruptcy return P, in the framework of diffusion
approximation of the classic risk model with proportional
reinsurance. We introduce the insurance risk model and
present our control problem in Section 2. In Section 3, we
give the corresponding HJB equation and construct a
solution of the HJB equation. In Section 4, we present the
verification theorem to show that the optimal strategy is
reasonable. In the last part of this paper, we calculate
some numerical examples and draw some plots to
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elaborate the optimal return function in different
conditions.

2. The model

The risk process or the surplus process of an insurance
company without reinsurance and dividend payments can
be modeled by the classical Cramer-Lundberg model

R(t) = x+ pt −
Nt

∑
i=1

Xi,

where x is the initial capital of an insurance company,
p > 0 is the premium rate, {N(t)} is a Poisson process
with intensity β > 0 and Xi(i = 1, 2, · · · ) is the size of the
i-th claim. The claims, independent with N(t), are i.i.d
random variables with the continuous distribution F and
finite first and second moments m, s2 respectively. We
suppose that the premium rate p is calculated by the
expected value principle, i. e.

p = (1+η)βm,

where η > 0 is the relative safety loading.
Assume that the insurance company arranges a

proportional reinsurance strategy. In other words, the
insurance company covers the fraction a of each claim,
and the reinsurance company covers the rest. Thus the
corresponding surplus process for this insurance company
becomes

R(t) = x+apt −a
Nt

∑
i=1

Xi.

This process can be approximated by a Brownian motion
with the drift aµ and diffusion aσ where µ = p−βm and
σ2 = β s2 (see [13]). Without loss of generality, we assume
β = 1. Therefore, the controlled reserve process {R(t)}
with initial value x is given by

dR(t) = µaπ(t)dt +σaπ(t)dwt ,

where w(t) is a standard Brownian motion.
An admissible control policy π is a two dimensional

stochastic process (aπ(t), lπ(t)), where 0 ≤ aπ(t) ≤ 1
corresponds to the risk exposure and 0 ≤ lt ≤ M is the
dividend rate at time t. Denote by Π the set of all
admissible policies. Thus under the policy π ∈ Π , the
dynamics of the controlled process R are formulated by{

dRπ(t) = (µaπ(t)− lπ(t))dt +σaπ(t)dwt
Rπ(t) = x

where x corresponds to the strictly positive initial capital
of the risk process.

The bankruptcy or the ruin time is defined as the first
hitting time when the surplus process arrives zero, i.e.

τπ = inf{t : Rπ(t)≤ 0}.

For each strategy π , the performance functional (value
function) is given by

Vx(π) = E(
∫ τπ

0
e−ct lπ(t)dt + e−cτπ P),

where c is a given discount factor as mentioned as the
previous section, P can be viewed as a salvage or
recovery value of the company at the time of bankruptcy.
The main task of this paper is to provide the optimal
policy π∗ for the optimal value function

V (x) = sup
πεΠ

Vπ(x), (1)

such that V (x) =Vπ∗(x).
Next section, we use the dynamic programming

approach to solve the above stochastic control problem.

3. HJB Equation and Its Solution

Firstly, in the spirit of [10], we present the concavity of
V (x) by the following lemma.

Lemma 1. The function V (x) defined in (1) is
concave.

Proo f : This lemma can be proved by making the
following modifications in the proof of Proposition 1.1 of
[10]. Replace (1.6) in [10] with
lπξ (t) = λ lπx1

(t) + (1 − λ )lπx2
(t), and substitute

τπξ = τπx1
∨ τπx2

by τπξ = τπx1
∧ τπx2

when P > 0 and by
τπξ = τπx1

∨ τπx2
when P < 0.

Now we shall adopt the dynamic programming
approach to solve the maximization problem of (1). For
an excellent account on the dynamic programming
approach, interested readers may refer to [14,15]. From
some standard arguments in [15], we have the following
theorem.

Theorem 1. Assume V defined by (1) is
twice-continuous differentiable on (0,∞). Then V satisfies
the following Hamilton-Jacobi-Bellman (hereforth HJB,
for more details, see [15]) equation

supa∈[0,1],l∈[0,M][
1
2 σ2a2V ′′(x)+(µa− l)V ′(x)− cV (x)+ l] = 0 (2)

with initial condition V (0) = P.

Lemma 1 and Theorem 1 imply that, in order to find
the optimal value function V (x), we need to find a concave
solution of the HJB equation (2). Furthermore, from the
definition of the optimal value function, we have

V (x)≤ E[
M
c
(1− e−cτ)+ e−cτ P] =

M
c
+E[(P− M

c
)e−cτ ]

≤ max{P,
M
c
}.

Next we are going to construct a bounded concave
solution of the HJB equation (2). Without loss of
generality, we consider the condition P ≥ 0. Throughout
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this section, we let l(x) and a(x) denote the functions that
for all x maximize the left hand side of (2) in which V is
replaced by f .

Let u1 = inf{u ≥ 0 : f ′(u) = 1}, then by the concavity
of f (x) we have,

l(x) =
{

0, x < u1;
M, x > u1.

Therefore for any x < u1, the HJB equation (2) is
transforms to

sup
aε[0,1]

[
1
2

σ2a2 f ′′(x)+µa f ′(x)− c f (x)] = 0. (3)

Differentiating the inside terms of the maximum in (3)
with respect to a yields the following first order condition
for the candidate maximum point a(x):

a(x) =
−µ f ′(x)
σ2 f ′′(x)

.

Substituting this into (3) yields

−µ2( f ′(x))2

2σ2 f ′′(x)
− c f (x) = 0. (4)

It is easy to verify that the function f1(x) defined by

f1(x) = (c1x+P
1
γ )γ ,

with γ = c
µ2

2σ2 +c
and an unknown constant c1 is a solution

of the equation (4). The unknown constant c1 will be
determined later. Thus the maximizer a(x) is given by

a(x) =
µ

σ2(1− γ)
(x+

1
c1

P
1
γ ).

Note that the maximizer a(x) should lie in [0,1], therefore,
the above form solution only for the case of

µ
σ2(1− γ)

(x+
1
c1

P
1
γ ) ∈ [0,1],

that is

x ≤ σ2

µ
(1− γ)− 1

c1
P

1
γ := u0.

Comparing u0 and u1, we have two cases to consider:
u0 < u1 and u0 ≥ u1. Later, we shall give the necessity and
sufficient conditions for u0 < u1 and u0 ≥ u1.

3.1. The case of u0 < u1

Since we try to find a solution of HJB equation defined on
x ≥ 0, we still need to consider the following two different
cases: 0 ≤ u0 and u0 < 0.

We first consider the case of 0 ≤ u0. In this case, note
that the supremum part of equation (3) is a second-order
polynomial in a, therefore, when x ∈ [u0,u1), equation (3)

reaches its supremum at a= 1. Thus substituting a= 1 into
equation (3) yields
1
2

σ2 f ′′(x)+µ f ′(x)− c f (x) = 0. (5)

The solution of (5) is

f2(x) = c2ed1x + c3ed2x,

where d1 and d2 are the positive and negative solutions of
the characteristic equation
1
2

σ2s2 +µs− c = 0.

When x ≥ u1, we can obtain that the HJB equation (2)
shall reach its supremum at a = 1, l = M and therefore
f (x) should satisfy the following differential equation

1
2

σ2 f ′′(x)+(µ −M) f ′(x)− c f (x)+M = 0, x ≥ u1. (6)

The solution of (6) is

f3(x) =
M
c
+ c4ed3x + c5ed4x

where d3 and d4 are the positive and negative solutions of
the characteristic equation
1
2

σ2s2 +(µ −M)s− c = 0.

By the bounded property of f (x), we must have c4 = 0.
Thus above analysis yields the following representation of
f (x):

f (x) =

 (c1x+P
1
γ )γ , 0 ≤ x < u0;

c2ed1x + c3ed2x; u0 ≤ x < u1;
M
c + c5ed4x; x ≥ u1,

(7)

where c1,c2,c3,c5,u0,u1 are unknown constants and will
be determined later. The corresponding maximizer of the
HJB equation (2) are given by

a(x) =

{
( µ

σ2(1−γ) (x+
1
c1

P
1
γ ), 0 ≤ x < u0;

1; x > u0.
(8)

l(x) =
{

0, 0 ≤ x < u1;
M; x ≥ u1.

(9)

Now we are going to determine the necessary and
sufficient condition for u0 < u1 and the unknown
constants. We choose these unknown constants in such a
way that f and its first derivative are continuous at the
points u0 and u1. Thus we have the following equations:

cγ
1(

σ2(1− γ)
µ

)γ = c2ed1u0 + c3ed2u0 , (10)

cγ
1γ(

σ2(1− γ)
µ

)γ−1 = c2d1ed1u0 + c3d2ed2u0 (11)

M
c
+ c5ed4u1 = c2ed1u1 + c3ed2u1 , (12)

c2d1ed1u1 + c3d2ed2u1 = 1, (13)
c5d4ed4u1 = 1. (14)
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From (10) and (11), we have

c2ed1u0 + c3ed2u0 =
σ2(1− γ)

γµ
(c2d1ed1u0 + c3d2ed2u0).

Therefore

c3

c2
e(d2−d1)u0 =

d1σ2(1−γ)
γµ −1

1− d2σ2(1−γ)
γµ

. (15)

From (12)-(14), we have

(
M
c
+

1
d4

)(c2d1ed1u1 + c3d2ed2u1) = c2ed1u1 + c3ed2u1 .

After simple calculations, we can rewrite above equation
as follows,

c3

c2
e(d2−d1)u1 =

d1M
c + d1

d4
−1

1− d2M
c − d2

d4

. (16)

To show that f (x) given by (7) solves the HJB equation
(2), we need to ensure that u0 ≤ u1. (15)/(16) gives

e(d2−d1)(u0−u1) =
( d1σ2(1−γ)

γµ −1)(1− d2M
c − d2

d4
)

(1− d2σ2(1−γ)
γµ )( d1M

c + d1
d4
−1)

. (17)

Since
d1σ2(1− γ)

γµ
−1 < 0, 1− d2M

c
− d2

d4
> 0,

1− d2σ2(1− γ)
γµ

> 0,
d1M

c
+

d1

d4
−1 < 0,

we obtain

u0 ≤ u1 ⇐⇒ (
d1σ2(1− γ)

γµ
−1)(1− d2M

c
− d2

d4
)

≤ (1− d2σ2(1− γ)
γµ

)(
d1M

c
+

d1

d4
−1)

⇐⇒ σ2(1− γ)
γµ

≤ M
c
+

1
d4

⇐⇒ M ≥ µ
2
− c

d4

⇐⇒ M ≥ µ
2
+

σ2c
µ

. (18)

Next, we shall try to find out the unknown constants c1, c2,
c3, c5, u0, u1. Let

A =

d1σ2(1−γ)
γµ −1

1− d2σ2(1−γ)
γµ

, B =

d1M
c + d1

d4
−1

1− d2M
c − d2

d4

. (19)

Then by equation (17), (15) and (16), we have

u0 −u1 =
1

d2 −d1
ln

A
B
, (20)

c3ed2u0 = Ac2ed1u0 , c3ed2u1 = Bc2ed1u1 . (21)

Thus from (13), we get

c2(Bd2 +d1)ed1u1 = 1. (22)

Noted that u0 =
σ2(1−γ)

µ − 1
c1

P
1
γ , we have

c1 =
P

1
γ

σ2(1−γ)
µ −u0

. (23)

Putting it into (10), we get

(
P

1
γ

σ2(1−γ)
µ −u0

)γ(
σ2(1− γ)

µ
)γ = (A+1)c2ed1u0 .

By (20), we have

P(
σ2(1−γ)

µ
σ2(1−γ)

µ −u1 − 1
d2−d1

ln A
B

)γ = (A+1)c2ed1(u1+
1

d2−d1
ln A

B )

=
A+1

Bd2 +d1
e

d1
d2−d1

ln A
B , (24)

which gives

u1 =
σ2(1− γ)

µ
− 1

d2 −d1
ln

A
B
− σ2(1− γ)

µ

(
A+1

Bd2 +d1
e

d1
d2−d1

ln A
B 1

P
)−

1
γ . (25)

By (20) and (25), we obtain

u0 =
σ2(1− γ)

µ
− σ2(1− γ)

µ
·

(
A+1

Bd2 +d1
e

d1
d2−d1

ln A
B 1

P
)−

1
γ . (26)

Plugging (26) into (23), we get

c1 =
P

1
γ

σ2(1−γ)
µ ( A+1

Bd2+d1
e

d1
d2−d1

ln A
B 1

P )
− 1

γ

. (27)

Inserting (25) into (22), we have

c2 =
1

Bd2 +d1
exp{−d1(

σ2(1− γ)
µ

− 1
d2 −d1

ln
A
B

−σ2(1− γ)
µ

(
A+1

Bd2 +d1
e

d1
d2−d1

ln A
B 1

P
)−

1
γ )}. (28)

Combining (21) and (26) yields

c3 =
A

Bd2 +d1
exp{−d2

σ2(1− γ)
µ

+
d1

d2 −d1
ln

A
B

+d2
σ2(1− γ)

µ
(

A+1
Bd2 +d1

e
d1

d2−d1
ln A

B 1
P
)−

1
γ }. (29)

Combining (14) and (25) yields

c5 =
1
d4

exp{−d4(
σ2(1− γ)

µ
− 1

d2 −d1
ln

A
B

−σ2(1− γ)
µ

(
A+1

Bd2 +d1
e

d1
d2−d1

ln A
B 1

P
)−

1
γ )}. (30)
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Thus in the case of u0 ≥ 0, the following function

f (x) =

 (c1x+P
1
γ )γ , 0 ≤ x < u0;

c2ed1x + c3ed2x; u0 < x < u1;
M
c + c5ed4x; x ≥ u1.

(31)

with u1, u0, c1, c2, c3, c5 given by (25), (26), (27), (28),
(29) and (30) respectively is a solution of the HJB equation
(2). The necessity and sufficient condition for u0 ≥ 0 is
given by

PB(Bd2 +d1)≥ A(A+1)e
d1

d2−d1 . (32)

Now we consider the case of u0 < 0 i.e.

PB(Bd2 + d1) < A(A + 1)e
d1

d2−d1 . In this case, we shall
derive the optimal value function in the case of u1 ≥ 0
and u1 < 0 respectively, whose necessity and sufficient
condition will be given in (35).

We first consider the case of u0 < 0, u1 ≥ 0. In this
case, the function f is given by

f (x) =
{

c2ed1x + c3ed2x; 0 ≤ x < u1;
M
c + c5ed4x; x ≥ u1.

(33)

From the boundary condition, we have

f (0) = c2 + c3 = P.

To ensure the function f and its derivatives are
continuous at the point u1, we need the function and its
first and second derivatives to be continuous at u1. Thus
equations (12), (13) and (14) must be satisfied. After
some calculations, we have

Be−d2u1 + e−d1u1 =
(B+1)P

M
c + 1

d4

. (34)

Note that the left side of the last equation is digressive and
so we have

u1 ≥ 0 ⇔ B+1 ≥ (B+1)P
M
c + 1

d4

;

u1 < 0 ⇔ B+1 < (B+1)P
M
c + 1

d4

.
(35)

Although the explicit expression for u1 is hard to derive
from (34), it is easily confirmed in numerical calculations.
Now we can give explicit expressions of c2,c3,c5 through
u1,

c2 =
P

Be(d1−d2)u1+1
;

c3 =
PBe(d1−d2)u1

Be(d1−d2)u1+1
;

c5 =
1
d4

ed4u1 .

(36)

Now we consider the second case of u0 ≤ u1 < 0 . In this
case, the function f is given by

f (x) =
M
c
+ c5ed4x. (37)

Also from the boundary condition, we have

f (0) =
M
c
+ c5 = P. (38)

Therefore,

c5 = P− M
c
. (39)

Summarize above analysis yields the following theorem.

Theorem 2. Suppose A and B are defined by (19) and
u0 ≤ u1, i.e. M ≥ µ

2 + σ2c
µ , then we have

1.If u0 ≥ 0, i.e. PB(Bd2 +d1)≥ A(A+1)e
d1

d2−d1 , then the
function f (x) defined by (31) with c1,c2,c3,c5 given by
(27)- (30) is a solution of the HJB equation (2);

2.If u0 < 0,u1 ≥ 0,

i.e.,PB(Bd2 + d1) < A(A + 1)e
d1

d2−d1 ,B + 1 ≥ (B+1)P
M
c + 1

d4

,

then the function defined by (33) with c2,c3,c5 given
by (36) is a solution of the HJB equation (2);

3.If u0 < 0,u1 < 0,

i.e.,PB(Bd2 + d1) < A(A + 1)e
d1

d2−d1 ,B + 1 < (B+1)P
M
c + 1

d4

,

then the function defined by (37) with c5 given by (39)
is a solution of the HJB equation (2).

3.2. The case of u0 > u1

Now, we consider the case of u0 > u1, i.e. M < µ
2 + σ2c

µ .
We shall first show that u0 =∞ in this case. If not, from the
definition of u0,u1 in the previous sections, the solution of
HJB equation (2) should satisfy equation (6) when x ≥ u0.
Through a similar method used in the previous section, we
can construct the following solution of the HJB equation
for x > u0,

f3(x) =
M
c
+ c5ed4x.

For u1 < x < u0, the HJB equation (2) changes to the
following equation

max
aε[0,1]

[
1
2

σ2a2 f ′′(x)+(µa−M) f ′(x)− c f (x)+M]

= 0. (40)

Therefore the point u0 is determined by

− µ f ′2(u0)

σ2 f ′′2 (u0)
= 1. (41)

However in this case the ”smooth fit” property fails since

−
µ f ′3(u0)

σ2 f ′′3 (u0)
=

−µ
σ2d4

< 1 =− µ f ′2(u0)

σ2 f ′′2 (u0)
. (42)

Thus the above equation suggests that no such u0 exists
and therefore u0 = ∞. Now we only have one switching
point u1 and we can construct a solution of HJB equation
as follows.

We first consider the case of u1 > 0. For x < u1, we
solve the equation (3) to obtain a solution of the HJB
equation (2). Through a similar method used in the
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previous section we obtain the following solution of
equation (3):

f1(x) = (c1x+P
1
γ )γ ,

where γ = c
µ2

2σ2 +c
and c1 is an unknown constant.

For x > u1, We need only to solve the equation (40) for
finding a solution of the HJB equation (2). Let f ∗(x) be a
solution of the following differential equation

max
aε[0,1]

[
1
2

σ2a2 f ′′(x)+(µa−M) f ′(x)− c f (x)] = 0. (43)

Then it is not difficult to express the solution of the
equation (40) through the solution of the equation (43) as
follows

f (x) = f ∗(x)+
M
c
. (44)

Now we try to construct a solution of the equation (43).
Differential with respect to a and setting to 0 yields the
maximum point of the equation (43)

a(x) =− µ f ′(x)
σ2 f ′′(x)

.

Substituting above equation into (43) yields the following
equation

−µ2 f ′(x)2

2σ2 f ′′(x)
−M f ′(x)− c f (x) = 0. (45)

To solve the above equation, we try to fit a solution of the
form

f (x) = αeβx + c2 , x > u1. (46)

Plug (46) into (45), we obtain that

− µ2

2σ2 αeβx −Mαβeβx − cαeβx − cc2 = 0. (47)

It is easy to know that{
c2 = 0,

β =−
µ2

2σ2 +c
M .

Setting η = 2σ2

µ2 , we can give the following representation
of β

β =−1+ cη
Mη

.

Thus the solution of eqaution (45) has the following form

f ∗(x) = αe−
1+cη
Mη x , x > u1.

So the solution to (40) is

f (x) = αe−
1+cη
Mη x +

M
c

, x > u1.

Finally, we get

f (x) =

{
(c1x+P

1
γ )γ , x < u1;

αe−
1+cη
Mη x + M

c , x > u1.
(48)

The maximizing function a(x) is then given by

a(x) =


µ

σ2(1−γ) (x+
1
c1

P
1
γ ), x < u1;

µMη
σ2(1+cη)

, x > u1.
(49)

where u1, c1 and α are unknown constants derived below.
By the twice order continuous differentiability at u1, we
get the following equations

(c1u1 +P
1
γ )γ = αe−

1+cη
Mη u1 +

M
c

(50)

c1γ(c1u1 +P
1
γ )γ−1 = 1 (51)

−α
1+ cη

Mη
e−

1+cη
Mη u1 = 1. (52)

From (50) and (52), we obtain

c1u1 +P
1
γ = (

M
c
− Mη

1+ cη
)

1
γ . (53)

Combing equation (53) and (51), we obtain

c1u1 +P
1
γ

c1γ
=

M
c
− Mη

1+ cη
. (54)

Substituting (53) into (54), we have

c1 =
(M

c − Mη
1+cη )

1−γ
γ

γ (55)

u1 =
(M

c − Mη
1+cη )

1
γ −P

1
γ

c1
= γ

(M
c − Mη

1+cη )
1
γ −P

1
γ

(M
c − Mη

1+cη )
1−γ

γ
(56)

α =− Mη
1+cη e

1+cη
Mη u1 =− Mη

1+cη e

γ 1+cη
Mη

( M
c − Mη

1+cη )
1
γ −P

1
γ

( M
c − Mη

1+cη )
1−γ

γ
. (57)

Thus we have the following expression of the solution of
the HJB equation (40).

f (x) =

{
(c1x+P

1
γ )γ , 0 ≤ x < u1;

αe−
1+cη
Mη x + M

c , x > u1.
(58)

where c1, u1, α is given by (55) - (57).
Because 0 < γ < 1 and η = 2σ2

µ2 > 0,

u1 ≥ 0 ⇐⇒ M
c
− Mη

1+Mη
≥ P (59)

The maximizing function a(x) is then given by

a(x) =


µ

σ2(1−γ) (x+
1
c1

P
1
γ ), 0 ≤ x < u1;

µMη
σ2(1+cη)

, x > u1.
(60)

Next we shall consider the case of u1 < 0, i.e. M
c − Mη

1+Mη <

P. The boundary condition f (0) = P yields

f (0) = α +
M
C

= P.

So the return function is given by

f (x) = (P− M
c
)e−

1+cη
Mη x +

M
c
. (61)
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The maximizing function a(x) is then given by

a(x) =
µMη

σ2(1+ cη)
. (62)

Theorem 3. Suppose u0 > u1, i.e. M < µ
2 + σ2c

µ , then

1.If u1 ≥ 0, i.e. M
c − Mη

1+Mη ≥ P, then the function f (x)
defined by (58) with c1, u1, α given by (55) - (57) is a
solution of the HJB equation (2);

2.If u1 < 0, i.e. M
c − Mη

1+Mη < P, then the function f (x)
defined by (61) is a solution of the HJB equation (2);

4. The Verification Theorem

In this section, we shall show that the solution of the HJB
equation constructed in the last section is indeed the
optimal value function.

Let f (x) be given by

f (x) =


(31), u0 ≤ u1, u0 > 0;
(33), u0 ≤ u1, u0 < 0, u1 ≥ 0;
(37), u0 ≤ u1, u1 < 0;
(58), u0 > u1, u1 ≥ 0;
(61), u0 > u1, u1 < 0

(63)

and define the admissible policy π∗ for t < τπ∗ as

aπ∗(t) = a(Rπ∗
t ), lπ∗(t) = l(Rπ∗

t ), (64)

where

a(x) =


(8), u0 ≤ u1, u0 ≥ 0;
1, u0 ≤ u1, u0 < 0;
(49), u0 > u1, u1 ≥ 0;
(60), u0 ≥ u1, u1 < 0

(65)

and

l(x) =
{

M, x ≥ u1;
0, x < u1.

(66)

Here u0 and u1 are determined as follows: if M ≥ µ
2 +

σ2c
µ and PB(Bd2 + d1) ≥ A(A+ 1)e

d1
d2−d1 , then u0 and u1

are given by (26) and (25) respectively; if M ≥ µ
2 + σ2c

µ ,

PB(Bd2 +d1) < A(A+1)e
d1

d2−d1 and B+1 ≥ (B+1)P
M
c + 1

d4

, then

u1 can be derived from (34). If M < µ
2 + σ2c

µ , then u0 = ∞,

and u1 is given by (56) when M
c − Mη

1+Mη ≥ P.

Theorem 4. Let V (x) be the optimal return function
given by (1), f (x) be the function defined by (63) and π∗

be given by (64), then

V (x) = f (x) =Vπ∗(x).

The proof of this theorem is similar to Theorem 2.3 of [16]
and so we omit here.

5. Numerical Calculations

In this section we calculate the optimal return function
V (x) for P = 2, µ = 1 and the arbitrarily selected M, c
and σ (in Fig 1, Fig 2, Fig 3, Fig 4 and Fig 5 shown
below, we employ the symbol ”sigma” to represent σ ).
We category M < µ

2 + σ2c
µ as Case I, and M ≥ µ

2 + σ2c
µ as

Case II.

Fig 1. Fig 3. Fig 5. Fig 7. Fig 9 belong to Case I, and Fig
2. Fig 4. Fig 6. Fig 8. Fig 10 belong to Case II.
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Figure 1 V(x) when c=0.1, M=0.5, P=2, µ = 1
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Figure 2 V(x) when c=0.1, M=1, P=2, µ = 1
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Figure 3 V(x) when c=0.05, M=0.5, P=2, µ = 1
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Figure 4 V(x) when c=0.05, M=1, P=2, µ = 1
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