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Abstract: To identify untranslated regions (UTR) splice sites more accurately and efficiently, a method for the recognition of UTR
splice sites using both splicing sequences and secondary structures of flank sequence information based on combination statistical
method with support vector machine was proposed. The method consists of two stages: a statistical method is used in the first stage and
a support vector machine (SVM) with polynomial kernel is used in the second stage. The statistical method serves as a pre-processing
step for the SVM and takes UTR sequences as its input. It models the compositional features and dependencies of nucleotides in terms
of probabilistic parameters around splice site regions. The probabilistic parameters are then fed into the SVM, which combines them
nonlinearly to predict splice sites. Then the Mfold package in Vienna soft was used to predict the most stable secondary structure of flank
sequences. The traditional four-letter alphabet was converted into eight-letter alphabet sequence. The sequence- structure combination
strings were used for training models then recognized splice sites by the well trained models. Using the actual 5’UTR splice dataset of
human gene tested the method; it shows a good performance for UTR splice sites recognition.
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1. Introduction

Gene untranslated region (UTR) will not be translated
into protein, but it has an important role in regulating
gene expression; many studies have shown [1, 2]:
mutations and activity of UTR may be related to many
diseases and even cancer. For example, globin gene in
thalassemia patients, about 1/4 of the nucleotide
mutations in the intron 5’ untranslated region or 3’
untranslated region of conserved sequence [3], or directly
interferes with the pre-mRNA normal splicing [4]. The 5’
UTR length will affect the accuracy of the translation
efficiency and start when the length between 17∼80nt [5],
in vitro translation efficiency is proportional to its length
change [6]. 5’UTR in base pairing formation of secondary
structure will prevent the migration of 40S ribosomal
subunits [7], and inhibition translation initiation [8]. 3
’UTR untranslated region has an important regulatory
role of transcript stability, translation capabilities [9], and
control of mRNA subcellular positioning to further

understand the mechanisms of gene regulation [10],
developing new therapies for genetic diseases [11, 12],
and understanding the mechanism of cancer development
and its treatment [13], it is necessary to make deep
research into the mechanism and function of gene’s UTR.
Splice site recognition in UTR is the key question.
Compared to the splice site recognition in coding region,
one of the greatest difficulties in the UTR splice site
recognition is: it cannot rely on the state transitions from
coding to non-coding region. No matter how the intron
removal from reading frame, for most of the methods to
capture the conversion from non-coding region to the
coding region is not difficult, which reduces the difficulty
of identifying splice sites. Due to the lack of such a
conversion in UTR, the accuracy of the method based on
this conversion mechanism is greatly reduced in UTR
splice site recognition. Moreover, the method using the
DNA sequence similarity with the target protein cannot
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be used to UTR splice site recognition (because UTR is
not translated into protein).

Currently, only FIRSTEF [4] and NetUTR [5] can
provide a comprehensive recognition of splice sites in
gene UTR with relatively high accuracy, however, the
recognition accuracy is not good. FIRSTEF is a powerful
tool used to find the promoter and the first exon in the
coding region and untranslated region, its recognition
sensitivity of 86% and false positive rate of 17% for true
splice site. The innovation of FIRSTEF is proposed
existence conserved non-coding motif in untranslated
region, for example: the CpG level near the transcription
start point 500 bases. However, FIRSTEF can predict the
first donor site, but cannot identify the location of the first
acceptor sites, and more than 40% of the 5’ untranslated
region contains more than one exon, the data suggest that
at least 9% of the 5’ untranslated region contained second
non-coding exon, at least 3% has the third non-coding
exon, a special case, AF135187, contains four complete
non-coding exon. FIRSTEF cannot to identify these
acceptor sites. Eden and Brunak proposed NetUTR to
identify splice sites in 5’UTR, It used neural networks to
model splice sites, compared with FIRSTEF, and its
recognition accuracy has been greatly improved. But for
the strict data requirements, is not a very common
method. Donor sites and acceptor sites in untranslated
region are both located in the junction of intron and
non-coding exon, to identify these splice sites is more
difficult than traditional coding region.

To improve the accuracy of splice site recognition in
UTR, we proposed a novel method, By analyzing the
splicing sequences and secondary structures of flank
sequence characteristics of donor sites and acceptor sites,
donor sites in UTR identification based on the maximum
correlation decomposition (MCD) with support vector
machine model, acceptor sites UTR identification by the
first order Markov model ( MM1) method with support
vector machine model were built respectively. Then the
Mfold package in Vienna soft was used to predict the
most stable secondary structure of flank sequences [6].
The predicted structures were converted to a string of
two-symbol alphabet. With the combination of S and L
symbols and four-letter nucleotide alphabet, each
sequence was converted to an eight-letter alphabet
sequence, the sequence-structure combination strings
were used for training models, then recognized splice
sites by the well trained models. Experimental results
show that our proposed method is more effective than
other existing methods.

2. Materials and Methods

2.1. Dataset

The data we need are all from
ftp://ftp.ebi.ac.uk/pub/databases/UTR/data/, we extract

5’UTR sequence which contains at least one complete
non-coding exons, and Comply with the GT-AG rule,
removal the sequences Tags for alternative splicing site,
in order to ensure the accuracy of the algorithm, we used
BLAST algorithm to redundant processing for data sets,
through similarity comparison, removal of excessive
similarity UTR sequence. After the treatment, we get 380
UTR sequences, where the true donor sites and the true
acceptor sites are all 453; 59276 false donor sites and
78721 false acceptor sites.

We set these data into training set and test set to train
and test the model, the training set contains 300 UTR
sequences, 359 true donor sites, 359 true acceptor sites,
49 163 false true donor sites, 65103 false acceptor sites;
test set contains 80 UTR sequence, 94 true donor sites, 94
true acceptor sites, 10113 false true donor sites f, 13,618
false acceptor sites.

2.2. Secondary predicted

The Vienna package was used to predict the most
stable fold for each flank sequence. The Mfold program
in the package predicts the minimum free energy
structure of a single sequence, based on the algorithm
originally developed by Zuker and Stiegler [3]. The
predicted structures were converted to a string of
two-symbol alphabet (i.e. S, L) corresponding to whether
each nucleotide is paired or unpaired, respectively. Then,
with the combination of L and S symbols and four-letter
nucleotide alphabet (i.e. A, T, C, G), each sequence was
converted to an eight-letter alphabet sequence. The
nucleotide sequences of splice sites (four-letter) and the
sequence-structure combination strings (eight-letter) were
used for UTR splice site recognition (see below).

2.3. Method description

The proposed method for UTR splice site recognition
combined probability parameters with support vector
machine consists of two main stages:

Overview of the proposed method as Fig.2.1:
The first stage used probabilistic model, and the

second stage is a support vector machine (SVM) with
polynomial kernel used the probability from the first stage
as the input parameter. Probabilistic model serve as the
SVM pre-processing stage to characterize the basic
relationship and the sequences composition features in
the vicinity of splice sites sequences in the form of
probability parameters, then put these probabilities into
the SVM with a polynomial kernel function for
classification. Firstly, predicting the secondary structure
for the input sequences combined the structural
information with the sequence information; then building
different probability models for donor sites and acceptor
sites using different model in the pre-processing stage,
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Figure 2.1 Schematic overview of the proposed method

respectively. In second stage the probability of the first
phase serve as the input parameters and couple with
support vector machines of polynomial kernel to identify
the two kinds of sites.

2.4. Donor site recognition

Biological concept [10]: a striking similarity between
the 5’UTR donor consensus patterns and the patterns in
translated region donor sites, this similarity in local splice
signal indicates that the splicing is constrained at the
nucleotide level and both types of splice sites are
complementary to the 5’ end of the U1 snRNA. The only
difference is an increased tendency for G and C at
positions -6 to -10 and 7 to 9, respectively, at the 5’UTR
donor sites. the six bases in front of the intron
downstream and three bases at last of the non-coding
exon upstream are still conserved, Considering this
binding region as splice signal for building donor site
signal model, we use the maximum correlation
decomposition (MCD) method [5].

The MCD is to build a model; the model can capture
the correlation between non-adjacent bases as the
adjacent bases. It is to identify the bases with the greatest
correlation with other locations in the sequence, divided
the training data into two categories according to whether
they contain this base. Repeat this process until each
sub-class training data bases is less than a threshold value,
and then, to build a low-order Markov model for each
subclass, respectively. MCD captured correlation between
non-adjacent bases through use conditional low-order
Markov model to replace the unconditional low-order
Markov model. To get a consensus sequence the MCD
using the base of maximum probability of each position

as a consistent base. According to the consensus
sequence, define the variable Ci. When the bases at the
sequence position i, the same as the position in the
consensus sequence, Ci = 1 else Ci = 0; used χ inspection
to verify the correlation between bases, and its
implementation formula as following:

χ2(Ci,o j) =
1

∑
Ci=0

T

∑
o j=A

(no
Cio j

−ne
Cio j

)2

ne
Cio j

(2.1)

Where no
Cio j

represents in class Ci(Ci = 1/Ci = 0)
data, the sequence observations number of the base O j in
position j, ne

Cio j
is the expected number of the sequences.

When assumptionO j with Ci independent, ne
Cio j

is:

ne
Cio j

= nCi no j/N (2.2)

Where nCi denotes the total number of class Ci, data,
no j represents all locations j at the base O j is the number
of sequences, N is the total number of all sequences. We
set the interception probability p = 0.001, corresponding
to the χ2 with freedom 3, the statistics value is14.17.
when the χ2(Ci,o j) values greater than 14.17, we believe
that the independence assumption does not hold, i.e. j and
i is correlation, taking the correlation between
non-adjacent bases and the impact of the content of
guanine G and cytosine C on splice site recognition, it
appropriate to take larger sequence window. Here, taking
-15 to +15 (splice sites for the origin) as the donor site
recognition window, the output probability as a
pre-process for donor site recognition, next, using the
output probability as a support vector machine(SVM)
input for classification.

The donor site recognition model shown in Fig.2.2.

Figure 2.2 Donor site recognition model

Probabilistic model for donor site with MCD is
calculated as follow:

p(o) =
N(d)

∏
j=1

p j(o)
L(d)

∏
i=1

pd
i,oi

(2.3)

Where N(d) is the number of the d-th PWM matrix
decomposition, p j(o) is the selective probability of
subsequence O in the j-th decomposition, L(d) is the
length of sequence in the d-th PWM matrix, pd

i,oi
is the

probability of base oi at position i in the d-th PWM
matrix.
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The same method is used to build model for pseudo
splice sites, the probability is calculated as p′(o),for ease
of calculation and improve the computing speed, math.log
p(o) and p′(o) to and , then subtract the two logarithmic,
according whether the subtraction result PD is greater than
0 to evaluate the predicted sequence O is a real donor site
sequence or not. PD is calculated as follow:

PD = log p(o)− log p′(o) (2.4)

Then use the PD which greater than 0 as the
probabilistic output of donor recognition model, which
will serve as the input of the second stage SVM. Set the
output of SVM thaty = +1 represent donor site, y = −1
for non-donor site. Prediction window’s size is taken from
-15 to +15.

2.5. Acceptor site recognition

Correlations in the 5’UTR acceptor splice sites were
analyzed qualitatively and visualized using sequence
logos made at the single nucleotide, dinucleotide and
trinucleotide levels and compared with that of translated
region splice sites [3]. In addition to the strong well
known consensus at the acceptor site, the 5’UTR acceptor
site pyrimidine tract typically extends through position -3
and gradually fades until position -26, where it stops. It
has a weaker bias for cytosine at position -3 and slightly
stronger bias at position -4 and 4 than that of coding
region acceptor splice sites. The bias for thymine is
stronger at several positions including -5, -6 and -12.

Through the analysis of acceptor sites, we can see that
acceptor sites has a long conserved sequence, but the
distance correlation between the base in sequence is not
strong, first-order Markov model (MM1) could capture
adjacent correlation between the location of bases, we get
-30 to +10 around acceptor sites as identifiable
information window, using the MM1 for pre-processing,
and then apply the SVM for classification.

The acceptor site recognition model shown in Fig.2.3.

Figure 2.3 Acceptor site recognition model

Each nucleotide in a UTR sequence corresponds to a
state in the Markov chain used, whose observed state
variables are drawn from the alphabet:

SDNA = {AS,AL,CS,CL,GS,GL,T S,T L} (2.5)

We define an arbitrary sequence of length l (here l =
40):

l : {s1,s2, . . . ,sl} (2.6)

Where , si ∈ {AS,AL,CS,CL,GS,GL,T S,T L},∀i ∈ {1,2,
. . . , l} then the nucleotide si is a realization of the ith state
variable of a Markov chain, and state transition is only
allowed from state i to its adjacent state i+ 1. Hence, the
model consists of states ordered in a series. It evolves
from state si to si+1 and emits symbols from the alphabet
SDNA, where each state is characterized by a
position-specific probabilistic parameter. Assuming a
Markov chain of order k, the likelihood of a sequence
given the model is:

p(s1,s2, . . . ,sl) =
l

∏
i=1

pi(si|si−1) (2.7)

Where the Markovian probability pi(si) = p(si|si−1,
si−2, . . . ,sPi− k) denotes the conditional probability of a
nucleotide at location i given the k predecessors. Such a
model is characterized by a set of parameters:
{p(si|si−1,si−2, . . . ,si−k) : si,si−1,si−2, . . . ,si−k ∈
SDNA, I =
1,2, . . . , l}

MM1 is used to model a set of nucleotides in a UTR
sequence. The Markovian parameters are expressed
interms of position-specific first order conditional
probabilities (k = 1)

pi(si) = p(si|si−1) (2.8)

The model is then characterized by the set of
parameters: {p(si|si−1) : si,si−1 ∈ SDNA, i = 1,2, . . . , l}. It
is shown that the likelihood of a sequence given a model
M can be approximated by a polynomial of conditional
probabilities:

p(s1,s2, . . . ,sl)≈ p(s1)
l

∏
i=2

i−1

∑
j=1

bi j p(si|si−1, . . . ,si− j)

(2.9)
Loi-Rajapakse has used this method with neural

network to identify splice sites, and achieved good
results [11]. Then we applied SVM with polynomial
kernel to classify MM1 encoded splice site data. Based on
the training, a SVM can classify splice site. The SVM is a
canonical machine learning algorithm initially proposed
by Vapnik. It uses a hypothetical space of linear functions
in a high dimensional feature space trained with a
learning algorithm based on optimization theory. The
SVM description shown in Fig.2.4.

SVM classification is an optimization problem given
by:

Maximize f (a)
= ∑l

i=1 ai − 1
2 ∑l

i, j=1 aia jyiy jK(xi,x j)

s.t.∑l
i=1 aiyi = 0

0 ≤ ai ≤C, i = 1,2, . . . , l

(2.10)
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Figure 2.4 Description of the SVM

Where, l is the number of training examples, k is the
kernel function, x is the input vectors, y is either -1 or +1
representing two different classes, is the variable to be
optimized and C is a trade-off parameter for
generalization performance. Each corresponds to one
particular training example and after the training process,
only a subgroup of will have non-zero values. This
subgroup of and their corresponding training examples
are called the support vectors. The class labels y in the
two classifiers would then indicate true (y = +1) or false
sites (y = −1) for splice site and non-splice site
accordingly. Input x would always be a vector of MM1
probabilities.

Given a query UTR segment z, the trained SVM
classifies based on the decision function:

o(z) = sign[∑
i∈v

aiyiK(xi,z)] (2.11)

Where v is the set of support vectors.
The kernel function in our classifiers is a second order

polynomial :

K(x,z) = (< x• z >+1)2 (2.12)

Where < •> indicates a dot product.
Expanding (2.8),we obtain:

K(x,z) =
n,n

∑
(i, j)=(1,1)

(xi,x j)(zi,z j)+
n

∑
i=1

(
√

2xi)(
√
(2)zi)+1

Where n is the number of dimensions in vectors χ and
z, and chii and zi are the i-th element in vectors χ and z
respectively. Substituting (2.13) into (2.11), the output
o(z) becomes a polynomial over z, with the polynomial
constants determined by α and x of the set of support
vectors. Since z is a vector of conditional probabilities of
a sequence of length l:

z = [p(s2|s1), p(s3|s2), . . . , p(sl |sl−1)] (2.13)

The output o(z) in its polynomial form resembles
equation (2.8).

The training sequences were aligned with respect to
the consensus dinucleotides prior to stage one. The
estimates of the MM1 are the ratios of the frequencies of
each dinucleotide in each sequence position as shown in
(2.15). Only the true splice site training sequences were
used to create the Markov model. The desired output level
is set to +1 or −1 depending on the true or false splice
site class label.

p̂i(si) =
#(si

i−k)

#(si−1
i−k)

(2.14)

3. Predictive accuracy measures

he classification performance is defined by the
sensitivity (Sn), specificity (Sp), false positive ratio (FP
%), and false negative ratio (FN %) of the model. The
sensitivity, also known as true positive rate (TP %), is the
percentage of correct prediction of true sites and
specificity is the percentage of correct prediction of false
sites. Specificity is the correct prediction of the false sites
as defined below:

Sn =
T P

T P+FN
(3.1)

Sp =
T N

T P+FP
(3.2)

FP% =
FP

FP+T N
×100% (3.3)

FN% =
FN

T P+FN
×100% (3.4)

Where TP is the number of true positives, FN is the
number of false negatives, TN is the number of true
negatives and FP is the number of false positives. Sp is
proportion of predicted real sites that are actually real,
while Sn is the proportion of real sites that have been
correctly predicted as real. Since neither Sp nor Sn alone
constitutes good measures of global accuracy, other
measures are developed. The goal of our method is to get
lower FP % when in higher Sn.

4. Results and discussion

The data we used for training and testing the proposed
method are all download from
ftp://ftp.ebi.ac.uk/pub/databases/UTR/data/, we got the
results shown in TABLE I.

To evaluate the performance of the recognition
algorithm, we comparative and analysis of the effect of
the donor sites recognition model and acceptor sites
recognition model with the existing corresponding
recognition software, respectively. Compare the
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Table 1 Splicing site recognition results

Splicing site Sn (%) Sp (%)

Donor
site

87 83
84 80
75 73
70 64
60 58

Acceptor
site

85 82
80 75
75 71
70 62
60 56

Table 2 Donor site recognition results comparison

Donor site Sn (%) Sp (%)
NetUTR 66 38

GeneSplicer 13 33
MCD-SVM 87 83

Table 3 Acceptor site recognition results comparison

Acceptor site Sn (%) Sp (%)
NetUTR 60 24

GeneSplicer 22 31
MM1-SVM 85 82

performance of donor sites and acceptor site recognition
model with the existing recognition software, the results
shown in TABLE II and TABLE III.

To further straightforward to see the prediction
accuracies of these methods above, ROC curve (receiver
operating curve) is used to evaluate model performance
intuitively, the curve can be very manifest the
performance. Fig.4.1. and Fig.4.2. show the ROC analysis
of NetUTR, MCD-SVM, and MM1-SVM. When a ROC
is created from the false positive rate FP% (the y axis)
and the false negative rate FN% (the x axis) of a model,
the ROC curve the closer to the origin (0,0), the more
accurate the model.

Through analyzing the results from TABLE I we can
see that the performance of MCD-SVM is significantly
higher than the other two on identifying donor sites,
When evaluating the performance of the recognition
method, higher sensitivity and specificity represent better
result, in the experiment, the Sensitivity (Sn) of
MCD-SVM is up to 87%, However, NetUTR and
GeneSplicer method were 66% and 13%, respectively, the
specificity(Sp) of MCD-SVM is 83%, NetUTR and
GeneSplicer method were 38% and 33 %, under the
indicator of specificity, MCD-SVM is much better than
the other two; By comparing these methods, the

Figure 4.1 ROC curves for donor site identification

Figure 4.2 ROC curves for acceptor site identification

Sensitivity (Sn) of NetUTR can be slightly lower than our
MCD-SVM, but GeneSplicer is much lower than the
other two, because GeneSplicer is design based on the
characteristics of the coding region, the algorithm Used
the characteristics of coding region, and UTR doesnt have
these features, using it for UTR splice sites identified
caused its recognition rate lower. As the results shown in
TABLE II we can see that the performance of first-order
Markov model combined with support vector machine
method (MM1-SVM) is significantly higher than NetUTR
and GeneSplicer for identifying acceptor sites, the
Sensitivity (Sn) of MM1 -SVM is up to 85%, However,
NetUTR and GeneSplicer are 60% and 22%, respectively,
under the indicator of specificity, the superiority of MM1
-SVM is more obvious, the specificity (Sp) of MM1-SVM
is up to 82%, while NetUTR and GeneSplicer were 24%
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and 31%, respectively. After comparing the results from
TABLE I and TABLE II we can also find that the
recognition performance of acceptor sites is lower than
that of donor sites in UTR, this phenomenon may be due
to sequence conservation in the vicinity of acceptor sites
is relatively poor than that of donor sites, its
characteristics are not easy to extract. Through observing
Fig.4.1. and Fig.4.2., we can see that the ROC curve of
both MCD-SVM and MM1-SVM are all closer to the
origin(0,0) than NetUTR, which indicating that the
performance of our proposed method which combine
probability and statistics with support vector machine is
better than NetUTR for UTR splice site recognition.

5. Summary

In this paper we presented a new method for splice
sites identification in eukaryotic gene untranslated coding
regions (UTR). It based on splicing sequences and
secondary structures of flank sequence information using
incorporation statistical probability model with support
vector machine, and in accordance with the fact that
donor sites and acceptor sites have different statistical
properties. Donor sites in UTR identification is based on
the maximum correlation decomposition (MCD) with
support vector machine model, and acceptor sites UTR
identification using the first order Markov model (MM1)
method with support vector machine model.
Experimental results show that our proposed method is
more effective than other existing methods. However, due
to the understanding of splice sites in UTR is not deep,
the establishment statistical models are only approximate,
the biological information considered is not enough, and
there is a theory recognition accuracy limit threshold of
recognition for splice sites in UTR. To further improve
the recognition performance, research on splice site
prediction in UTR will focus on larger feature sets, since
more biological information to achieve better results.
Other future directions we would like to develop of more
complex features that capture other nucleotide
dependencies at the feature level.
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