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Abstract: A low order nonconforming finite element method is proposed for the convection-diffusion equations with the expanded
characteristic-mixed finite element scheme. The method is a combination of characteristic approximation to handle the convection part
in time and a expanded nonconforming mixed finite element spatial approximation to deal with the diffusion part. In the process, the
interpolation operator is employed instead of the so-called elliptic projection which is an indispensable tool used for the convergence
analysis in the previous literature. When the exact solutions belong to H 2(!2) instead of H> (L), the corresponding optimal order error
estimates in L2-norm are obtained by use of some distinct properties of the nonconforming finite elements.
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1 Introduction

We consider the convection-diffusion equations

(@)e, +u(X,t)-Ve

—V-(a(X,t) C):f(th)a inQX(O,T), (])
(b) c(X.0)=co(X), in 2.

(¢) ¢(X,t)=0, on Q2 x(0,T)

where 2 C R? denotes an open bounded domain with
boundary I', (0,7 is the time interval, X = (x,y) and the
parameters appearing in (1) satisfy the following
assumptions [1].

1) ¢(X,1) denotes, for example, the concentration of a
possible substance;

2) u(X,t) represents the velocity of the flow satisfying

[u(X,0)|+|V-u(X,1)| <Cy, VX €Q, (2)

here C; > 0 is a constant;
3) a(X,r) is sufficiently smooth and there exist
constants a; and a,, such that

0<a <a(X,!)<ay< 4o, VXEQ; (3)

4) f denotes a source term;

5) Vand V- denote the gradient and the divergence
operators, respectively.

In many diffusion processes arising in physical
problems, convection essentially dominates diffusion, it is
natural to seek numerical methods for such problems in
order to reflect their almost hyperbolic nature [2]. Many
such schemes have been developed, such as the
streamline diffusion method [3], the least-squares mixed
finite element method [4], the modified method of
characteristic-Galerkin finite element procedure [2,5-7],
the characteristic finite element methods [8] and the
characteristic finite volume element methods [9].

The modified characteristic finite element method was
first formulated for scalar parabolic equation by J.
Douglas and T. F. Russell in [2]. The method is a
combination of characteristic approximation to handle the
convection part in time and a finite element spatial
approximation to deal with the diffusion part. For
convection-dominated problems, the modified
characteristic finite element schemes have much smaller
time-truncation errors than those of standard methods
such as finite difference or Galerkin discretizations in the
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space variables combined with Crank-Nicolson or
backward difference scheme in the time variable [10].
Because the solution changes more slowly in the
characteristic 7 direction than in the ¢ direction. Then the
scheme will permit the use of larger time steps. [1]
described an expanded characteristic-mixed finite element
method which is a combination of characteristic
approximation to handle the convection part in time and
an expanded mixed finite element spatial approximation
to deal with diffusion part. This formulation expands the
standard mixed formulation in the sense that three
variables are explicitly treated. However, it is only for
conforming finite elements and the higher regularity of
the exact solution ¢ € H? is required.

In this paper, a low order nonconforming expanded
characteristic mixed element scheme is proposed for
equation(1). In problems with significant convection,
nonconforming finite elements with the degrees of
freedom defined on the element or the element’s edges are
appropriate [11]. In our process, the interpolation
operator is used instead of the elliptic projection as in the
previous literature [1,2] which has considerable practical
difficulties in solving simultaneous equations, and the
exact solution ¢ is only required to belong to H?*(Q)
instead of H3(Q) in the convergence analysis thus the
results of [1] are improved. At last, by using the special
property of the element considered (see Lemmas 1-2
below), the same error estimate orders of the scalar
unknown, its gradient and its flux in space are obtained as
in conforming finite element case of [1].

2 The Expanded Characteristic-Mixed Finite
Element Method

We denote by WXP(S) the standard Sobolev space of k-
differential functions in L7(S). Let || . [|¢ s be its norm
and || - [|x.s be the norm of H*(S). When k = 0, we let
L?(£2) denote the corresponding space defined on  with
norm || - ||.

Let [a,b] C [0,T], Y be a Sobolev space, and f(X,7) be
smooth function on Q X [a,b], also we define L”(a,b;Y)
and || f [|zr(ap:y) as follows

Labs¥) = {f: [ 100 I di <o},

1 = [ 1501 a7,

where if p = oo, the integral is replaced by the essential
supremum.

Under the above assumptions, we begin to discretize
the problem (1). Let

w(X,0) = (1+]u)? (4)

and the characteristic direction associated with the
operator ¢; +u - Vc be denoted by 7 = 7(X), where

0 1 0 u

w o avxoa yxo )

Then the equation (1a) can be put in the form:
dc
W(Xat)a 7V‘(G(X,[)VC) :f(Xat)v (X7t) € Q2x (OvT)'

(6)
Let A =—Vc¢, 6 = —a(X,t)Ve =a(X,t)A, then (6)
can be rewritten as

(a) W(X,l)% +divo = f,
(b) A+Ve=0, (7)
(¢) o—a(X,n)A =0.

Define the following Sobolev spaces:
V =H(div,Q) = {ve (L*(Q))*:V-ve [*(Q)},

A= (L2(Q))>*W=L*Q).

Then the expanded characteristic-mixed variational
problem  corresponding to (1) is to find
(o,4,¢):[0,T] =V x A x W, such that

dc

(a) (Wa—r,w)+(div0'7w):(f7w)7 Yw e W,
(b) (A,v)—(e,divw) =0, Ywev,
(C (a(X,l‘)l,,U)—(G,,U)ZO, VueA,
(d) ¢(X,0)=co(X), VX € Q.

(8)

This form will be discretized in details below.

From now on, let 2 C R?> be a polygon with
boundaries parallel to the axes, 7" be an axis parallel
rectangular meshes of 2 satisfying the regularity
assumption [12]. For K € T", let hx = diam{K} and

h = max {hg}.
KeTh

For v € H'(K), the shape function spaces P}; and the
interpolators I3, on K are defined as follows:

1
|| Ji

where [1,15,13,14 are four edges of JK.
The associated finite element spaces are defined as

(V—II/%V)dSZO (]: 1,2,](: 17273)4)7

Vo= {v=(vi,v2),vlx € PLYK € Th,/ [vj]ds =0,
F
VF CIK,F ¢ Q. j=1,2},
Ay=Vi  Wy={weL*Q),wlx € Qoo(K),VK € T"},

where [v;] stands for the jump of v; across the edge F if F
is an internal edge, and it is equal to v; itself if F belongs to
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902, 0 o(K) is a space of polynomials with zero degrees
for x and y respectively. o
Forv = (Vl,léz) andw € L*(K),letIT' : V =V, IT' : (a) (Kht’wh) + (divoy,wi)p =0,  Yw, €Wy,
A — Apand II7: W — W, satisf
! SISy (b) (A vh) — (¢l divwy)y =0, Vv, €V,

'y = (I'v1,PPv2), |k = (= 1,2),
2 2 2 1
I7 |K:HK7HKWZ—/wdxdy.
K| Jx

Let &g = A —Hll, Ch = Oy —HIG,eh =
cp—IT%c, p=IT%c—c.

In the procedure to be used, we consider a time step
At > 0 to approximate the solution at times 1" = n/\t, and
the characteristic derivative will be approximated basically
in the following manner.

Setting

X=X—-u(X,i")At,

then we have the following approximation [2]

c(X,t") —c(X,t" 1)
X _X)2+ (b0)2

n ac n
W(Xat )%'t”""//(xﬁ)

c(X,t") —ce(X, ")
B At ’

Our expanded characteristics-mixed finite element
method is the determination of
(On, Aycp) {101, .tV Y — V), X Ay, x W, satisfying the
relations

c;’—EZ_l
(a) ( L At ,Wh) + (dl'VO';;,Wh)h = (f"7wh), th e W,
(b) (/l}?,vh — (Cz,divvh)h = 0, VV}, eV,
(C) (Cl( 7tn)a’]l;7“h) - (o-];lhuh) = Oa v.uh € Ah7
(d) &) = IT%co, VX € Q,
9)
where

cp=cp(t"), X:X—MZ_I(X, YA,
gl= "X, Y= X - (XY A

=Y /K uvdxdy, f" = f(X,1").

3 Existence and Uniqueness of the Solution of
Discrete Problem

Theorem 3.1 Under the assumption of (3), there exists a
unique solution (0, Ay, c) € Vi, X Ay, X Wy, to the expanded
characteristic-mixed finite element scheme (9).

Proof. The linear system generated by (9) is square, so
the existence of the solution is implied by its uniqueness.
Let cZ’l and f be zero, thus EZ’I is zero too, then we have

(C) (a(Xatn)A'}:lnuh) - (Ghnaﬂh) = 07 v”’h € Ah~
(10)
Choosing wy, = ¢}, in (10a), v, = o} in (10b), u, =

Aj in (10c), and summing them together gives
1 2

7 e 17 +a(X, 1) Ay, Ay) = 0.

According to (3), we get ¢} = A = 0, then with (10c)
we have (o', u,) = 0, on the other hand, choosing u;, = o'
gives ;' = 0. The proof is completed.

To get error estimates, we state the following important
lemmas.

Lemma 3.1 For ¢ € L?(2),0 € V, we have

(c—IT?c,divwy), =0, Vv, €V,
(div(c —IT'¢),wp), =0, Ywy, €W,

Proof. By the definition of IT? and noting that divv, | is a
constant, we get

(¢ — IT*c,divwy); = Z / (c— Hzc)divvhdxdy =0.
kerh’K
Similarly, since wy |k is a constant, we have

(div(c —IT'G),wpy)p = Z /div(G—ch)whdxdy
kerh 'K

= Z wh|K/div(0'—HlG)dxdy
KeTh K

=Y wilk [ (6—1"0)-nds=0.
KeTh oK

Here and later, n = (n,n,) denotes the unit outward norm
on dK. The proof is completed.
Lemma 3.2 [15,16] Forc € H*(Q)NH} (L), we have

Z/ cn-vpds <Chlcla || v |l, Yvi € V.
kern /9K

Here and later, the positive constant C is independent of 4.
Lemma 3.3 [1] For a given function 7 € L?(Q), there
exists a gz € (H'(€))? such that

(a) divg; =T,
) lgc|i<C 7],
(@ llglI<ClT]-1-

Lemma 3.4 Let 7 € L?(Q),c € H*(Q)NH} () and
A € H'(Q)%,if (€,&,) € W, x A, satisfies

(&n>qn) — (&, divgn)n — Z /achqhds

KeTh
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+(Hl)~—},,qh) =0,Vg,€eVy,

then we have
(o <Ch| Tl +Tl-1) &l

FCh(h || T |+ [l T -0)(A]1 +lel2).

Proof. Let g; be the corresponding function of the
given 7. Then by Lemmas 3.1-3.3 and the interpolation
theorey
(7,8) = (divgz, &)i = (div(qz — Hlf]r)vé)h
+(diVI—Ilq‘L'v &)h = (divnlq’ﬁ é )h

= (&,II'q;) — Z/ cn-IT'g.ds
kerh’ 9K
+(IT'A — A, IT' g7)

(Hll—)w(h)
cn-IT'gzds

= (8h7H1‘Ir_C]1)+(£haCIT)+
+(IT'A =2, 1T'g: —go)— )

KeTh
SChr|[ Tl +zl-1) | &nll
+Chlcly || IT' gz || +CR* (A1 || gz [l1 +ChIA |1 || gz ||
SCh| Tl + 1 zl-1) | &l
+Chlc|2{]] Hl‘]r —qz || +llg-l}
+C2|Al1 || gz |1 +ChIA 1 || gx ||
=Ch|zl[+zl-1) | &nll
+Ch(lela+ Al T -1 +R | T]).

The proof is completed.

Lemma3.5Letn € L>(Q), N =n(X —u(X)At),c €
H*(Q)NHI(Q) and A € HY(Q)?2, if (&,€,) € W), x Ay
satisfies

(&n,qn) — (&, divgn)n— Y, / cn-gpds

KeTh

+(H12’ *kth) =

then there holds

07 VQh € th

((n=1,8) <Clh+L0) [ ||]| & ||

+Ch(h+A) || 0 || (lel2+ A1)

Proof. Let T =1 — 7} € L*(2). Lemma 3.4 indicates
that

(n=n,9)<Chln=—nl+In=nl-)l&l
+Ch([cla+ [A[)(In =7 |l-r+h[[n=71)
SCh+An) [ 0|l &l
+Ch(h+At) | n || ([e[2+[A]1).

By [14], we obtain

In-ala<clnlanin-al<clnl.

Combining the above inequalities yields the desired result.

4 Error Estimates

In this section, we derive the optimal order estimates of
(cp —c), (0, — o) and (A, — A) in L?-norm.

Theorem 4.1. Let (op,A,¢c,) and (0,4,c) be the
solutions of (9) and (7), respectively, At = O(h). Then
for At > 0, we have

0< n< N
_ n
(b) max | (A =A) ) || < moltt+hmy,(17)
() max | (0n—0) (") || < molst+hm,

2
my=C || s lz2(0,7:22)

mp = C(|Ct\L2(o,T;H2) + Mf|L2(0,T;H‘) + |Ct|L2(0,T;H1))
+C(|Al=(0,7:11) + lelz=(0,7:11) + 1O =0,7:1) + €l i=(0,7:12))-

Proof. For any v, € V;,, i, € A, and wy, € Wj,, by (8)
and (9), we have the following error equations

el — 1
(a)(hTthaWh)+(diVC£7Wh)h
c ,5”*1 n__zn—1
:( nai* hA? awh)f(p Apz vwh)7
(b) (el v) — (e divvr)n— Y / My - nds
KeTh
+(IT IT'A" — A" v,) =0,
(C)( (X tn)ghvl*lh) (C}?vuh)
(a(X, ) (A7 = A7), 1) — (IT' 6" — 6", 1) = 0.
(12)
Then choosing uy, = {' € V;, = Ay, in (12¢) yields
(a(X,t")g! &) — (G, G + (a(X ) (IT' A" = A7), &)

—(Hldn _ Gn’ C;l'l) —

which follows

IGil <Cllg || +C|[ T'A" =A™ | +C | T'6" — " |
<C|l & || +Ch|A"]; +Chlo™,.

(13)
By (12b), we get
en_ gh— 1 en_en—l .
(2 Ath ) — (X Ath divvy)
_n—1
— ¥ fog &£ Vi -nds (14)
K(ET]ln_kn)_(Hlln ]_)ynfl)
+( At 7Vh):O
n n—1 n n—1
. e € _ 58 _ rn o
Choosing wy, = A U = NE vy = & in

(12a), (12c) and (14), respectively, and summing them to
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obtain
(Gd ez‘ez_l>+<a<><t ey, Sfh
/ o Ch -nds
KGT/E;nIi Ay — (A1 — 2n1)
+ T 4
+(a(X,t")(H17L; 1) thh)
—(M'e" —on, Ath )

_ h
= ot Nt At )
p—p" ! G-e!
_( At 0T At ) |
(pn—l pn—l 627627 )
At BVAV:
(15)
Then applying the argument similar to [2], yields
oc" _ah—l e gt 1
(VRS
it At At 16
d%c 1, el—eft (16)
C” &12 HL2 =1 gn [2) AtJrZ H Tt H )

. 1
pr—p"t ey
I( A7 717 A7 )|_ ||Pt||L2,nltnL2) (17)
+1 Il 2|2

On the other hand, the first two terms on the left-hand side
of (15) can be estimated as

e — 1 e”—e';_l Sn—sn_l
( h Ath ’ h Atl ) ( (X ¢ )8}“ h Ath )
_(eh_ez ' eh_ez 1)+(62_1_EZ ! ez_ez 1)
o N 1 At At
n_ gh—
HalX e, BT
-1 —1 —n—1 1
H eZ_eZ H2 (ez _e;zl eh_ez )
= 1At At VAN
+ax, (@X ")ey, &) — (a(X, "), e ),
(18)
Y g nas <on S “higl
KeTh
Ch?
< / aBds+C ¢ |

= At
(19)

and

(Hll” —),") _ (Hlln_l —ﬂ,n_l) ;

{ - &)

(Hll" 7)Ln) o (HI/V’_I fl"_l)
<c| s 01
C " 1 2 n 2
<A o | (IT°A =2) |7 ds+C || & |I%,
(20)
respectively.

Thus from (15)-(20), we get

1 n\on on n n—1 h elyrl 2
ﬂ(( a(X,1")e) &) — (a(X, ") ep " e ) + 5 H A [

92 C

<C| (912 HLv e gn 12) AH’ H Pt HLZ(,n 1 12)

P gt g gt et gt
_(2At A )T A )

ch? " c [
o [ laBds eGP+ [ AT A=Ay P ds

n 1an n 8;;_82’71 1 ~n o gh_gzl
—(a(X,M)(IT°A" =4 )’T)+(H o - Tt)'
(21)

To multiply (21) by 2A¢, and sum them in time, we
obtain from (15) that

ifl

ar | & |* —a | & |I? +AIZ | - T

II*
<C| ﬁ I72 OTL’) AP +C | py HLZ 0TL2 +Ch‘G|L°°(O,T,H]) (A
—l 1

n I I _
é . .
h 651 - e;z l)

—22 Lol —el ) — 22
+Ch|/1\m<orﬂl> Il & | +CAt Z Il & 117 +Ch2\c,\L2 O.1:H?)
AR AL gty + CHI0 g ay + €| (TR -2,

HLZ(O‘T;LZ) .
(22)
By Lemma 3.5 and (12b)
n l 1 Si—1
Z p e 7(3;' 1)
i=1
n—1 = n—1 l 1 i i—1 =i
pr—p" p' = -p')
= ( A eh + Z IN; ’eh)
h+ n— n— +At n n
<C I\ShHHP 1||+Ch||P Y ——— (A" +c"2)
h+ i— i
Z e o~ =o'
+Ch z 1o =" =p | B2 (A + e]a)

H 8h ”2 +Cllp HLw 0,732 +C | pr ||Lw (0,T:L2)
+CA1 -21 Il €, 11 +Ch> (1A g g1y + l€lm0 7122
i=
(23)
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Similarly
i—1 _ si—1 1 on—1
i(e;l 76;1 ¢ l—l):(ez 762 e)
=N At h
+’E'(e5:‘fe2;<léir‘féz> o)
R
h+ At
<c— =l
+Ch| & | “A’(Il”llﬂc”lz)
h+At .
zu el ekt e |
+Ch z | ei=t — el | L (AT + o)

2 2
|| Sh 1> +Ch (A} 0TH1)+|C|L°° 0.7:H2))
AV R =t ’ -1

+CAtZ I & 1I? t5 Z | =L +C e I
- (24)
Substituting (23) and (24) to (22), we have
i eifl
ar | & ||2 +Arz | 2

<C || FE) ||L2 (0.7:12) AP +C || py ||L2 OTL2) +2a; || & ||
+Ch2(|7L|Lw oY T ‘C‘L“‘ or:H) T |G|L: O,T;H]))
+Cllpl- or2) T P JFCAIZ{ I &, [
O (oo +ei B rm)

By (12b)

€Y V) c Oy -nds+ (IT'A° = 2°,v,) = 0, Vv, €V,
h

KeT"
choosing v, = 8}? € Vj, in above equation, we have
1€ I|< ChIc®2 +ChIA®),. (25)
By Gronwall’s lemma, we get

| & 1< Ch([Al =0, 7:01) + €l (0,7:12) + 1O 120, 7:11))
+Ch(|Adl 20,700y + et 200, 7:02))
+C | p l=,7:02) +C | Pr 12 0,7:22)
+CA || 85 Nizorany +Cl e |-
(26)
Taking wy, = €]}, v, = §!, uy = € in (12), we get

Summing the above three equalities yields

g”fe—”*l
(F ) + (a(X1")g &)

+(a(X, ") (ITPA" — A7), €l) + (ITPA" — A", &)

— ¥ [k nds— (IT'o" — 0", €l")
KeTh X 1
act I —¢l” ot —pn
= ( 0T %an)*(Tan)

(28)
The first term on the right hand of (28) can be estimated in
the way analogous to that for (16)

—n—1
ac" ¢ ¢,

|( o7 Taeh)‘

8 Cc n
S CAt || 871_2 ||i2(l”71,t";L2) + || €n ||2 . (29)
Due to
pn —ﬁyhl _ (pn _pnfl) + (pnfl _pnfl)
we have
pnipn—l C /t” ) _
r-rF < .
E=— i< [ nPas+cle )
(30)

By Lemma 3.5 and (12b), the second term on the right
hand of (28) can be estimated as

n—1 sn—1
p" —p h+At
L= el

+Ch || p" || B2 (A + \c"lz)
aj n

< ? || Eh ”2 +C H p Hiw(o,T;LZ)
+Ch* (|42

an

2
w111 T 1lzm 0 1:m2))-
(31)
Next we estimate the terms on the left hand of (28) one by
one.

e, —e'zfl
(A5 )+ (al 7)ef )

1 et
> o (ehen) =@ & D] +an | & 11

1 1 o

> o l(ehen) = (1+CAN* e e ™)) +an | & I,
(32)
where the inequality || &) [|< (1+CAt) || €} || (cf.[1]) has

o g been used in the last step.
(a)(% Jep)+ (dive] el By Lemma 3.2 and the Young inequality, we obtain
t
n__zn—1 n o=n— ¥
(e Gy (A" = Am, &) §C||2\1;1[1|2‘M_M 12 +ﬁ%€,ﬁ2ﬂz
<Ch win iy FC | G,
(B)(et &)~ (v~ X, [ cGinds ora T
KeTh (33)
(+§< I(M ")M Ch)) :(C’" )+ (a(X ") (IT'A" = A") By / c"G nds| < Chlc"|2 || & |
c)(a(X,t")ey, & n, &)+ (aX, ") (IT'A" — A"), g, Kerh
( —o" gh) =0. <Ch2|(' OTHZ +C|| Ch H2
(27) (34)
© 2013 NSP
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(M'o"—o" gl <C|'c"~o" |+ | & I
aj n
SChz‘G‘i“(O,T;H‘)—i_? (A
(35)
a
(@XM (AT 2" =A%), )| < C || T'A" 2" >+ | €]

al n
< Chzm‘iw(o,r;ﬂl) + 3 |- (36)

Combining (29)-(36) with (28) gives the recursive relation

1 non n—1 n—1 aZC 2

N, [(eh’eh) - (eh aeh )] S CAt H ﬁ ||L2(t"’l,t",L2)

5 oo L P ds+(C+1) || e |2

+C H2 eZ’; I>+Cllp ||2;<07T;L2) +C|| gﬁ’ I?

FCH (A L 0.7y F1l7 0 702) T 1O L0 501)-

(37)

Multiplying (37) by 2A¢, summing in time and noting that
) =0, we get

2%

2 2

I 12 AR | 95 agy oy +C 1l o1 2oy
n

+CAL Y || e |2 +CH A2 e g
Hc\iooz;lr;m) + |G|i°°(O,T;H]))
+CAti | &7 +CAt | p Hiw(O,T;LZ) ‘
= (38)
By (13), we obtain

Y UG IPSCY N € 1P +CH AL g gy + CH IO 2 g gty
i=1 i=1
(39)
Then it follows from (26) that
n
; A Chz”’”%&(o,r;ﬂ') + |C‘i”(0ﬁT;H2) + ‘G|i°°(0,T;H|))
+C H p H[Z‘M(OYT;LZ) +Ch2(‘C1|iZ(07T;H2) + M't|1242(0,T;H1))
n—1 . 82(;
+C ; I €6 1P +C 11 P 12072y +CAP | 55 I2oraz)
(40
So
n o n—1 . 3 (92C )
CAIZ; I G IP< CA Zi i I +CAP | 55 10 72,
i= ) i= 5 )
+CA2t 1Pe 120 712) +CP 2At(|/um
1O e 0.rm1)) TEOL P 70 712
+CI Dt (ferf2

2
oy T |C|L°°(O,T;H2)

2
0,T;H2) + Mt‘LZ(O,T;Hl))'
41)
Substituting (41) into (38) gives
I 17 < € 1P 202y +C° (Rl ) F el e
+|G|12‘w(07T;H1 )“'CAI H P HLN(Q_TJ})
+Ch2At(|Ct |L2(0,T;H2) + |A't |22(0,T;H1))
2c - i
+CAt2 H 3? ”iz(O,T;Lz) +CAtZ] H €h H2 .
fa

(42)

By Gronwall’s lemma, it follows that

I e I<Cllr ll2orazy +Ch2 11 o2y
+Ch2 (et 2 0 r2) + Pl 20,7

+Ch2(|A| (0. 7:01) + €l i=0,7:12) 1O 1=0,7:01))
+CO || 25 ll2o.ra2)

<Chlci|ppormm +Ch3 | ¢ |r=(0,7:m1)

+Ch?
FCh> (Al L= (0,7:11) F l€lp=(0,7:12) + 1O L= (0,7:11))
+CAL | 3%5 20,722 -

w

(el z0,0:m2) + Al 20, 7:01)

(SIS N[N

(43)
Note that ¢ — ¢ = e} + p". By the interpolation theory,
(43) and the triangle inequality, we get (11a).
On the other hand, from (13), (26) and (43), we can
derive that

| & [I<Chlet|2rm
+Ch | ¢ =111y TCh(letl 20,7:m2) + Al 200,7301)
+Ch(|A = 0,751y + || (0,7:12)

32
+0| = 0.7:0m)) FCAL | 55 [l 1200,7:02)

| & IS Chlelaormy TChI € =071
+Ch(ler|20,7:02) + el 20, 7:01))

+Ch(|A |0 7:1) + |C|L°°((%,T;H2)
HO=0,7:m1)) +CA || % 20.7:22) -

Similarly, we can get (11b) and (11c). The proof is
completed.

Remark 1 The above finite element spaces Vj, and M},
have been used to deal with second order elliptic
problems and Navier-Stokes problems by mixed finite
element methods in [15] and [16], respectively.

Remark 2 When the finite element space V), is
replaced by the constrained Q{”’ element space [17]-[19]
or Pi-nonconforming finite element space [20] on
rectangular meshes, the results obtained in the present
work are also valid. But how to extend the results of this
paper to arbitrary quadrilateral meshes still remains open.
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