
*Corresponding author e-mail: owenjakata@rocketmail.com 
 

  © 2023 NSP 
   Natural Sciences Publishing Cor. 

J. Stat. Appl. Pro. 12, No. 3, 1231-1245 (2023) 1231 
  

Journal of Statistics Applications & Probability 
An International Journal 
 

http://dx.doi.org/10.18576/jsap/120329 

Fitting Statistical Parent Distributions to Quantify Financial Risk in 
the South African Financial Index (J580) 
D. Chikobvu  and O. Jakata* 

 

Department of Mathematical Statistics and Actuarial Sciences, Faculty of Natural and Agricultural Sciences, University of 
the Free State, Bloemfontein, South Africa 
Received: 24 Sep. 2022, Revised: 4 Jan. 2023, Accepted: 15 Jan. 2023. 
Published online: 1 Sep. 2023.  

 

Abstract: The purpose of this study is to investigate and describe the riskiness of an investment in the South African Financial 
Index (J580) using four relatively heavy tailed statistical parent distributions, viz: the Exponential, Weibull, Gamma and Burr 
distributions. The statistical distributions describe the Index returns, and quantify the riskiness of the monthly South African 
Financial Index (J580) for the period 1995-2018. The Maximum Likelihood Estimation (MLE) method is used to estimate 
the distribution parameters. The heavier-tailed Burr distribution in the heavy tailed Frétchet domain distribution is the best 
fitting statistical parent distribution for losses as evidenced by the AIC, BIC and other graphical measures of goodness of fit. 
The lighter tailed Exponential distribution is the best fitting statistical parent distribution for the positive returns (gains). The 
Exponential distribution is in the light tailed Gumbel domain distribution. Summary measures of financial risk, such as the 
Value at Risk (VaR) and Expected Shortfall (ES) are calculated using the two best fitting distributions. Financial risk (VaR 
and ES) quantification and risk mitigation is topical in light of the failure of the Normal distribution-based risk models, which 
under estimated risk in leading up to the Global Financial Crisis (GFC) of 2008-2009. The practical implications are that the 
Normal distribution-based risk measures ought to be replaced with other statistical parent distributions and even extreme 
value distributions (EVD) in order to accurately estimate financial risk. Given the limited empirical investigations on the 
South Africa Financial Index (J580), the results from this research provide additional and valuable information for both 
investors and practitioners on how to accurately estimate and assess financial risk. The study extends the empirical literature 
on more accurate financial risk assessment, more specifically in the context of the Financial Index in South Africa.    
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1 Introduction 

In finance and insurance, one area of interest is the statistical distributions of financial returns. It is generally assumed that 
financial return variables follow certain statistical distributions. The Normal distribution was once popular, but does little to 
carter for some extremes in returns that are often associated with financial data.  The skewed and heavier-tailed distributions 
are the most appropriate to fit when working with financial returns data, since they account for skewness and excess kurtosis. 
Many statistical parent distributions have been considered in many different situations, and these include the Gamma 
distribution [1], Log-normal distribution [2], and the Log-logistic distribution [3]. The aim is to find a way of quantifying 
statistically, the riskiress associated with financial returns.   

Financial returns, according to [4], have relatively heavy tails when compared to the Normal distribution.  According to [5], 
financial returns provide a rich source of variable information with a variety of properties, ranging from Normally distributed 
variables to distributions with varied degrees of skewness and kurtosis. [6] concluded that some statistical distributions 
possess thick tails that are better suited to modeling financial losses.  This paper quantifies and describes the South African 
Financial Index (J580) returns using four relatively heavy-tailed statistical parent  distributions, viz: the Exponential, Weibull, 
Gamma and the Burr distributions. The chosen parent distributions are able to capture varied degrees of skewness and kurtosis 
and provide for the varying degrees of relatively heavy tailedness. 

The statistical parent distributions use the full dataset in modelling and they concentrate the fit on the main body of the 
financial returns data, which is around the mean, mode and/or the median. The four relatively heavy-tailed statistical parent 
distributions are used to fit the positive (gains) and negative(losses) returns separately. There are many standard theoretical 
distributions according to [7], and the Weibull, Exponential, Logistic, Generalised Logistic, Gompertz, Normal, Extreme 
value, and Uniform distributions are special cases or limiting cases of the Burr distribution.  The four distributions are 
sufficient to cater for varying degrees of relatively heavy tailedness.  
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Extreme value distributions are statistical distributions of the largest values drawn from a sample of a given size. The two 
main models of extreme value distributions are the Generalised Extreme Value Distributions (GEVD) and Generalised Pareto 
Distribution (GPD). These distributions however only cater for the very extreme losses or gains whilst ignoring the main 
body of the data. The statistical parent distributions on the other hand, strike a fine balance in modelling the main body of 
the data and some extreme values associated with the dataset.  According to [8] , the GEVD unifies the Gumbel, Fréchet, and 
the negative Weibull class statistical distributions.  

Statistical parent distributions provide a description of risk exposure, according to [9]. Key risk metrics like Value at Risk 
(VaR) and Expected Shortfall (ES) can be used to describe the extent of risk exposure. These important risk metrics are used 
by investors to gauge how exposed their firms are to risk, which can result from shifts in underlying variables like stock 
prices, interest rates, and exchange rates. 

The main objective of this study is to identify the best-fitting statistical parent distributions for describing the risk in the 
return distribution of the South African Financial Index (J580). This study suggests some key alternatives to the Normal 
distribution when fitting to the Index returns. This aids in quantifying the financial risk using key risk metrics, such as VaR 
and ES. In the context of the South African stock market, a few studies on statistical parent distributions have been conducted. 
This study fills in the gap by determining the best-fit statistical parent statistical distributions for modelling the South African 
Financial Index (J580) returns data and quantifying the Index's risk level.  

1.1 Statement of the Problem 

This study analyses the empirical performance of four proposed statistical parent distributions in describing and quantifying 
risk in the monthly financial returns of the Index.  Fitting the distributions provides a risk description by selecting a suitable 
statistical parent distribution. The four relatively heavy-tailed distributions, viz: the Exponential, Weibull, Gamma and Burr 
distributions are compared in terms of goodness of fit to find the best-fitting statistical parent distribution. The statistical 
parent distributions concentrate their fit on the main body of the sample financial returns data, which is around the mean, 
mode and the median, unlike the Extreme Value distributions which concentrate their fit exclusively at the extremities of the 
returns-distribution. The best-fitting statistical parent distributions for both the losses and gains returns are identified 
separately using the AIC and BIC criteria. The heavier-tailed statistical parent distributions strike a balance in accommodating 
the location of the bulk of the data and the thicker tails often found in financial data. 

1.2 Significance of the Study 

The financial sector is an important player in the South African economy; it promotes economic growth by promoting trade 
and commercial activities. It is crucial to modelling and quantifying the risk associated with the returns from the financial 
sector. The performance of the financial sector often affects other Industrial sectors. This study focuses specifically on the 
South African Financial Index (J580) returns.  

1.3 Objectives of the Study 

The main objectives of the study are to: 

• Model the main body of the monthly South African Financial Index (J580) returns using four relatively heavy-tailed 
statistical parent distributions. 

• Determine the best-fitting model for the Index returns. 

• Quantifying the risk associated with the Index and comparing the risk of gains and losses. 

The contribution of this study is the identification of the most appropriate statistical parent distributions for the South African 
Financial Index (J580) returns and the quantifying of VaR and ES as proxies for future risk. This will help investors 
considering investing in the Index in comprehending the risks/rewards associated with the Index, and also allowing for the 
quantification of the capital required to meet any regulatory requirements.  

1.4 Summary of literature on statistical parent distributions 

There are many studies that have been done on statistical parent distributions and a few are discussed in this section. 

[10] employed the Normal Inverse Gaussian (NIG) distribution for a Vector Auto Regressive (VAR) valuation in the South 
African and USA stock market. The paper compared the NIG distribution with the Normal distribution, Skew Student’s                          
t-distribution and Student t-distribution, each capturing different/varying features of the financial returns. The three 
distributions gave a better fit than the Normal distribution. The VAR estimates from the Normal distribution proved to be 
inferior to the estimates obtained from the other distributions; large negative returns were accommodated and were more 
likely to occur in the other three distributions than in the Normal distribution case. 
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[11] used a class of semi-parametric Generalised long-memory models with Fractionally Integrated Asymmetric Power 
Autoregressive Conditional Heteroskedastic (FIAPARCH) errors. They used daily stock market Indices in eight MENA 
countries, namely, Bahrain, Egypt, Jordan, Kuwait, Oman, Qatar, Saudi Arabia and United Arab Emirates (UAE) over the 
period from May 31, 2005 to April 15, 2015. The researchers used the wavelet-based maximum likelihood estimator to 
estimate the proposed models. Their model proved to be a better fit than the traditional long-memory models; and their 
findings also showed that past prices can be used to forecast future prices.  

[12] used a two-parameter Weibull distribution for modelling the financial return distributions and estimating tail-related risk 
measures. The model was fitted to financial returns from Global stock market indices, viz: the S&P 500 (US), FTSE 100 
(UK), the All Ordinaries Index (Australia), and the HANG SENG Index (Hong Kong); as well as two exchange rate series, 
viz: the Australian (AU) dollar to the United States of America (US) dollar and the European Euro to the US dollar; and a 
single asset series: IBM. The findings revealed that the two-parameter Weibull performed most favourably for VaR 
estimation, before and after the Global Financial Crisis (GFC) (2007-2008). 

[13] analysed the daily Japanese Nikkei 225 Index returns for the period 1984 - 2002. The study investigated if the 
Exponential distribution was suitable to model the distributions of returns, volatility and calm-time interval distribution of 
the volatility. A graphical diagnostic semi-log plot was utilised to assess the goodness-of- fit. The results revealed that 
empirical distribution of the returns, the volatility and the calm-time interval for the volatility can be described by the 
Exponential distribution. The Exponential distribution was found to be more suitable compared to the Normal distribution. 

According to [14], the NIG distribution is a flexible distribution with four parameters enabling it to capture skewness and 
hence heavy-tailedness in financial time series data. The study used seven stocks listed on the Norwegian Stock Exchange 
and one listed on the New York Stock Exchange.  In their study on risk quantification, the authors compared the NIG to a 
Normal distribution and a non-parametric model. The researchers demonstrated that the NIG distribution outperforms the 
Normal distribution and fits the log returns of eight stocks well in both the tails (upper and lower) and in the centre.  

There many other studies done on statistical parent distributions, but not discussed in this study, which include [15], [16], 
[17], [18], [19], [20], [21] and  [22].  To the best of authors’ knowledge, this is one of the few studies that adopts the 
Exponential, Weibull, Gamma, Burr distributions in modelling the return distribution and forecasting the risk level of the of 
the South African Financial Index (J580). This provides important information to local and international investors who wish 
to improve portfolio diversification and reduce contagion in a globalised world economy. Developing economies stocks are 
less correlated with other Global markets. This study is organised as follows: section 2 presents the Research models, and 
section 3 presents the Results and the discussion. Section 4 presents Conclusion and Discussion. 

2. Research Models 
  This study applies the statistical parent distributions approach for modelling non-Normal returns distributions in the context 
of the South African Stock market. Four statistical parent distributions, viz: the Exponential, Weibull, Gamma and Burr 
distributions are proposed. The chosen distributions do cater for the relatively heavy-tailed returns data and are able to capture 
various degrees of skewness and kurtosis. The four statistical parent distributions which are used in this financial returns 
distribution analysis, are discussed in this section.  

2.1 Exponential distribution 

[23] describes a heavy-tailed distribution as having a tail that is heavier than an Exponential distribution. The Exponential 
distribution gives a good starting point relative to our presumption on the nature of the returns data. The Probability Density 
Function (PDF) and Cumulative Distribution Function (CDF) of the Exponential distribution are respectively denoted as: 

𝑓(𝑥; 𝜆) = 𝜆𝑒)*+                                                                                                                                                        (1) 

𝐹(𝑥; 𝜆) = 1 −	𝑒)*+                                                                                                                                                  (2) 

where, 𝑥 represents the log returns and 𝜆> 0 is the rate parameter. 

The Maximum Likelihood Estimation (MLE) parameter for the Exponential distribution is given in the following theorem: 

Theorem 1 

If X is exponentially distributed with the pdf given in equation (1) where λ > 0 then, the maximum likelihood estimate of λ 
is given as: 

𝜆0 = 1
∑ +!"
!#$

                                                                                                                                                                   

n is the total number in the sample data set. 
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2.2 Weibull distribution  

The Weibull distribution adds a shape parameter to the Exponential distribution, hence making it more flexible. The PDF 
and CDF of the Weibull distribution are respectively denoted as:   

𝑓(𝑥; 𝜆, 𝑘) = 5+%&$

*'
𝑒)6

'
(7
%

                                                                                                                                         (3) 

𝐹(𝑥; 𝜆, 𝑘) = 1 −	𝑒)6
'
(7
%

                                                                                                                                          (4) 

where, 𝑥> 0 represents the log returns,  𝜆> 0 and k > 0 represent the scale and shape parameters respectively. The parameters 
for the Weibull as estimated by the MLE method are given in the following theorem. 

Theorem 2 

If X follows a Weibull distribution with parameters λ > 0 and k > 0 and a pdf given in equation (3) then, the MLE of λ is 
given as: 

𝜆0 = 	 1
∑ +!%"
!#$

                                                                                                                                                                 

where, k is estimated by solving equations7 numerically. 

𝑛 + 𝑘∑ 𝑙𝑛 𝑥; =
15∑ +!%<1+!

"
!#$
∑ +!%"
!#$

1
;=>                                                                                                                               

2.3 Gamma distribution 

The Gamma distribution is another two-parameter distribution from the Exponential family of distributions. The PDF and 
CDF of the Gamma distribution are respectively denoted as:  

𝑓(𝑥; 𝛼, 𝛽) = A)

B(C)
𝑥C)>𝑒)A+                                                                                                                                       (5) 

𝐹(𝑥; 𝛼, 𝛽) = >
A)B(C) ∫ 𝑡C)>𝑒)

*
+𝑑𝑡+

G                                                                                                                              (6) 

With the continuous random variable 𝑥 represents the log returns, 𝛼 and 𝛽 represents the shape and scale parameters 
respectively. Theorem 3 gives the Gamma parameters as estimated by the MLE method. 

Theorem 3 

If X follows a Gamma distribution with a PDF given in equation (5), where the parameters  α > 0 and β > 0 then, the maximum 
likelihood estimate of β is given as: 

𝛽0 = 	 1C
∑ +!"
!#$

                                                                                                                                                                  

Substitute the solution of equation 11 into  H
HC
𝑙𝑛{𝐿(𝛼, 𝛽)}  to obtain a nonlinear equation for the maximum likelihood estimate 

of α. Numerical methods are then used to solve the resultant equation. 

2.4 Burr distribution 

According to [24], the Burr distribution was first introduced in 1942 by I. W. Burr and it and is known as Burr Type XII 
distribution. The Burr distribution is a three-parameter heavy-tailed distribution. The additional parameter makes the 
distribution more flexible and gives a better fit if the log returns data is heavy-tailed. 

The PDF and CDF of the Burr distribution are respectively denoted as:  

𝑓(𝑥; 𝛼, 𝑘, 𝛽) = C5
A
6+
A
7
C)>

61 +	6+
A
7
C
7
)(5L>)

                                                                                                        (7) 

𝐹(𝑥; 𝛼, 𝑘, 𝛽) = 1 −	61 + 6+
A
7
C
7
)5

                                                                                                                        (8) 

The Burr distribution has two shape parameters, 𝛼> 0 and	𝑘> 0. 𝛽> 0 represents the scale parameter. Theorem 4 presents the 
maximum likelihood estimates of the Burr distribution. 
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Theorem 4 

If X follows a Burr distribution with parameters α > 0, k > 0 and β > 0, and a PDF given in equation 7 then, the maximum 
likelihood estimate of k is given as: 

𝑘M = 	 1

∑ <1	N>L6
'!
+7

)
O"

!#$

                                                                                                                                        

The maximum likelihood estimate of α is obtained by solving the following equation: 

1
C
− 𝑛𝑙𝑛𝛽 − ∑ 𝑙𝑛(𝑥;) + (𝑘 + 1) P∑ Q

6
'!
+7

)

>L6
'!
+7

)R 𝑙𝑛 6
+!
A
71

;=> S1
;=> = 	0                                                                

The maximum likelihood estimate of β is obtained by solving the equation above and the one below. 

(𝑘 + 1) P∑ Q
)
+6

'!
+7

)

>L6
'!
+7

)R1
;=> S − 1C

A
= 	0                                                                                                                          

2.5 Risk Measures  

In this section, the formulas used to calculate and quantify risk in the the South African Financial Index (J580) returns data, 
Value at Risk (VaR) and the Expected Shortfall (ES) for the proposed parent distributions are presented.                                                                                                                                 

Exponential distribution VaR and ES equations  

	𝑉𝑎𝑅X(X) 	= 	−	
>
*
	log	(1 − p)                                                                                                                                   (9) 

𝐸𝑆X(X) 		= −	 >
X*
	{log(1 − 𝑝)𝑝 − 𝑝 − log	(1 − 𝑝)}                                                                                                (10) 

for x	 > 	0 ,    0	 < p < 1 , and  λ	 > 	0, the scale parameter. 

Weibull distribution VaR and ES equations   

𝑉𝑎𝑅X(𝑋) = 	𝜆[−𝑙𝑜𝑔(1 − 𝑝)]
$
%                                                                                                                          (11) 

𝐸𝑆X	(𝑋) 		= 	
*
X
	(1	 +	 >

5
	 , −𝑙𝑜𝑔	(1 − 𝑝))                                                                                                                  (12) 

 

for x	 > 	0 ,    0	 < p < 1 , k	 > 	0, the shape parameter, and  λ	 > 	0, the scale parameter. 

Gamma distribution VaR and ES equations  

𝑉𝑎𝑅X	(𝑋) = 	 $+	𝑄
)>	(𝑎, 1 − 𝑝)                                                                                                                                   (13) 

	𝐸𝑆X(𝑋) 		= 	
>
	AX ∫ 𝑄)>(𝛼, 1 − 𝑝)𝑑𝑣X

G                                                                                                                           (14) 

for x	 > 	0 ,    0	 < p < 1 , β	 > 	0, the scale parameter, and 𝛼 > 	0, the shape parameter.  

 Q	(𝛼; 	x) = denotes the regularised complementary incomplete gamma function.  

                                            

Burr distribution VaR and ES equations  

𝑉𝑎𝑅X	(𝑋) = [(1 − 𝑝)
$
% − 1]

$
)                                                                                                                                    (15) 

𝐸𝑆X(𝑋) = 	 $, 	∫ [(1 − 𝑝)
$
%

X
G − 1]

$
)                                                                                                                               (16) 

for x	 > 	0 ,    0	 < p < 1 , α	 > 	0, the first shape parameter, and k	 > 0, the second shape parameter. 

The models for VaR and ES for the four relatively heavy-tailed distributions  are adopted from R Statistical software package 
[25]. The VaR and ES for the best-fitting distributions: Exponential distributions and Weibull distributions are forecasted 
using the VaRES R-statistical software package. 

2.6 Testing for Stationarity, Normality, Heteroscedasticity and Autocorrelation 
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The Augmented Dickey-Fuller (ADF) Test is used to test whether the Index return series is stationary. The Normality of the 
Index is tested using the Andersen Darling Test. The presence of heteroscedasticity in the residuals is tested using the 
Lagrange Multiplier (LM) test proposed by  [26].  A Box-Ljung test statistic tests is used to test for autocorrelation in the 
data set.  

2.7 Research Data  

The monthly South African Financial Index (J580) secondary data (years 1995-2018) obtained (with permission) from the 
website iress expert: https://expert.inetbfa.com was used in this study. The South African financial sector is one of the three 
main sub-indices of the South African All Share Index (ALSI). It is defined as the banking, insurance and securities industries  
[27]. [28], stated that the financial sector contributes a quarter of the total economic growth and employs over 220,000 people 
in South Africa. According to the IMF Report (2014), South Africa’s financial sector is large and sophisticated and the assets 
amount to 29.8 per cent of the GDP. Therefore, it is important to model the returns from the financial sector in order to 
quantify the riskiness of the index. 

In this study, losses are positive since the loss function in period 𝑡 for an index log return is: 

𝑋p = −𝑟p = − 𝑙𝑛 6 r*
r*&$

7                                                                                                                                         (17)                                                                                                                                                               

𝑟p	is the monthly log returns in month t, 𝑀p represents the monthly index in month 𝑡 and ln represents the natural logarithm. 
When using a loss function, the losses (negative returns multiplied by -1) are positive.  

3. Results 

The data is analysed in the R-programming environment using packages fitdistrplus, actuar, ReIns and VARES is used to 
quantify VaR and ES. 

3.1 Descriptive Statistics 

Table 1: Monthly log returns of the South African Financial Index (J580) descriptive statistics. 

Description Values Description Values 

Mean -0.835 Variance 0.36512 

Median -0.0101 Standard Deviation 0.06042 

Maximum 0.51195 Skewness 2.194 

Minimum -0.21652 Kurtosis 19.440 

 

Source: Authors’ own work. 

Table 1 shows that monthly South African Financial Index (J580) returns descriptive statistics. Results suggest   the 
distribution of returns has a heavy-tail. The mean is –0.835 with a small standard deviation of 0.06042. The dataset is 
significantly skewed to the right and also exhibit excess kurtosis with a positive skewness coefficient (2.194>0) and large 
kurtosis (19.440>3). The results suggest that the skewed and fatter-tailed statistical parent distributions are the most 
appropriate to fit this type of data since they account for skewness, excess kurtosis and hence the heavier-tails (Hakim et al 
2018). 

3.2 The graphical plot of monthly Index values  𝑀p  

The graph (Figure 1) shows the monthly movement pattern of the index over the past 23 years and clearly shows an upward 
trend (Figure 1) 
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Fig.1: Time series graph of the Index’s monthly values, 𝑴𝒕. 

In Figure 1, the financial crises which had a negative impact on the South African stock market are indicated on the time 
series plot by sharp down turns of the index levels. The logarithmic return series data	(𝑥p) is in Figure 2.             

 

Source: Authors’ own work. 

Fig. 2: Time series graph   of the Index’s monthly returns, 𝑥p. 

 

3.3 Testing for Stationarity   

The p-value for the ADF test is 0.01 which is less than the significance level of 0.05, and hence the null hypothesis of a unit 
root is rejected. The conclusion is that the returns data is stationary                                                   

3.4 Test for Normality. 

The p-value for the Andersen Darling Normality test is 6.903e-08 which is less than 0.05. This implies that the hypothesis of 
Normality is rejected. It is concluded that the return data series is not Normally distributed. This again suggests the returns 
follow a fat-tailed distribution.  

3.5 Test for Heteroscedasticity 

The p-value for the ARCH LM test is 1, which is greater than 0.05. This indicates no presence of significant ARCH effects 
in the returns data. This reveals that there is no persistence of variance and no evidence of volatility clustering in the returns 
data. 
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Fig 3: ACF diagram 

 
Fig 4: PACF Diagram 

3.6 Test for Autocorrelation 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) plots indicate that there is no significant 
auto-correlations in the returns data. The Box-Ljung test has a p-value = 0.8998 is greater than 0.05, implies that the null 
hypothesis of no autocorrelation is not rejected. This means that the returns are independently distributed.  

3.7 Fitting and selecting distributions 

In this section, the gains and the losses are separated out and analysed separately by fitting the four statistical parent 
distributions, namely the Exponential, the Weibull, the Gamma and the Burr statistical distributions in the stated order. 

3.7.1 Exponential Distribution 

The Exponential distribution fit is depicted in Figure 5 (for losses) and Figure 6 (for gains) using diagnostic plots. The MLE 
method was used to estimate parameters and their standard errors. 

a) Exponential   Losses 

 
Fig 5: Diagnostic plots for the Exponential loss returns 
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b) Exponential Gains 

 
Fig. 6: Diagnostic plots for the Exponential gain returns. 

The data points exhibit linearity on the P-P and Q-Q plots, and show insignificant deviation from the 45°line in Figure 5 and 
Figure 6. From the diagnostic plots, the Exponential distribution is a good fit for the data.  

Table 2: Parameter estimates for the Exponential fit 

 Parameter Estimate Standard Error 

Estimate of  rate parameter (λ) for  losses 0.0412269639 0.432920447 

Estimate of  rate parameter (λ) for   gains 0,0422276076 0.535808339 

 

The Maximum Likelihood method estimate parameters with their respective standard errors are given in Table 2 for both the 
losses and the gains.  

3.7.2 Weibull Distribution 

The Weibull distribution fit is depicted in Figure 7 (for losses) and Figure 8 (for gains) using diagnostic plots. The MLE 
method was again used to estimate the parameters and their standard errors. 

a) Weibull losses 

 
Fig. 7: Diagnostic plots for the Weibull losses 
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b) Weibull gains 

 
Fig. 8: Diagnostic plots for the Weibull gains 

On the P-P and Q-Q plots in Figure 7 and Figure 8, there is no deviation from the 45° line, indicating that the Weibull is a 
good fit for the data. The error values for the two parameters are relatively low for both the losses and gains, as shown in 
Table 3. 

Table 3: Parameter estimates for the Weibull fit 

 Parameter Estimate Standard Error 

Estimate of shape (k) for losses 1.03177619  0.068555192 

Estimate of scale (λ) for  losses 0.04183508  0.004083269 

Estimate of shape (k) for gains  1.1384825  0.07136430 

Estimate of scale (λ)  for gains  0.0441436  0.00320305  

 

The Maximum Likelihood method estimate parameters with their respective standard errors are given in Table 3 for both the 
losses and the gains.  

3.7.3 Gamma Distribution 

The Gamma distribution fit is depicted in Figure 9 (for losses) and Figure 10 (for gains) using diagnostic plots. The MLE  
method was also used to estimate the parameters and their standard errors. 

a) Gamma losses 

 
Fig.9:  Diagnostic plots for the Gamma losses 
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b) Gamma gains 

 
Fig. 10: Diagnostic plots for the Gamma gains 

In Figure 9 and Figure 10, on the P-P and Q-Q plots, there is insignificant deviation from the reference line with the 
probabilities matching for most of the sample points for both the losses and gains.  

Table 4: Parameter estimates for the Gamma fit 

 Parameter Estimate Standard Error 

Estimates of shape (𝛼) for  losses 1.19493   0.1440603 

Estimates of scale (𝛽) for losses 0.03444962359 0.023182 

Estimates of shape (𝛼) for gains 1.178297    0.117282 

Estimates of scale (𝛽)  for gains 0.0358372626 0.029089 

 

The parameter estimates and their respective standard errors are given in Table 4. 

3.7.4 Burr Distribution 

The Burr distribution fit is depicted in Figure 11 (for losses) and Figure 12 (for gains) using diagnostic plots. The MLE 
method was also used to estimate the parameters and their standard errors. 

a)  Burr    losses 

 
Fig. 11: Diagnostic plots for the Burr losses 
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b) Burr gains 

 
Fig. 12: Diagnostic plots for the Burr gains 

On the P-P and Q-Q plots in Figure 11 and Figure 12, there is minimal deviation from the 45°line for most of the probability 
points. There is insignificant divergence showing that the Burr distribution is a good fit for the data. The estimates and their 
respective standard errors are given in Table 5. 

Table 5: Parameter estimates for the Burr fit 

 Parameter Estimate Standard Error 

Estimate of shape(𝛼)  for losses 2.267892   1.0568732 

Estimate of shape(𝑘)  for losses 1.448459   0.1724818 

Estimate of scale (𝛽)  for losses 0.0573157 0.0123455 

Estimate of shape(𝛼) for gains 87.684139 3.0122222 

Estimate of shape (𝑘) for gains 1.1087849 0.1583244 

Estimate of scale (𝛽)  for gains 0.4019639 0.0040196 

 

The parameter estimates and their respective standard errors are given in Table 5.The shape and scale parameters reveal that 
the all-parent distributions are a good fit to the sample data.  The study employed AIC and BIC criteria to determine the best 
fitting model both for the losses and gains in returns. 

3.8: BIC and the AIC for the fitted distributions  

The BIC and AIC are used to select the best model and the results are shown in Table 6 below. 

Table 6: AIC and BIC values for the fitted parent distributions 

Distribution AIC BIC 

Losses 

Exponential -479.5058 -476.8054 

Weibull -477.7239 -472.3229 

Gamma -479.5886 -474.1877 

Burr -488.4884 -480.387 

Gains 

Exponential -695.0273 -691.9459 

Weibull -697.039 -690.8762 

Gamma -695.6178 -689.455 
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Burr -694.5598 -685.3156 

 

The heavier-tailed Burr distribution gives the best fit for the losses since it gives the lowest AIC and BIC values in Table 6. 
According to [24], the Burr distribution can be used to model the financial returns data because it can captures the properties 
of the distribution and the tail-behaviour of the returns data. In Table 6, the Exponential distribution gives the best fit for the 
gains. Following the principle of parsimony, it is not necessary to add the extra parameters, the one parameter model is 
sufficient.  

Table 7: The VaR and ES are estimated for the gains and losses 

Confidence Level Burr distribution- losses 

 Value at Risk (VaR) Expected Shortfall 

0.95 0.1265 0.1621 

0.99 0.1945 0.2348 

0.995 0.2237 0.2648 

 Exponential distribution-gains 

 Value at Risk (VaR)  Expected Shortfall 

0.95 0.1121 0.1463 

0.99 0.1628 0.2010 

0.995 0.1928 0.2317 

 

In the case of the gains, with a 95 % confidence level, the Burr distribution gives VaR and ES estimates of 12.65 % (0.1265) 
and 16.21% (0.1621) respectively (Table 7). This means: the expected market gain is not expected go above 12.65 % (0.1265) 
at the confidence level; if it goes beyond, it will average 16.21% (0.1621). The interpretation is the same for all the other 
estimates. The two best fitting distributions give a good starting point. 

4. Conclusion, Discussion and future possible research   

This study investigated the monthly South African Financial Index (J580) returns using four relatively heavy-tailed statistical 
parent distributions: namely the Exponential, Weibull, Gamma and Burr distributions.  

4.1 Conclusion and Discussion 

The four relatively heavy-tailed statistical parent distributions are able to model the non-Normal distribution of the  Index 
returns. This approach is consistent with studies by [9], [10], [11], [12], [13] and [14].  

 The results confirm that the Index losses and gains are non-Normal, following the Burr and Exponential distributions, 
respectively. The two distributions are used to calculate VaR and ES as financial risk metrics. 

Comparing losses to gains for the Index, the results indicate that the prospects of potential losses, modelled by the heavier 
tailed Burr distribution, are greater than the prospects of potential gains, modelled by the lighter tailed Exponential 
distribution.  

The higher expected losses than the gains in the Index, suggests that a short position (selling the Index today hoping to buy 
it back at a later date) is a better investment strategy rather than a long position (holding the Index, hoping to sell it on a later 
date at a higher price).  

 The study provides additional and valuable information for both investors and practitioners on how to better accurately 
estimate financial risk using non-Normal statistical distributions.  

4.2 Future possible research 

Future possible research could include more than the four statistical parent distributions, and comparing the results with those 
from extreme value distributions. 
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