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Abstract: This paper is contributed to the boundary effect problem of the empirical mode decomposition algorithm, which results in a
serious distortion in the EMD sifting process. An adaptive method for processing boundary effect in the empirical mode decomposition
sifting process is presented, which has exploited the local time- or spatial- scales and the waveform or texture characteristics near
boundary of the signal or image to extend the signal or image so that additional subsignal or subimage are obtained. The extended
section is taken as the most suited subsignal or subimage to the inner signal or image by template matching operation. The multiple
components of the original signal or image are available by applying EMD algorithm to the extended signal or image and then leaving
out the extended parts of the decomposed components. Simulation results have proved that the proposed template matching based
decomposition method outperforms the neural network extending method, the mirror extrema extending method and the AR model
extending method for 1D signals, and perform texture extraction effectively for 2D natural images such as defect-free and defect
fabrics.
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1 Introduction

Empirical mode decomposition (EMD) [1] is a newly
proposed method for signal processing, which uses
intrinsic time scales to decompose the signal instead of
predefined basis functions. It is very suitable for the
analysis of nonlinear and nonstationary signals. However,
in Huang’s EMD algorithm, the cubic spline based
envelope-mean interpolation creates an effect called
boundary swings, which results in distortion near two
endpoints of the signal. Aiming at the solution of
boundary effect of EMD, certain techniques including the
neural network (NN) extending method [2], the mirror
extrema (ME) extending method [3] and the
autoregressive (AR) model extending method [4] are
presented.

Although these previous works have been proved
effective by simulation results, they either contaminate
the intrinsic nature of a signal such as nonlinearity and
nonstationarity or lack use of the waveform
characteristics of the signal. It is supposed to exploit the
local time scales and the waveform characteristics [5]
near endpoints to extend the signal so that additional

extrema are obtained. But in [5] the choice of length of
moving time window, which is used to segment a signal
into a series of vector type data is not adaptive. Based on
time scales near the two endpoints, an adaptive method
using template matching (TM) is proposed to overcome
the boundary effect. The critical step of end extending is
to determine the tendencies near the two end points,
which most likely emerge in the inner signal especially
for the regular signals. If an inner sequence has the most
similarity of tendency with the front endpoint or back
endpoint, the inner sequence nearest to the searched
sequence is most suited as the extended sequence.

When the generalization of classical EMD algorithm
to BEMD is performed, boundary effect is still one of the
essential issues in the sifting process. Local textures of an
image are commonly similar to each other to some extent,
especially in the case of fabric image. In the 2D case, the
TM method uses the subimage near the boundary as a
template to search the most suited subimage in the inner
image by correlation operation. If an inner subimage has
the most similarity of local texture to the boundary, the
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inner subimages nearest to the searched subimage are the
desirable textures for boundary extension.

The proposed method fully makes use of the
waveform characteristic of the signal or the similarity of
local texture and can thus solve the boundary issue
effectively. Applying EMD to the extended signal or
image, and then leaving out the extended parts of the
decomposed components, the intrinsic mode functions of
the original signal or image are formed.

2 Adaptive boundary effect processing

2.1 One-dimensional case

Assume the underlying signal S(t) is a data vector
S = [s(0) , s(1) , · · · , s(N −1)]T . The procedure for
processing boundary effect can be formulated in detail as
follows.

Step 1. Identify one maximum and one minimum
nearest to the front endpoint of S(t) . Denote their
locations by tmax, front , tmin, front respectively. Similarly
identify one maximum and one minimum nearest to the
back endpoint of S(t) and denote by tmax,back , tmin,back
their locations respectively. If tmax, front > tmin, front , let
tm = tmax, front ; otherwise, let tm = tmin, front . If
tmax, back < tmin,back , let t̃m = tmax,back ; otherwise, let
t̃m = tmin,back .

Step 2. For the front endpoint and back endpoint
extension, construct the matching templates G and G̃
respectively as follows:

G = [g(0) , g(1) , · · · ,g(tm)]T , (1)

where g(0) = s(0),g(1) = s(1), . . . ,g(tm) = s(tm), and

G̃ = [g̃(0) , g̃(1) , · · · , g̃(N − t̃m −1)]T , (2)

where g̃(0) = s(t̃m), g̃(1) = s(t̃m +1) , · · · ,
g̃(N − t̃m −1) = s(N −1).

Step 3. Compute the correlation between G (resp.G̃ )
and a series of sub-signal of s(t) to measure the similarity
of G (resp.G̃ ) to a certain sub-signal:

Corr (G,Si) =

tm
∑

t=0
g(t)s(t + tm + i)[

tm
∑

t=0
g2 (t)

tm
∑

t=0
s2 (t + tm + i)

]1/2 , (3)

where i = 1, 2, · · · , N −2tm −1.

Corr
(
G̃, S̃ j

)
=

N− t̃m−1
∑

t=0
g̃(t) s(t +2 t̃m +1−N − j)[

N− t̃m−1
∑

t=0
g̃2 (t)

N− t̃m−1
∑

t=0
s2 (t +2 t̃m +1−N − j)

]1/2 , (4)

where j = 1, 2, · · · , 2 t̃m + 1 − N. In Eqs. (3) and (4),
Si = [s(tm + i) , s(tm +1+ i) , · · · , s(2tm + i)]T and S̃ j =

[s(2t̃m +1−N − j) , s(2t̃m +2−N − j) , · · · , s(t̃m − j)]T

are the vector type sub-signals of s(t).
Step 4. For front-endpoint extension, search the

maximum of Corr (G,Si) and the corresponding value of
Si , which is represented by Si0 = argmax

i
Corr (G,Si) .

For back-endpoint extension, search the maximum of
Corr

(
G̃, S̃ j

)
and the corresponding value of S̃ j, which is

represented by S̃ j0 = argmax
j

Corr
(
G, S̃ j

)
.

Step 5. For front-endpoint extension, add the
sub-signal with one maximum and one minimum ,which
is just before Si0 to the front of s(t) . For back-endpoint
extension, add the sub-signal with one maximum and one
minimum , which is just behind S̃ j0 to the back of s(t).

Step 6. Perform EMD sifting process (Ref. section 3.1)
on the extended signal.

2.2 Bidimensional Case

Step 1. Use the moving spatial windows of size Q×Q to
segment the underlying image I (x,y) of size P×P into
a series of subimages Bi, where Bi = [bi1, bi2, · · · ,biQ].
Let W = [wi1,wi2, · · · ,wiQ] be the template, which at least
overlaps one edge of I (x,y) .

Step 2. Compute the similarity measure between Bi
and W in terms of Eq. (5).

Corr (W,Bi) =

Q
∑

q=1
wT

iqbiq(
Q
∑

q=1
wT

iqwiq ·
Q
∑

q=1
bT

iqbiq

)1/2 , (5)

Step 3. Search the most similar subimage Bopt to the
template W , which satisfies the following expression:

Bopt = argmax
i

Corr (W,Bi) (6)

Step 4. To the left boundary, a subimage of I (x,y) ,
which is just on the left side of Bopt , is attached to the
left side of the original image. To the right boundary, a
subimage of I (x,y) , which is just on the right side of Bopt
, is attached to the right side of the original image. To the
top boundary, a subimage of I (x,y) , which is just on the
top of Bopt , is attached to the top of the original image.
To the bottom boundary, a subimage of I (x,y) , which is
just on the bottom side of Bopt , is attached to bottom of
the original image. To the diagonal extension, subimages
nearest to Bopt along the diagonal direction are attached to
outsides along the diagonal direction respectively.

Step 5. Perform EMD sifting process (Ref. section 3.2)
on the extended image.
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3 Empirical Mode Decomposition

3.1 One Dimensional EMD Algorithm

The objective of EMD algorithm is to extract a number of
intrinsic mode functions (IMFs) from a multicomponent
signal s(t) . For an extracted IMF, the number of extrema
and zero-crossings of the signal must be the same or
differ by no more than one, and the mean of the envelope
defined by the local maxima and the envelope defined by
the local minima is always zero. The EMD algorithm can
be formulated as follows.

Step 1. Set the residue r0 (t) = s(t) and the IMF
number ℓ= 1 .

Step 2. Sift the ℓth IMF component:
i) Set h0 (t) = rℓ−1 (t) ,k = 1.
ii) Search all the local maxima and local minima from

hk−1 (t) .
iii) Interpolate all the local maxima and local minima

respectively by cubic splines to obtain upper and lower
envelopes.

iv) Compute the mean envelope mk−1 (t) of upper and
lower envelopes.

v) Update hk (t) = hk−1 (t)−mk−1 (t).
vi) Repeat steps ii)-v) until hk (t) being an IMF. If so,

the ℓth IMF is cℓ (t) = hk (t) and update residue rℓ (t) =
rℓ−1 (t)− cℓ (t) .

Step 3. Proceed the sifting process for all the
subsequent rℓ (t)’s and finally reconstruct s(t) as

s(t) =
L

∑
ℓ=1

cℓ (t)+ rL (t), (7)

where L is the number of IMF components and rL (t) is the
final residue.

3.2 Bidimensional EMD Algorithm

The bidimensional EMD is contributed to extract the 2D
IMFs from a bidimensional signal I (x,y) during the
sifting process. A 2D IMF is characterized by zero-mean
and AM-FM. The bidimensional sifting process can be
detailed as:

Step 1. Initialize the residue R0 (x,y)= I (x,y) and the
IMF number ℓ= 1 .

Step 2. Sift the ℓth IMF component:
i) Set H0 (x,y) =Rℓ−1 (x,y) ,k = 1.
ii) Identify all the local maxima and local minima from

Hk−1 (x,y) .
iii) Interpolate all the local maxima and local minima

respectively with the radial basis function (RBF) [6] or
the multilevel B-splines [7] to obtain upper and lower
envelopes, i.e. Hu (x,y) and Hl (x,y) .

iv) Construct the mean envelope Mk−1 (x,y) of upper
and lower envelopes as:

Mk−1 (x,y) =
Hu (x,y)+Hl (x,y)

2

v) Set Hk (x,y) =Hk−1 (x,y)−Mk−1 (x,y) .
vi) Repeat steps ii)-v) until the following criterion is

satisfied.

SD = ∑
x,y

[
|Hk (x,y)−Hk−1 (x,y)|2

H2
k−1 (x,y)

]
< ε

where ε is the predefined value.
Step 3. Represent the ℓth IMF as Cℓ (x,y) = Hk (x,y)

and update residue Rℓ (x,y) =Rℓ−1 (x,y)−Cℓ (x,y).
Step 4. Repeat steps 2-3 until there only exists

monotonic 2D component Ires (x,y) for horizontal or
vertical direction. Finally the bidimensional signal I (x,y)
is reconstructed by

I (x,y) =
L

∑
ℓ=1

Cℓ (x,y)+Ires (x,y) . (8)

4 Results and Discussion

4.1 Simulation for 1D Case

Consider a multicomponent signal given by

s(t) = cos
( π

25
t
)
+0.6cos

(
2π
25

t
)
+0.5sin

( π
100

t
)
,

(9)
where t ∈ [20, 155], and s1 (t) = 0.6cos

( 2π
25 t
)
,

s2 (t) = cos
( π

25 t
)
, s3 (t) = 0.5sin

( π
100 t
)

are the three
components for s(t). As compared to the proposed
method, the neural network extending method, the mirror
extrema extending method and the AR model extending
method are used to suppress boundary effect during the
EMD sifting process. To evaluate the processing
performance for boundary effect, two criteria called mean
absolute error (MAE) and mean squared error (MSE)
between real components sℓ (t) and decomposed
components cℓ (t), ℓ= 1, 2, 3 are introduced as:

MAE =
1
N

N

∑
t=1

|sℓ (t)− cℓ (t)|, ℓ= 1, 2, 3. (10)

MSE =
1
N

N

∑
t=1

|sℓ (t)− cℓ (t)|2, ℓ= 1, 2, 3. (11)

Fig.4.1 illustrates the EMD decomposition results of
the simulated signal using four different boundary effect
processing methods. It is clearly shown that the
decomposed components cℓ (t), ℓ= 1, 2, 3 using template
matching based boundary effect processing method
furthest approximate to the real components,sℓ (t),
ℓ= 1, 2, 3.
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(a)

(b)

(c)

(d)
Figure 4.1 EMD results of the simulated signal with (a)

template matching extending method, (b) neural network
extending method, (c) mirror extrema extending method

and (d) AR model extending method

Tables 4.1-4.3 provide the MAE and MSE of the
simulated signal with four different methods.

Table 4.1 MAE and MSE comparison of the first
component with four methods.

Criterion TM NN ME AR
MAE 0.031 0.0667 0.0325 0.0513
MSE 0.0015 0.0066 0.0015 0.0038

Table 4.2 MAE and MSE comparison of the second
component with four methods.

Criterion TM NN ME AR
MAE 0.0358 0.1242 0.0424 0.0873
MSE 0.0022 0.0332 0.0028 0.0165

Table 4.3 MAE and MSE comparison of the third
component with four methods.

Criterion TM NN ME AR
MAE 0.0256 0.1127 0.0301 0.0752
MSE 0.0009 0.0233 0.0012 0.0109

From tables 4.1-4.3, it is shown that the boundary
effect processing method based on template matching
results in less distortion of decomposed components than
any other three boundary effect processing methods. For
three components of s(t), the MAEs and MSEs of
template matching based method are less than any other
boundary effect processing method.

4.2 Simulation for 2D Case

Two real fabric texture images have been used in this
section to test and validate the texture extraction
performance of the template matching BEMD algorithm.

The decomposition approach is first applied to a
defect-free fabric image with boundary extending (see
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Fig.4.2). This fabric is mainly established by diagonal and
vertical structures. Decomposition results are comprised
of three components. The first mode corresponds to the
woven structure, the second to the pattern and the residue
to the vertical stripes.

(a)original image (b)extended image

(c)first mode (d)second mode

(e)residue
Fig.4.2 Decomposition results of the defect-free fabric

using boundary extending algorithm

The decomposition approach is then applied to a
boundary- extending defect fabric image (see Fig.4.3)[8].
The sifting process as such results in three modes. The
first mode contain defect woven information besides
horizontal and vertical structures. The second mode is
recognized clearly by separate horizontal and vertical
pattern and defect pattern.

(a)original image (b)extended image

(c)first mode (d)second mode

(e)residue
Fig.4.3 Decomposition results of the defect fabric using

boundary extending algorithm

5 Conclusion

The proposed template matching based method of
processing boundary effect for empirical mode
decomposition in this paper uses the sequence near the
end (i.e. 1D case) or the local texture (i.e. 2D case) as a
template to search the most suited sequence or local
texture in the inner signal or image by correlation
operation. The searched sequence is taken as the extended
signal before or after the original signal, while the the
searched texture blocks are added to the original image
along horizontal, vertical, and diagonal directions
respectively. The simulation results or 1D signal have
proved that template matching based method outperforms
the classical boundary effect processing method , i.e.
neural network extending method, the mirror extrema
extending method and the AR model extending method.
The simulation results for 2D fabric image have also
proved that intrinsic structures with different spatial
scales, such as the woven structure, the pattern and the
strip, can be recognized effectively in a fully
unsupervised way.
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