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Abstract: In this paper, one uses the idea of Cauchy-transformation to construct a Cauchy-transformation kernel density estimator
underlying the condition of strong mixing. The uniformly strong consistency and convergence rates of the proposed estimator are
obtained underlying the papers of Cai and Roussas [1] and Kim and Lee [6]. The proposed estimator can improve the boundary effects
of the empirical (or uniform)-transformation kernel density estimator in the boundary area. Besides, the proposed estimator can also be
applied to estimate the hazard function.
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1 Introduction

Let X1,...,Xn be a strong mixing (α-mixing) sequence of
random variables. Suppose that the X1 have a distribution
function F(x) and probability density function f (x). Given
the mixing coefficientα(n) and α(n)→ 0 as n→ ∞. The
α-mixing coefficients of the sequence {Xk} of random
variables is defined by
α(n) = sup

k=1,2,....
sup

{
|P(A

∩
B)−P(A)P(B)| : A ∈ ℑk

1,Bℑ∞
n+k

}
whereℑn

m = σ (Xt : m ≤ t < n), −∞ ≤ m < n ≤ ∞, hereσ is
theσalgebra. The strong mixing conditions can also refer
to the paper of Bradley[17].

In the literature, various density estimators for f (x)
underlying the condition of strong mixing, based on a
random sample X1, . . . ,Xn have been proposed and their
properties are studied, for examples, the papers of
Schuster [13], Roussas [12], Cai and Roussas [1], Kim
and Cox [4], Liebscher [7], Tae and Cox [15], Kim and
Cox [5], Kim and Lee [6] and Hansen [16]. A kernel
density estimator for f(x) is defined as follows:

f̂n (x;h) =
1
nh

n

∑
j=1

K
{

x−X j

h

}
, (1.1)

where K is a (symmetric) kernel function and h=h(n) is
called the bandwidth. Estimator (1.1) is called the kernel
density estimator (KDE) of Parzen [9] and Rosenblatt [10].

Ruppert and Cline [11] propose a
empirical-transformation KDE which it is defined as
follows:

f̂RC (x;h) =
1
nh

n

∑
j=1

K
{

Fn(x)−Fn(X j)

h

}
∗ f̂n(x;h),

(1.2)
whereFn(x)is the empirical distribution function of the
data to estimate F(x) and f̂n(x;h) is defined as above.
When point F(x) nears the boundary regions of [0,1], the
empirical-transformation kernel density estimator
(Ruppert and Cline [11]) will be suffered to the problem
of boundary effects, for example, the expectation of
f̂RC(x;h)is not equal f(x), as F(x)∈ [0,ch),0 ≤ c < 1.
Some boundary modification methods have been
proposed by, for examples, Jones [3] and Müller [8].

In this paper, by the ideas of Cauchy-transformation
method and the estimator (1.2), we propose a
Cauchy-transformation KDE which it does not have the
boundary effects problem of the empirical-transformation
KDE. The proposed estimator is defined as follows:

f̃T (x;h) =
1
nh

n

∑
j=1

K
{

T (x)−T (X j)

h

}
∗T (1)(x), (1.3)

whereT (x) = tan[π(F(x)− 0.5)], F(x) is the distribution
function of X andq( ·) denotes the Cauchy density of
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T(x). T(x) is continuous and differentiable at the point x.
And q(T (•)) is continuously differentiable. The estimator
(1.3) is called the ideal Cauchy-transformation KDE.
Here researcher uses the estimator of f̃T (x; h) to estimate
f(x). We will study the uniformly consistency and
convergence rates of estimator (1.3).

When the function F(x) (or f (x)) is unknown, the
estimator (1.3) will be not a practical estimator, therefore,
we need further to estimate F(x). The corrected estimator
of (1.3) is given by

f̂T (x;h) =
1
nh

n

∑
j=1

K
{

T̂ (x)− T̂ (X j)

h

}
T̂ (1)(x), (1.4)

where T̂ (x) = tan[π(Fn(x)− 0.5)], Fn(x)is the empirical
distribution function of the data.

This paper is organized as follows: In section 2, we
state the uniformly consistency of estimator (1.4) and gives
the explicit formula for the convergence rate. In section 3,
we give the proofs of the asymptotic results.

2 Uniformly Consistency

In this section, one states the main results of estimator
(1.4). Before one state the main results one will give the
following assumptions:

(A1) X1, ...,Xn is α-mixing sequence with the
probability density function f (x), f (x) is bounded on its
domain, and continuous at the point x and f (m)(x) exists,
for m ≥ 2.

(A2)K(u) is bounded variation. K( ·) is the kernel
function and satisfies

(i) limsup
|u |→∞

∣∣ u k+2 K(u)
∣∣< ∞, for each k≥0.

(ii)
∫ ∣∣∣K(1)(u)

∣∣∣du < ∞.

(A3) ∑∞
n=1

logn
n (log logn)1+rα(n) converges for some

r>0, the condition of Cai and Roussas [1].
Let us now give the main results of the estimator

(1.4). In the following Theorem 2.1, we give the
uniformly strong convergence of the estimator (1.4) at the
point x∈(-∞,∞).

Theorem 2.1. Assume that conditions (A1)-(A3) are
satisfied. And suppose that h→0 and nh→∞, as n→∞, then
we have

sup
x∈(−∞,∞)

∣∣ f̂T (x;h)− f (x)
∣∣→ 0, (2.1)

almost surely, as n→∞.
Remark 1: The estimator (1.4) has the strong

convergence property as that of the traditional kernel
density estimator. The proposed estimator does not have
the boundary effects problem of the
empirical-transformation KDE, the kernel function does
not need to use the boundary kernel function, the

boundary problem can also refer to the paper of Müller
[8].

Remark 2: As the estimator of F(x) is

F̂(x;h) =
∫ x

−∞
f̂n(t;h)dt,

here f̂n(x;h)is the KDE of Parzen (1962), the asymptotic
result of Theorem 2.1 is also held.

If f (2)(x)is uniformly continuous functions on (-∞,∞),
then, we have the following theorem about the
convergence rate of the estimator f̂ T (x;h).

Theorem 2.2. Under the assumptions of Theorem 2.1
and assume that f (2)(x)is uniformly continuous, then we
have

sup
x∈(−∞,∞)

∣∣ f̂T (x;h)− f (x)
∣∣ = O( h2 +

√
log logn√

nh
)

(2.2)
Remark 3: From Theorem 2.2, the convergence rate

is constructed for the estimator (1.4). The choice of the
smoothing parameter h can refer to, for example, the book
of Hrdle [2].

An application of Theorem 2.1-2, one can use the
proposed estimator to estimate the hazard function. The
hazard function is defined as follows:

H(x) =
f (x)

1−F(x)
=

f (x)
F̄(x)

, (2.3)

where F̄(x) = 1−F(x).
The estimator of H(x) is defined as follows:

Ĥ(x;h) =
f̂T (x;h)

1−Fn(x)
=

f̂T (x;h)
F̄n(x)

, (2.4)

where f̂T (x;h)andFn(x)are defined as above.
Let us now give the asymptotic results of the estimator

(2.4). In the following Theorem 2.3-4, one also provides
the uniformly strong consistency, asx ∈ (−∞,∞).

Theorem 2.3. Assume that conditions (A1)-(A3) are
satisfied. And suppose that h→0 and nh→∞, as n→∞, then
we have

sup
x∈(−∞,∞)

∣∣ Ĥ (x;h)−H(x)
∣∣→ 0, (2.5)

almost surely, as n→∞.
Theorem 2.4. Under the assumptions of Theorem 2.3

and assume that f (2)(x)is uniformly continuous, then we
have

sup
x∈(−∞,∞)

∣∣ Ĥ(x;h)−H(x)
∣∣ = O( h2 +

√
log logn√

nh
)

(2.6)
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3 Proofs

In this section our main purpose is to prove Theorem
2.1-4. The four lemmas below will be used to justify the
theorems.

Lemma 3.1. Let X1, . . . ,Xn be a stationary α-mixing
sequence of real-valued random variables with distribution
function F(x) and mixing coefficient α(n) satisfying (A3),
and let Fn(x) be the empirical distribution function based
on the segment X1,...,Xn. Then

sup
x
|Fn(x)−F(x)| → 0, (3.1)

almost surely, as n→∞.
Proof: The proof follows from the Theorem 1 in the

book of Tucker [14] and the Corollary 2.1 in the paper of
Cai and Roussas [1].

Lemma 3.2. Let X1, . . . ,Xn be a stationary α-mixing
sequence of real-valued random variables with
distribution function F(x) and mixing coefficient α(n)
=O(n−δ ),for some δ > 3, and let Fn(x) be the empirical
distribution function based on the segment X1, . . . ,Xn.
And let F(x) satisfies the Lipschitz condition
|F(x)−F(y)| ≤ b0 |x− y|, for some constant b0. Then

P{limsup
x
[( n

2loglogn )
1/2 |Fn(x)−F(x)|] = 1

2}=1,

(3.2)
almost surely, as n→∞.

Proof: The proof follows from the Theorem 3.2 in the
paper of Cai and Roussas [1].

Lemma 3.3. Assume that the conditions (A1)-(A2) are
satisfied. Then we have

E f̃T (x;h)− f (x) = O( h2 ), (3.3)

for x∈(-∞,∞).
Proof: By the calculation of expectation, as x∈(-∞,∞),

we have
E f̃T (x;h)

=
∫ 1

h K
{

T (x)−T (y)
h

}
f (y)T (1)(x)dy

=
∫ 1

h K
{

T (x)−T (y)
h

}
q(T (y))T (1)(y)dyT (1)(x)

=
∫ 1

h K
{

T (x)−u
h

}
q(u)duT (1)(x)

=
∫

K {w}q(T (x)−wh)dwT (1)(x)
= q(T (x))T (1)(x)+ µ2

2 h2q(2)(u)|u=T (x)T (1)(x)+o(h2)

= f (x)+O(h2),
from techniques of Calculus underlying the conditions
(A1)-(A2) and q(T (•)) is continuously differentiable.
Therefore, the proof of Lemma 3.3 is proved.

Lemma 3.4. Under the conditions (A1)-(A2), then we
have

sup
x

∣∣ f̃T (x;h)−E f̃T (x;h)
∣∣ , = O(

√
log logn√

nh
) (3.4)

almost surely, for all x on real line.

Proof: We know that

sup
x

∣∣ f̃T (x;h)−E f̃T (x;h)
∣∣ =

sup
x

∣∣∣ 1
h
∫

K
{

T (x)−T (y)
h

}
T (1)(x)dFn(y)− 1

h
∫

K
{

T (x)−T (y)
h

}
T (1)(x)dF(y)

∣∣∣
≤ sup

x

1
h
∫
|Fn(y)−F(y)| dK

{
T (x)−T (y)

h

}
T (1)(x)≤ v

h sup
x
|Fn(x)−F(x)| ,

(3.5)
by the techniques of calculus and the conditions (A1)and
A(2), where ν is the variation of K{•}T (1)(x).

From Lemma 3.2 and (3.5), we have

sup
x

∣∣ f̃T (x;h)−E f̃T (x;h)
∣∣ = O(

√
log logn√

nh
) (3.6)

almost surely, as n → ∞.

Proof of Theorem 2.2. We know that

sup
x

∣∣ f̂T (x;h)− f (x)
∣∣

≤ sup
x

∣∣ f̂T (x;h)− f̃T (x;h)
∣∣

+sup
x

∣∣ f̃T (x;h)− f (x)
∣∣

=I(1)+I(2),
From I(1), we have

sup
x

∣∣ f̂T (x;h)− f̃T (x;h)
∣∣

≤ sup
x

1
nh ∑n

j=1

∣∣∣K{
T (x)−T (X j)

h

}
(T̂ (1)(x)−T (1)(x))

∣∣∣
+sup

x

1
nh ∑n

j=1

∣∣∣K{
T̂ (x)−T̂ (X j)

h

}
−K

{
T (x)−T (X j)

h

}∣∣∣ T̂ (1)(x)

≤ sup
x

∣∣∣T̂ (1)(x)−T (1)(x)
∣∣∣ 1

nh

n

∑
j=1

∣∣∣∣K{
T (x)−T (X j)

h

}∣∣∣∣
+C0 sup

x

∣∣∣T̂ (1)(x)−T (1)(x)
∣∣∣

• 1
nh

n

∑
j=1

∣∣∣∣K(1)
{

T (x)−T (X j)

h

}
(

x−X j

h
)

∣∣∣∣ T̂ (1)(x)

≤C1 sup
x
|Fn(x)−F(x)| ∗ 1

nh

n

∑
j=1

∣∣∣∣K{
T (x)−T (X j)

h

}∣∣∣∣
+C2 sup

x
|Fn(x)−F(x)| ∗ 1

nh ∑n
j=1

∣∣∣K(1)
{

T (x)−T (X j)
h

}
(

x−X j
h )

∣∣∣ ∣∣∣T̂ (1)(x)
∣∣∣

=I(3)+I(4),
for some constant C0,C1and C2.
By I(3), we have

1
nh

n

∑
j=1

∣∣∣∣K{
T (x)−T (X j)

h

}∣∣∣∣
→ q(T (x)

∫
|K(w)|dw < ∞ (3.7)
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By I(4), we have

1
nh

n

∑
j=1

∣∣∣∣K(1)
{

T (x)−T (X j)

h

}
(

x−X j

h
)

∣∣∣∣ ∣∣∣T̂ (1)(x)
∣∣∣

→ f (x)
∫ ∣∣∣wK(1)(w)

∣∣∣dw < ∞, (3.8)

where f(x)=q(T(x))T (1)(x).
By (3.7) and (3.8), we have

sup
x

∣∣ f̂T (x;h)− f̃T (x;h)
∣∣≤C3 sup

x
|Fn(x)−F(x)| (3.9)

for some constant C3.
From I(2), we have

sup
x

∣∣ f̃T (x;h)− f (x)
∣∣

≤ sup
x

∣∣ f̃T (x;h)−E f̃T (x;h)
∣∣+ sup

x

∣∣E f̃T (x;h)− f (x)
∣∣

(3.10)
From (3.9), (3.10) and Lemma 3.3-4, the proof of Theorem
2.2 is completed.

Proof of Theorem 2.1. By (3.5) and Lemma 3.1, we
have

sup
x

∣∣ f̃T (x;h)−E f̃T (x;h)
∣∣ → 0, (3.11)

almost surely, as h → 0, n → ∞.
From (3.10), (3.11) and Lemma 3.3, the proof of

Theorem 2.1 is proved.
Proof of Theorem 2.3. By (2.3) and (2.4), we have

Ĥ(x;h)−H(x) = 1
F̄(x)F̄n(x)

.∗
{

F̄(x)[ f̂T (x;h)− f (x)]+ f (x)[Fn(x)−F(x)]
}

(3.12)
From (3.12), we obtain

sup
x

∣∣ Ĥ(x;h)−H(x)
∣∣

≤C4 sup
x

∣∣ f̂T (x;h)− f (x)
∣∣ +C5 sup

x
| Fn(x)−F(x) | ,

(3.13)
for some constants C4and C5.

By (3.13), Lemma 3.1 and Theorem 2.1, the Theorem
2.3 can be proved.

Proof of Theorem 2.4. From Theorem 2.3 and Lemma
3.2, the Theorem 2.4 can be proved, the details are omitted.

4 Conclusions

In this paper, one uses the technique of
Cauchy-transformation method to construct a
Cauchy-transformation kernel density estimator
underlying the condition of strong mixing. The uniformly
strong consistency and convergence rates of the proposed
estimator are obtained underlying the papers of Cai and
Roussas [1] and Kim and Lee [6]. The empirical result
shows that the proposed estimator can improve the

boundary effects of the uniform-transformation kernel
density estimator in the boundary area (Ruppert and Cline
[11]). Besides, the proposed estimator can also be applied
to estimate the hazard function and others density
function.
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