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Abstract: We investigate some features of principal GKj-algebras (PGKj-algebras). Necessary and sufficient conditions for a
principal GK>- algebra to have 2-permutable congruences are obtained. Furthermore, it is established how 2-permutable congruences
are characterized using pairs of principal congruences. Also, a generalization of the 2-permutability of the primary congruences of the
GK>-algebras concept to the concept of the n-permutable congruences is provided. We round off with strong extensions of principal
GK;-algebras.
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1 Introduction

T.S. Blyth and J.C. Varlet [1] introduced the variety MS of MS-algebras. In [2], they determined the subvarieties of

MS. Many properties of MS-algebras, principal MS-algebras, principal p-algebras and decomposable MS-algebras are
investigated in [3,4,5,6,7,8]. The variety GMS was defined and characterized by D. Sevcovic in [9]. Certain modular
generalized MS-algebras with distributive skeletons, called K;-algebras, were introduced by A. Badawy [10]. Each K-
algebra was built using quadruples. A. Badawy [11] considered the subclass GK; of GK;-algebras. He constructed any
PGK5-algebra by means of triple. Also, he deduced that each congruence & on a GK-algebra L can be constructed by a
congruence pair (0, &) in a unique way, where a; € Con(L°°) and oy, is a congruence of lattices on the bounded lattice
D(L). Many authors considered the concepts of permutable congruences, strong extensions and related properties (see
[12], [13] and [14]).
This paper applies the concepts of 2-permutability of congruences and n-permutability of congruences to PGK;-algebras.
We characterize such concepts by using congruence pairs (o, o) of a principal GK;-algebra L, where @ is a congruence
on GK-algebra L°° of all closed elements of L, and ; is a lattice congruence on a lattice bounded D(L). Also, we introduce
and characterize the notion of strong extensions of PGK;-algebras. We proved that a GK,-algebra L is a strong extension
of a subalgebra L, if and only if L°° is a strong extension of L{° and D(L) is a strong extension of D(Ly).

2 Preliminaries

This section contains the basic background and results. We refer to [9,11,15,16,17,18] for details. An MS-algebra is an
algebra (;V,A,°,0,1) such that (L;V,A,0,1) is a bounded distributive lattice and ° is a unary operation satisfying:

1 r<re,
2) (rAs)°=r°vse,
3) 1°=0.
The subvariety M (De Morgan algebras) of MS is defined by
re (1)
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The subvariety K (Kleene algebras) of M is characterized by :
rAr® <sVs° 2)
The class S(Stone algebras) of MS is the subvariety which is defined by:
rAr°=0 3)
The subvariety B (Boolean algebras) of MS is defined by the identity
rvre =1 4)

A generalized De Morgan algebra (simply GM-algebra) (L;V,A,°,0,1) , where (L;V,A,0, 1) is a bounded lattice with

(1 r=r°°,
(2) (rns)°=r°Vs°,
3)1°=0.

If a GM-algebra satisfies:
rAre <sVs° 5)

it becomes a generalized Kleene algebra.
If we drop the distributivity condition of MS-algebra, we obtain GM S-algebra.

Lemma 2.1.[9] For any two elements r,s of a GMS-algebra L, we have

(1) 0° =1,
(2) r<s=r°>s",
(3) rO:rOOO,

(4) (rvs)°=r°As°,
(5) (rvs)® =ro°vs®,
(6) (I"/\S)OO — roo /\SOO.

Definition 2.1.[11] A GK,-algebra L is a GMS-algebra satisfying:

(1) rAnr =r°Ar°Vrel,
(2) rAnr°<sVs°VrseL.

Let L be a GK»-algebra. An element r of L is called closed if r°° = r and an element d € L is called dense if d° = 0. Set
L°° to denote the set of all closed elements of L and D(L) for the set of all dense elements of L.

Lemma 2.2.[11] Let L € GK;-algebra. Then

(1) L°° is a GK-subalgebra of L,
(2) D(L) is a filter of L.

Example 2.1. (1) Every MS-algebrais a GMS-algebra.
(2) Every S-algebra (pseudo-complement lattice satisfying the Stone identity, r* vV r** = 1 ,where r* = max{s: s Ar=0}
is the pseudo-complement of r) is a GMS-algebra.
(3) The following is a GMS-algebra (L;, °) satisfying the Stone identity r* V r** = 1. We observe that it is not an
S-algebra; for example, the element ¢ has not pseudo-complement.
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7NN
N/
7N
N\

=d°=x"=y"=z7°=w°

Also, we have
L° ={0,a,b,c,q,1} is a modular GK-algebra, and D(L;) = {d,x,y,z,w, 1} is a modular lattice.

Definition 2.2.[11] A GK,-algebra L is a PGK,-algebra if:

(1) D(L) = [d) for some d € L,

(2) The generator d is distributive, that is, (rAs)Vd = (rVd)A(sVd) forallr,s € L,
(3)r=r°A(rvd)forallreL

Example 2.2. (1) Every K>-algebrais a GK;-algebra.
(2) Every S-algebrais a GK>-algebra.
(3) The GK;-algebra L; of Example 2.4(3) is a PGK;-algebra which is not an S-algebra.
(4) The following GK;-algebra represents an S-algebra Ly, where L5° = {0,a,b, 1} is a Boolean subalgebra and D(L,) =
{1}. Tt is clear that it is not a principal S-algebra as ¢®>° A (¢ V 1) # c.

1=0°
/ b=a°
a=0b"=c°
\ ;
/
0=1°

From this example, it is not true that every finite GK>-algebra is principal.
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(5) The following GM S-algebra is a PGK>- algebra.

1=0°
X y z
a=a"=0° b=c=y d c=b"=p°
o B Y

OZIO:xO:yO:ZO:dO

Definition 2.3.[6] A binary relation . defined on a lattice L is said to be a lattice congruence if :
(1) a is an equivalence relation on L,
(2) (r,s), (u,v) € a implies (r Nu,s \v),(aVec,bVd) € a.

For a congruence relation o on a lattice L, [r]ot is given

[Fla={reL:(t,r) €a}l. (6)
It can be prove that (L/ o,V , \) forms a lattice, where
L/oa={[rla:reL} (7
is the quotient lattice of L modulo o and
[FlaVslg = [rVs]a and [Fla A[sla = [F A S]a ®)

A lattice congruence & on a GKj-algebra (L; °) is called a congruence on L if r = s(a) implies r° = s°(at).
For a GK;-algebra L, Con(L) is used to denote the set of all congruence on L and 0o, Op(r) are used for a restricted to
L*° and D(L), respectively. Obviously, (aee, 0pz)) €Con(L*?) xCon(D(L)). Also, we use 7 =L x Land A = {(r,r) :
r € L} for the universal and the identity congruences on L, respectively.
A congruence relation o on a lattice L is called principal if there exist r,s € L such that o is the smallest congruence
relation for which r = s(a). Indeed,

o(rs) = /\{OC €Con(L) | r=s(a)} ©)
Definition 2.4.[11] Ler d be the smallest dense element of a PGKj-algebra L . Then a pair
(aq,00) €Con(L°°)x Con(D(L)) is called a congruence pair of L if r = s(0y) implies rN d = sV d(0y) .
A characterization of a congruence relation on PGK;-algebras is given as follows:

Theorem 2.1.[11] Let d be the smallest dense element of a PGKj-algebra L. Then any o € Con(L) determines a
congruence pair (Qee,0p(r)). Conversely, any congruences pair (o, 0) uniquely determines an « € Con(L)satisfies
Qpee = o and Oy = 0, by the rule: r = s(at) < r*° =5°°(oy) and rvd =sVd(ap).

Lemma 2.3.[11] Let L be a PGK;-algebra and let A(L) be the set of all congruence pairs of L. Then :

(1) (VB €Con(D(L)))( e, B) € A(L),
(2) (V0 €Con(L*?))(n, V(1)) € A(L).
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3 2-Permutability of PGK;-algebras

We extend the concept of 2-permutability of congruences to PGK;-algebras. Some basic properties are proved, and
necessary and sufficient conditions for a principal GKj-algebra to have 2-permutable congruences are provided.

Moreover, it is established how to characterise 2-permutable congruences in terms of pairs of main congruences.

Definition 3.1.Ler L be a PGK;-algebra. Then a,6 €Con(L) are 2-permutable congruences (briefly 2-permutable) if
aod=20o0aq, thatis, r = s(a) and s = p(8) imply the existence of an element u € L such that r = u(d) and u = p(«).

A PGKj3-algebra L is called 2-permutable congruences if any pair of congruences permute. Let L be a principal GK>-

algebra. Define a relation I" on L as follows:

00

(ns) el <=r°=s
=’ ="

Lemma 3.1. Let L be a PGK;-algebras. Then

(1)I" € Con(L) with Ker I = {0} and Coker I = D(L),

(2) r°° is the maximum element of the [r|I", where [r]I" = {s € L :s°° =r°°},
(3) [r]T" = [r°°|T" forany r € L,

(4)L/T is a GK-algebra,

(5)L/T = L.

Proof. (1) It is straightforward to show that I" is an equivalent relation on L. Let (r,s), (#,v) € I". Then r°° = s

u°® = v°°. Now we have

(rAu)°® =r° Au
:sOO /\ VOO

=(sAv)*.
Then (r Au,s Av) € I'. Also, we have

(rvu)®® =r°vu
:sOO \/ VOO

=(sV)*.

Then (rVu,sVv) € I'. Now, let (r,s) € I'. Then we have

(e]e)

(ns) el =r*°=s
=" =s
= (r°,s°)er.

000

Then I' € Con(L). We observe that

KerI'={reL:(r,0)eI'}
={reL:r°=0"=0}
={reL:r"=1}
={0}.

Moreover,

CokerI'={reL:(r1)el}
={reL:r°=1"=1}
={reL:r" =0}
= D(L).

{e]e)

and
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(2) Since (r°°)°° =r°°, then r°° € [x]I". Let s € [r]I". Then s < 5°° = r°°. So, r°° > 5. Hence, r°° is the greatest element
of [r]I".

(3) Since r°°° = r°. Then r°°°° = r°° implies (#°°,r) € I', and thereby [r*°]I" = []T", Vr € L.

(4) We have (L/I";V,A,[0]",[1]I") is a bounded lattice with bounds [0]I" and [1]I", where [r]I" A [s][" = [r A s]" and
[/]TV [s]T = [rVs]I". Define ™ on L/T" by ([r]I")” = [r°]I". Now, we have the following equalities

([0)r)~ = [1)I" and ([1)1)” = [o]T",
([10)=2 = [*°)r = I,

Then L/T" is a GM-algebra. Since r Ar° < sV s°, then [r Ar°]I" < [sV s°]I". Hence,

[

=[rAre|ll

<[sVs°]

= [s|[CV[s°]

= [sJ v ([s)1)"”
Thus, L/T" is a GK-algebra.
(5) Define f : L°° — L/T" by

f(ry=[r]" VreL” (10)

It is clear that f is well-defined. Let f(r) = f(s). Then [r]I" = [s]I" implies » = s(I"). Then r = r*°® = 5°° = s as
r,s € L°°. Then f is one-to-one. Let [s|I" € L/I" for some s € L. Then [s] = [s°°]I" and so f(s°°) = [s°°]" = [s]I". Then f
is onto Also, we need to show that f is a homomorphism. Clearly, f(rVs) = f(r)V f(s) and f(rAs) = f(r) Af(s). Also,

Clearly f(0) = [0]I" and f(1) = [1]I". Hence, L°° = L/T".
Lemma 3.2. Let L be a PGK;-algebras. Then:

(1) I permutes with any o €Con(L),
(2) Ap permutes with any o €Con(L),
(3) /L permutes with any o €Con(L).

Proof. (1) Let @ €Con(L). Then we need to show that ¢ o' =T'o . Let r = s(atoI"). Then r = p(@) and p = s(I') for
some p € L. So, r = p(a) and p°° = s°°. Now

r=pla) = r°=p=°(a),sVd=sVd(a)
= r° =5"(a),sVd =sVd(a) as p°° =5°°
= r°A(sVd) =5 A(sVd)(a) =s(a) as s =s A(sVd).
Since [r*° A(sVd)]°° =r°°, then r*° A(sVd) =r(I"). Since r=r° A (s Vd)(I') and r*° A (s Vd) = s(a), then r = s(Iox).
(2)Letr=s(aoAyr). Thenr=p(a),p =s(Ar) for some p € L. Hence r = s(a) as p =s. Then, r = r(Ar) and r = s(@).
Thus, we deduced that r = s(A o o). Therefore, AA;, permutes with any element of Con(L).

(3) Let r = s(ao</L). Then r = p(a), p = s(v1) for some p € L. Then we have r = s(v71) and s = s(a). Thus, r =
s(7L o a). Therefore, 77, permutes with any element of Con(L).
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Now, we provide a characterization of 2-permutable congruences.

Theorem 3.1. Let d be the smallest dense element of a PGK»-algebra L . Then L has 2-permutable congruences if and
only if:

(1) L°° has 2-permutable congruences,

(2) D(L) has 2-permutable congruences.

Proof. Suppose that o, 6 are 2-permutable on L. First, we prove that oo, 0o are 2-permutable on L°°. Consider that
r,s,p € L be such that r = s(qze-) and s = p(pe-). Then r = s(@) and s = p(8). Since a, § are 2-permutable, we have
r=¢q(0),q = p(a) for some g € L. Now,

r=4(8),q=p(a) = r** =4"(8),q° = p**(a)
=r=q° (5),q° =p(a)asr,pe L™
= r=q°°(8100),q°° = p(oyeo) as g°° € L.

Therefore oyoo, 800 are 2-permutable on L°° and (1) is proved. Secondly, we show that 2-permutability of o, implies
2-permutability of &) and Sp(y. Let r,s, p € D(L) be such that r = s(ap(;)) and s = p(Sp(z)). Then r = s(at), s = p(9).
Since a, 8 are 2- permutable then r=u(6) and u = p(a) for some u € L. Now,

r=u(d),u=p(a) =rvd=uVvd(d),uvd=pvd(a)
= r=uVd(),uvd=p(a)asr,p>d
= r=uVd(d),uvd=p(a) where u\vVd € D(L).

Hence r =uVd(dp()) and uVd = p(ap(L)). Therefore oy and Op(y are 2-permutable congruences on D(L). For the
converse direction, let &, 8§ €Con(L) such that oo, ze0 and (XD )>Op(r) are 2-permutable on L°° and D(L), respectively.
Consider the elements 7,5, p € L with » = s(a) and s = p(9). We have by Theorem 2.9, that r°° = s°°( 00 ) and s°° =
p°°(0reo). Since 0Oyoo, Opoo are 2-permutable congruences on L°°, then r°° = u(de0) and u = p°°(0yeo) with u € L°°
implies that 7°° = u(6) and u = p°°(t). On the other hand, also by Theorem 2.9, we get rVd = sV d (o)) and sVd =
pVd(Sp())- Since oz, Op () are 2-permutable congruences on D(L), then rV d =v(8p)) and v = pVd(0yp(y,) for
some v € D(L). It follows that

(11
Since L is a PGK;-algebra, then we have r = r°° A (rVd) and p = p°° A (p Vd). Then we have
r° =u(6),rvd =v(8) imply that r = r°° A (rvd) = u Av(9), (12)
and
u=p>”(a),v=pvd(a)imply thataAv=p°A(pVd)(a)=p (13)

Consequently, we deduce that r = u A v(8) and u Av = p(a). Therefore ¢, § are 2-permutable congruences.

Theorem 3.2. A PGK;-algebra L has 2-permutable congruences if and only if every pair of principal congruences on L
permutes.

Proof. The first statement is obvious. Assume that any pair of principal congruences on L permute. Let @, €Con(L).
Consider r,s,p € L with r = s(at) and s = p(8). Then r = s(a(r,s)), s = p(6(s,p)). It is clear that a(r,s) C o and
O(s,p) C 6. Hence, r = p(at(r,s) 0 8(s, p)). Since a(r,s),0(s, p) are 2-permutable, then r = u(8(s, p)) and u = p(a(r,s))
for some u € L. Consequently, r = u(6) and u = p(a) and hence r = p(S o a).

4 n-Permutability of PGK,-algebras

The results of this section extend the 2-permutability of congruences of PGK,-algebras to n-permutable congruences.
Two congruences o, § are n-permutable if

axododo......... (n—times) =do@odo......... (n—times), wheren=1,2,....n — 1 (14)

Definition 4.1. A principal GK»-algebras L has n-permutable congruences, if every two congruences in L are
n-permutable.
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Lemma 4.1. Let d be the smallest dense element of a PGK,-algebra L. Let 0,y be congruences on L. Then

(1) (xodooo......... )Leo = Qlpoo © 800 © Qoo O ... (n — times),
(2) (06060060 ...... )D(L) = aD(L)OaD(L)O(XD(L)O .................. (n—tlmes)

Proof. (1) To show the equality

15)
Now, let r,s € L°° with r =s(0to8o......)peo. Then r = s(@ 0 do......). Thus there exist elements t1,1,, ........... o1 €L
be such that r =t (), 1j =12(8)s.eeestn—1 = s(V), where
o ifnis odd
= 16
{6 if nis even (16)
We have, r°° =r=1,"°(@), 11°° = 1°°(8)eevevneee. S0 =520 =s(v),
Then, r = (00 © Opeo 0 ... ) because of £,°° € L*° forn = 1,2,.....n— 1.
The reverse inclusion is obvious. Hence,
(@odo....) o = (0geo 0 Opoo......... ). (17)
(2) Letr,s € D(L) be such that r=s((6oyo....... )p(r))> thatis r = s(cco & o.....). Then there exist 1,13, ......,t,—1 € L be
suchthat r =1 (@), 11 =12(5), «vvvevee dn—1 =b(v). Then, r=rvd =1 Vd(a),......... Jta—1Vd =bVd = s(v). Therefore,
r=5(Ap(r) © Op(r) O evoe ) since t, Vd € D(L) forn=1,2,......n — 1. The reverse inclusion is obvious. Therefore,
(06050 ........... )D(L) = (OCD(L) O6D(L) .......... (l’l—tlme) (]8)

Theorem 4.1. Let d be the smallest dense element of a PGK»-algebra L. Then L has n-permutable congruences if and
only if L°° and D(L) are n-permutable congruences.

Proof. (=) By using Lemma 4.2(1) we have

Ol o0 O 5Loo O....= ((XO 6o ....)LOO

Again by using Lemma 4.2(2) we have

(<=:)Letr=s(aodo...). Then r** =5°°((@odo...)rec) and rvd =sVd((aodo....)p()) by Theorem 2.9. Applying
Lemma 4.2 we have

19)
Since
oo 0 8poo 0 ... = Opee 0 o0 0 ....(n —times) and Ap(zy © 8p(z) © ... = () © Ap(r) © --.(n — times), (20)
then we get
r**=s*((6oao..)e)and rvd =svd((oao...)py))- 21)
Now, by using Definition 2.5(3) and Theorem 2.9, we get
(22)
Therefore, r=s(Soo........ ). Thus, we deduce that  and ¢ are n permutable.
© 2023 NSP
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5 Strong extensions of PGK,-algebras

The concept of strong extensions of PGK;-algebras is investigated in this section.
An algebra L satisfies the congruence extension property (CEP); if for every subalgebra L; of L and every o of L, o
extends to a congruence of L.(see [19])

Definition 5.1. Let My and N be a PGK,-algebras. Then we call the algebra K a strong extension of the algebra K if K|
is a subalgebra of K and for any oy e Con(K)), there exists a unique congruence relation & € Con(K) such that ox, = 0.

Theorem 5.1. Let K be a subalgebra of a PGK»-algebra K. Then K is a strong extension of K; if and only if

(1) D(K) is a strong extension of D(K}),
(2) K°° is a strong extension of K|°°.

Proof. Let K be a strong extension of Kj. Let 1, €Con(D(K])). Assume that 12,72 €Con(D(K)) such that 1, px,) =
M2.0(k,) = M2 Then, by Lemma 2.10(1), we have

(Akeo,M2), (Do, M) €A(K) and (Ao, M) € A(KY). (23)

According to Theorem 2.9, we have 17, 7] € Con(K) and 1 €Con(K ) corresponding to (Agoo,M2), (Agoo,T2) and n =
(Akpo,m), respectively. We see that Nk, = flk, = 1. We have 1 = 7]. Hence, 1> = 7, proving (1). On the other hand,
we need to show that K°° is a strong extension of K{°. Let n; €Con(K;°°) and 7, extend to a congruence of K°°. Let
1,1 €Con (K°°) with 1 geo = 71 geo = 1. Then, by Lemma 2.10(2), we have

(M1, Vpk))s (M1, Vpk)) €AK) and (1, pk,)) € A(K)). (24)

Again, by Theorem 2.9, we have 17,7 €Con(K) and n €Con(K) corresponding to (1, p(x)), (1, Vp(x)) and n =
(N, Vb(k,))» respectively. We see that fix, = flk, = 7. Since K is a strong extension of Kj, then 7§ = 7). Therefore 7, = 7)1,
proving that (2). Conversely, suppose that conditions (1) and (2) hold and let 1 € Con(K)). Let 1}, 7] be extensions of 1] in
Con(K). By Theorem 2.9, the congruences 1,7 and 1 can be represented by the congruence pairs (11, 12), (j1, fj2) and
(M1,M2), respectively. Where

Mk = M1 kee =M and 0 pk,) = Na.p(k,) = M- (25)
By (1) and (2) we get
M =1 and 72 = 7. (26)
Therefore, § = 1.

Corollary 5.1. Let K| and K be PGK;-algebras. If K is a strong extension of K, then Con(K,) = Con(K).

6 Conclusion

The following three key concepts in algebraic structures: 2-Permutability, n- Permutability, and strong extensions were
examined for the PGK;-algebras via congruence pairs. this paper’s work could be further developed to study many aspects
of GKj-algebras and related structures. For instance, it can be applied to triple construction of GKj-algebras, perfect
extensions of PGK,-algebras and substructures of PGK-algebras.
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