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Abstract: Approximating functions by matching their values at given points is a key concept in numerical analysis and various fields

of mathematics. This technique is often used in interpolation and curve fitting. In this paper, we approximate a function by a new

function which can be considered as a generalization of Lagrange and Hermite polynomials. The interpolation error is derived based

on the conformable derivative.
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1 Introduction

The concept of the fractional derivative was inspired by a question posed by L’Hospital in his letter to Leibniz in 1695,
[1]. However, intensive studies on fractional calculus were conducted in the last and present centuries in an effort to
provide an answer to this question. Several mathematicians, including Liouville, Riemann, Weyl, Fourier, Abel, Leibniz,
Grunwald, and Letnikov, made significant contributions to the theory of fractional calculus. For details on the
Grunwald-Letnikov, Riemann-Liouville, Caputo, and other definitions, as well as their characteristics, we refer the
reader to A. Kilbas, K.S. Miller, and I. Podlubny, [2,3,4]. Calculus provides various tools for studying and understanding
the behavior of a significant class of functions, namely continuous and differentiable functions. This creates a challenge
in real applications where functions model the relationships between quantities, and the only information available about
these functions comes from a set of discrete data points obtained from measurements. The challenge of constructing a
continuous function from this data is known as data fitting. The aim of interpolation, regarded as a specific case of data
fitting, is to find a linear combination of known functions that fits a set of data exactly rather than approximately. The use
of polynomials or other functions for interpolation was first introduced by J. Wallis in 1665, see [5]. Lagrange
polynomials are employed for polynomial interpolation based on a given set of distinct points ti and values yi. In fact, the
Lagrange polynomial is the polynomial of the lowest degree that takes the corresponding value yi at each point ti, see [6].

Similar to Lagrange polynomial interpolation, the primary objective of this paper is to utilize the theory of conformable
fractional derivatives to interpolate a nonnegative set of data by constructing a function that we refer to as the Fractional
Lagrange polynomial.

2 Conformable Fractional Derivative

Most definitions of fractional derivatives rely on integral forms, which introduce non-local behaviors, leading to a variety
of interesting applications. However all the existing fractional derivatives have some kind of inconsistency, for example
most of them do not adhere to the familiar product, quotient, and chain rules for the derivatives of two functions, and most
of them, except for the Caputo derivative, do not satisfy the condition that the derivative of a constant function is zero.
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To avoid some of these difficulties, recently new definitions take the advantages from the limit form as used in the
regular derivatives have been developed. In this paper, we use the following definition of fractional derivative of order β :

Dβ (φ)(t) = lim
ε→0

φ(t + εt1−β )−φ(t)

ε
, Dβ (φ)(t) = lim

t→0+
Dβ (t). (1)

where t > 0 and β ∈ (0,1). This definition was first introduced by Khalil and colleagues [7]. For the sake of brevity, we will
refer to the derivative mentioned above simply as the conformable derivative. A function φ is considered β -differentiable
if the conformable fractional derivative of φ of order β exists.

Abdeljawad [8] utilized this new definition of the fractional derivative to establish definitions for left and right
conformable fractional derivatives, provide Taylor power series representations, develop Laplace transformations of
certain functions, formulate fractional integration by parts, and introduce the chain rule and Gronwall inequality.

The authors in [7] demonstrated that the β -fractional derivatives satisfy the product and quotient rules, and they proved
several results similar to the Mean Value Theorem and Rolle’s Theorem. However, it unfortunately does not adhere to the
natural chain rule.

In the sequel, we present some of the results in [7,8,9,10,11,12,13] that we used in our work.

Theorem 1. Let φ be a real valued function with domain [0,∞) such that φ is s β -differentiable at a point t0 > 0, β ∈ (0,1],
then φ is continuous at t0.

Theorem 2. Let β ∈ (0,1] and φ and ψ be β−differentiable functions at a point z > 0. Then,

(1) Dβ (
1
β zβ ) = 1.

(2) Dβ (z
n) = nzn−β .

(3) Dβ [c1φ + c2ψ ] = c1Dβ (φ)+ c2Dβ (ψ), for all c1,c2 ∈ R.

(4) Dβ (C) = 0, for all constant C.

(5) Dβ (φψ) = ψDβ (φ)+φDβ (ψ).

(6) Dβ (
φ
ψ ) =

ψDβ (φ)−φDβ (ψ)

ψ2
.

(7) If, in addition, φ is differentiable, then Dβ (φ)(z) = z1−β dφ(z)
dz

.

(8) lim
β→1

Dβ (φ)(z) = φ ′(z).

Remark. It is evident from Theorem 2.2, part (7), that the conformable derivative for differentiable functions is just a
straightforward change of variables. This type of variable change is encountered in many physical phenomena (see, e.g.,
[14,15,16,17,18]). For more details, refer to [10].

Theorem 3. Let β ∈ (0,1]. If ψ is an β−differentiable function at a point t > 0 and φ is a differentiable function at ψ(t)
then φ ◦ψ is β−differentiable at t and

Dβ (φ ◦ψ)(t) = φ ′(ψ(t))Dβ (φ)(t),

The following theorem can be considered as a generalization of Rolle’s Theorem.

Theorem 4. Let φ be a function that is m − 1 times continuously β−differentiable on the interval [c,d] and the mth

derivative exists on the interval (c,d), and there are m intervals given by t1 < u1 ≤ t2 < u2 ≤ ... ≤ tn < un in [a,b] such

that φ(tk) = φ(uk) for every k from 1 to m. Then there is a number ς in (c,d) such that the mth β−derivative of φ at ς is

zero.

3 Fractional Lagrange polynomial

For a given set of n+ 1 non-negative distinct numbers, t0, t1, . . . , tn suppose that values of a function φ is known at these

numbers, then the Fractional Lagrange polynomial Pβ is defined to be a function of the form

Pβ
m (t) = amtmβ + am−1t(m−1)β + · · ·+ a0 (2)

such that m is minimum and P
β
n (t j) = φ(t j) for all j = 0,1, . . . ,n. The number m will be called the degree of P

β
n . The

following theorem describes how we find P
β
n and what m should be.
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Theorem 5. If the set {t0, t1, ..., tn} consists of nonnegative constants and suppose φ(t j) is known for all j = 1,2, . . . ,n.

Then a unique fractional polynomial P
β
n of degree less than n+ 1 exists with P

β
n (t j) = φ(t j) for all j = 0,1, . . . ,n. This

fractional polynomial can be computed as follows

Pβ
n (t) = φ(t0)L

β
n,0(t)+φ(t1)L

β
n,1(t)+ · · ·+φ(tn)L

β
n,n(t) =

n

∑
k=0

φ(tk)L
β
n,k(t)

where

L
β
n,k(t) =

n

∏
j=0, j 6=k

(tβ − t
β
j )

(t
β
k − t

β
j )
.

Moreover, if φ is n+ 1 times continuously β−differentiable on the closed interval [0,a] and t0, t1, . . . , tn are distinct

numbers in [0,a], then to each t in [0,a] there corresponds a point ζx in (0,a) such that

φ(t)−Pβ
n (t) =

D
(n+1)
β φ(ζt )

β n+1(n+ 1)!

n

∏
j=0

(tβ − t
β
j ). (3)

Proof. From the definition of L
β
n,k(t) we have L

β
n,k(t j) = δk j, where δk j is the Kronecker delta function defined by δk j = 1

if k = j and δk j = 0 if k 6= j. Thus P
β
n (t j) = φ(t j). If x = x j, for some j ∈ {0,1, . . . ,n}, then equation (3) is true since both

sides of equation (3) reduce to 0. So, let t be any point other than a node. Define

w(t) =
n

∏
j=0

(tβ − t
β
j )

and

ϕ(τ) = φ(τ)−Pβ
n (τ)−

φ(t)−P
β
n (t)

w(t)
w(τ).

Since ϕ is n+ 1 times continuously β−differentiable on the interval [0,a] and vanishes at the n+ 2 points t, t0, t1, . . . , tn,

then by Theorem 4, D
(n+1)
β ϕ has at least one zero, say ζt , in (0,a). Now

D
(n+1)
β

ϕ(τ) = D
(n+1)
β

φ(τ)−D
(n+1)
β

Pβ
n (τ)−

f (t)−P
β
n (t)

w(t)
D
(n+1)
β

w(τ).

But D
(n+1)
β

P
β
n (τ) = 0 and D

(n+1)
β

w(t)(τ) = β n+1(n+ 1)!, so

D
(n+1)
β

ϕ(ζt) = D
(n+1)
β

φ(ζt)−
φ(t)−P

β
n (τ)

w(t)
β n+1(n+ 1)! = 0.

Solve for φ(t) to obtain

φ(t)−Pβ
n (t) =

D
(n+1)
β

φ(ζt )

β n+1(n+ 1)!

n

∏
j=0

(tβ − t
β
j ).

4 Divided Difference

There is another way of computing the Lagrange interpolating polynomial. Here we assume

Pβ
n (t) = a0 +

n

∑
k=1

ak(t
β − t

β
0 ) . . . (t

β − t
β
k−1) (4)

Then, one can notice that a0 = φ(t0),a1 =
φ(t1)−φ(t0)

t
β
1 −t

β
0

. Evidently, ak is a linear combination of φ(t0),φ(t1), . . . ,φ(tk) with

coefficients that depend on t
β
0 , t

β
1 , . . . , t

β
k . Therefore, we introduce the notation

ak = φβ [t0, t1, . . . , tk], k = 0,1,2, ...,
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for this linear combination, and call the right-hand side the nth fractional divided difference of f relative to the nodes

t0, t1, . . . , tn. To compute φβ [t0, t1, . . . , tk], we have the following theorem.

Theorem 6. If t0, t1, ..., tn are n+ 1 nonnegative distinct numbers and φ is a function whose values are given at these

numbers, then

φβ [t0, t1, . . . , tn] =
φβ [t1, t2, . . . , tn]−φβ [t0, t1, . . . , tn−1]

t
β
n − t

β
0

. (5)

and if φ is n+ 1 times continuously β− differentiable on the closed interval [0,a] and t0, t1, . . . , tn are distinct numbers in

[0,a], then a number ζ exists in (0,∞) with φβ [t0, t1, . . . , tn] =
D
(n)
β

φ(ζt )

β n+1n!
.

Proof. It is clear that φβ [t0, t1, . . . , tk] is the leading coefficient of P
β
n (t) that is given by equation (4). Let q and r denote

the functions of form (5) that interpolates φ at t1, t2, . . . , tn and t0, t2, . . . , tn−1, respectively. Note that both q and r are of
degree at most n− 1. Define

Qβ (t) = q(t)+
tβ − t

β
n

t
β
n − t

β
0

(

q(t)− r(t)
)

.

Then the degree of Qβ (t) is at most n and it interpolates φ at t0, t1, . . . , tn. But by Theorem 5, there is a unique function

with such properties, so Qβ (t) has to be of form (4). Hence, the leading coefficient of the left side is φβ [t0, t1, . . . , tn] and it

is not difficult to show that the leading coefficient of the right side is
φ β [t1,t2,...,tn]−φ β [t0,t1,...,tn−1]

t
β
n −t

β
0

and so we arrive at equation

(5). Now consider the fractional Lagrange polynomial P
β
n−1(t) at t0, t1, . . . ,xn−1, then from (3)

φ(tn) = P
β
n−1(tn)+

Dn
β φ(ζt)

β nn!

n−1

∏
j=0

(tβ
n − t

β
j ).

However,

Pβ
n (tn) = φβ [t0]+

n−1

∑
k=0

φβ [t0, t1, . . . , tk](t
β
n − t

β
0 ) . . . (t

β
n − t

β
k−1)

and

Pβ
n (tn) = P

β
n−1(tn)+φβ [t0, t1, . . . , tn]

n−1

∏
j=0

(xβ
n − t

β
j ) = φ(tn)

Thus

φβ [t0, t1, . . . , tn] =
Dn

β φ(ζt )

β nn!
. (6)

Formula (5) can be used to create the fractional divided differences table in the manner shown below.

Table 4.1: fractional divided differences table

x φβ [ti] φβ [ti, ti+1] φβ [ti, ti+1, ti+2] φβ [ti, ti+1, ti+2, ti+3]

t0 φβ [t0]

t1 φβ [t1] φβ [t0, t1]

t2 φβ [t2] φβ [t1, t2] φβ [t0, t1, t2]

t3 φβ [t3] φβ [t2, t3] φβ [t1, t2, t3] φβ [t0, t1, t2, t3]
. . . . . . . . . . . . . . .

The fractional divided differences that appears in equation (5) are exactly the first n+ 1 diagonal entries in the table.
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5 Hermite interpolation

Given t0, t1, . . . , tn are n+ 1 distinct nonnegative integers and corresponding integers µr ≥ 1 and suppose a function φ
is N − 1 times continuously β− differentiable where N = max

r
µr. We generalize the Hermite as follows: We look for a

fractional polynomial Hβ of minimum degree such that, for k = 0,1, ...,n,

H
(i)
β
(tk) = Di

β φ(tk), i = 0,1, ...,µr − 1.

To get H
(i)
β (tk), we can either use an approach similar to Theorem 5, or we can view this problem as a limiting case of

fractional Lagrange interpolation through the convergence of µr different points into a single point tr. For more
clarification, we construct the table of divided differences by entering each point tr exactly µr times in the first column of
the table. With the aid of equation (6), we can initialize the fractional divided differences for these points. These points
can be utilized to set up the fractional divided differences. For example, if µr = 4, then we have the table.

Table 5.1: fractional divided differences table with µk = 4

. . . . . . . . . . . . . . . . . .

tk φβ [tk] . . .

tk φβ [tk]
1
β Dβ φtk . . .

tk φβ [tk]
1
β Dβ φtk

1
2!β 2 D2

β φtk . . .

tk φβ [tk]
1
β Dβ φtk

1
2!β 2 D2

β φtk
1

3!β 3 D3
β φtk . . .

. . . . . . . . . . . . . . . . . .

There is another method to derive the fractional polynomial Hβ when mr = 1 for each r = 0,1, . . . ,n. In this scenario,
we refer to the polynomial Hβ as the fractional Hermite polynomials. The following theorem precisely describes the form
of fractional Hermite polynomials. The proof closely resembles that of Theorem 5.

Theorem 7. If φ is β− differentiable on the interval [0,a] and t0, t1, . . . , tn are distinct numbers in [0,a], the unique

polynomial of minimum degree agreeing with φ and Dβ φ at t0, ..., tn is the fractional Hermite polynomial of degree less

than 2n+ 2 is given by

Hβ (t) =
n

∑
j=0

φ(t j)Hβ , j(t)+
n

∑
j=0

Dβ φ(t j)Hβ , j(t),

where

Hβ , j(t) = [1−
2

β
(tβ − t

β
j )Dβ L

β
n,k(t j)](L

β
n, j(t))

2
.

and

Ĥβ , j(t) =
1

β
(tβ − t

β
j )(L

β
n, j(t))

2

and L
β
n, j(t) denotes the jth Lagrange coefficient polynomial of degree n.

Moreover, If φ is 2n+ 1 times continuously β− differentiable on the closed interval [0,a] and t0, t1, . . . , tn are distinct

numbers in [0,a], then

φ(t)−Hβ (t) =
D
(2n+2)
β φ(ξt )

β 2n+2(2n+ 2)!

n

∏
j=0

(t2β − t
2β
j ). (7)

6 Example

Example 1. In the following example, we approximate the function f (t) = (t ln t)2, t ∈ [1,2] by P0.25
n (t) of degree n. We

take ti = 1+ i
n+1

, i = 0,1, . . . ,n. See Figures 5.1 and 5.2.
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Figure 5.1: Comparison of the function f (t) and P0.25
2 (t) of degree 2.

Figure 5.2: Comparison of the function f (t) and P0.25
5 (t) of degree 5.

7 Conclusion

In the present paper, the fractional Lagrange polynomial is introduced to approximate functions. We study the interpolation
error based on the conformable fractional derivative. In the future, we are interesting to use this polynomial to derive new
numerical quadrature formulas for integration.
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