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Abstract: In this paper, we present an extension model of Prisoner’s Dilemma game, but with three players. We are interested in

introducing this model and providing an analysis of competitions of some special types of strategies which have properties of Win

Stay-Lose Shift. Therefore, we will show the best one among them and the largest one in the payoff through some graphs by using

some numerical values. Also, we will discuss the effect of relatedness between players on the behavior of strategies.
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1 Introduction

Game theory is not a prescriptive way of how to play a game. Rather it is a set of ideas and techniques for analyzing
these mathematical methods. It doesn’t tell you how to play the game, but describes properties that certain ways of
playing the game have, and which you might think desirable. Even when the analysis suggests a best way of playing the
game, it only does it assuming that everyone is playing in the “best way” they can. It never allows for ways of punishing
your opponent if he makes a mistake, which is the way most players do.

The theory of the game has applications in many fields of the social science, systems and computer science. This
theory is commonly used in economics [1,2], physics, networks [3,4,5], business [6], mathematics [7,8], traffic
engineering [9], philosophy, public health, biology [10,11,12] and political science [13,14,15,16].

The Prisoner’s Dilemma is a standard example in the game theory, but in biology and economics there are many
other iterated games such as: Hawk-Dove, location game, matching pennies, etc. It shows why two rational people would
not cooperate, even if it seemed to be in their interest [17]. The Prisoner’s Dilemma can be used to make a decision in a
number of areas in personal life, such as competition between people, buying a car, salary negotiation skills, etc.

In the Prisoner’s Dilemma, two-player have only two decisions, either cooperate or defect [18,19]. If two-player
play the Prisoner’s Dilemma more than once and remember their opponent’s previous actions, the game is called two-
player iterated Prisoner’s Dilemma (2P-IPD). In this game, each player gets points based on his choice called a payoff.
Players play simultaneously without knowing the other player’s choice. The two-player get a reward, R, if they cooperate.
They get Punishment, P , if both players defect. The defector gets a reward that is the temptation, T , if the other player
cooperates, while the player who cooperates is punished with a sucker’s payoff,S. Since defection results in a better payoff
than cooperation of the other player’s choice, it is a strictly dominant strategy for both players. The dominant strategies
suggest the most suitable option for any player given each choice by the opponent player. Payoffs in the dominant strategy
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are in such a way that in spite of the choices other players make, no other strategy has a higher payoff. The payoff matrix
of (2P-IPD) [19] is given by

[
C D

C R S

D T P

]

, (1)

where

S < P < R < T andR >
T + S

2
. (2)

and Markov transition matrix in two-player [19] is given by

M =






R S T P

p1q1 p1(1− q1) (1− p1)q1 (1 − p1)(1− q1)
p2q3 p2(1− q3) (1− p2)q3 (1 − p2)(1− q3)
p3q2 p3(1− q2) (1− p3)q2 (1 − p3)(1− q2)
p4q4 p4(1− q4) (1− p4)q4 (1 − p4)(1− q4)




, (3)

where player I plays with probability P = (p1, p2, p3, p4), player II with probability Q = (q1, q2, q3, q4).

The Prisoner’s Dilemma game model is one of the most important models of game theory. Many researches have
been interested in this model with two players (2P-IPD). While if we have three players playing the Prisoner’s Dilemma
game, this game will be called three-player Prisoner’s Dilemma (3P-IPD). We consider an iterated game that consists
of repeating the game infinitely with a probability of 1. The automata of each one of the three-player has two states C
and D. We assume that the game is symmetric, so the outcomes decrease from eight to six combinations [(C, (C,C)),
(C, (C,D)), (C, (D,D)), (D, (C,C)), (D, (C,D)), (D, (D,D))] which are defined by the player’s payoffR,K,S, T ,L
and P . The payoff matrix of (3P-IPD) [20] is given by

[
CC CD DD

C R K S

D T L P

]

, (4)

where
S < P < K < L < R < T . (5)

Now for the Markov transfer matrix for three players, in our paper, we will generalize the matrix to three players as in
section 2, and accordingly we will defined some strategies in three players which are called Win Stay-Lose Shift strategies
as in section 3. While, we will study the competition of these strategies as in section 4. Furthermore, in section 5, we will
discuss the effect of relationship between players on the behavior of the Win Stay-Lose Shift strategies.

2 Transition Matrix for Three-Player

If we generalize Markov transition matrix for two players in (3) to three players, where player I plays with probability
P = (p1, p2, p3, p4, p5, p6), player II with probability Q = (q1, q2, q3, q4, q5, q6) and player III with W = (w1, w2, w3,
w4, w5, w6), we can defined it as

M =















R K S T L P

R p1q1w1 p1[q1(1 − w1) + (1 − q1)w1] p1(1 − q1)(1 − w1) (1 − p1)q1w1 (1 − p1)[q1(1 − w1) + (1 − q1)w1] (1 − p1)(1 − q1)(1 − w1)
K p2q2w4 p2[q2(1 − w4) + (1 − q2)w4] p2(1 − q2)(1 − w4) (1 − p2)q2w4 (1 − p2)[q2(1 − w4) + (1 − q2)w4] (1 − p2)(1 − q2)(1 − w4)
S p3q5w5 p3[q5(1 − w5) + (1 − q5)w5] p3(1 − q5)(1 − w5) (1 − p3)q5w5 (1 − p3)[q5(1 − w5) + (1 − q5)w5] (1 − p3)(1 − q5)(1 − w5)
T p4q2w2 p4[q2(1 − w2) + (1 − q2)w2] p4(1 − q2)(1 − w2) (1 − p4)q2w2 (1 − p4)[q2(1 − w2) + (1 − q2)w2] (1 − p4)(1 − q2)(1 − w2)
L p5q3w5 p5[q3(1 − w5) + (1 − q3)w5] p5(1 − q3)(1 − w5) (1 − p5)q3w5 (1 − p5)[q3(1 − w5) + (1 − q3)w5] (1 − p5)(1 − q3)(1 − w5)
P p6q6w6 p6[q6(1 − w6) + (1 − q6)w6] p6(1 − q6)(1 − w6) (1 − p6)q6w6 (1 − p6)[q6(1 − w6) + (1 − q6)w6] (1 − p6)(1 − q6)(1 − w6)















(6)
For instance, if we want to transform state R to K, it means we will transform from (C, (C,C)) to [(C, (C,D)) or

(C, (D,C))], so the player I will insist on his decision and one of the two other Players (II and III) will change his
decision and the other one will insist on his decision. Therefore, the probability of the transformation from state R to K

is equal to p1[q1(1 − w1) + (1− q1)w1].
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Assuming Π = (π1, π2, π3, π4, π5, π6) is the left eigenvector of M for eigenvalue 1 as shown in equation (7).
Furthermore, this vector is the unique stationary distribution for infinitely repeated games. The following equation (8)
calculates the payoff of player I which plays with probability P against player III which plays with probability W

Π M = Π, (7)

E(P ,Q,W) = π1R+ π2K + π3S + π4T + π5L+ π6P , (8)

where
6∑

i=1

πi = 1. (9)

Now, for example, if we take Player I which using the strategy P = (1, 1, 1, 0, 0, 0) against Player III which using
W = (1, 1, 0, 0, 0, 0) with player II plays with Q = (1, 1, 1, 0, 0, 0) which is fixed player, then the transition matrix given
by















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1















It is clear that, the eigenvector Π = (π1, π2, π3, π4, π5, π6) is not uniquely defined. So, we will replace this method by
direct approach which we will study it in the next section.

3 Win Stay-Lose Shift Strategies (WSLS)

There are 64 strategies for three-player where some of them have some special features such as Tit-For-Tat strategies
which have been studied before in [20]. In this section, we will study some of these strategies, namely “Win Stay-Lose
Shift” strategies. The Win Stay-Lose Shift strategies do not accept the loss. If it obtains the biggest payoff, it will repeat
the same move in the next round, this is win-stay. If it obtains small payoff, it will switch to the opposite move in the next
round, this is the lose-shift. Win Stay-Lose Shift strategies are also known as Pavlov strategies in (2P-IPD) [21]. In Table
1, we will discover which strategies we can call Win Stay-Lose Shift with different payoff conditions (Keeping P < R)
as the following in Table 1.

Table 1: The WSLS strategies with different conditions

Condition WSLS

S < P < K < L < R < T S3, S35, S33 , S49, S48

S < K < P < L < R < T S3, S35, S33 , S32, S48

S < P < L < K < R < T S3, S35, S51 , S49, S48

S < L < P < K < R < T S3, S35, S51 , S50, S48

S < K < L < P < R < T S3, S35, S34 , S32, S48

S < L < K < P < R < T S3, S35, S34 , S50, S48
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In order to do this, we will introduce five different strategies to discuss the concept of Win Stay-Lose Shift strategies
in details according to the inequality (5). These strategies are called WSLS 1 (S3), WSLS 2 (S35), WSLS 3 (S33), WSLS
4 (S49) and WSLS 5 (S48) and presented by the automatons in Fig. 1

Fig. 1: Automates of WSLS strategies

Our choice is based on their attitude which we observe in Fig. 1 and now we realize the following:

1. WSLS 1 (S3): it always shifts from the state C to D. Moreover, in state D, it plays D only if the two other players
play C together otherwise it shifts to C. i.e. it stays if gets T otherwise it makes a shift.

2. WSLS 2 (S35): it still plays C if the two other players play C together otherwise it shifts to D. Moreover, in state D, it
plays D if two other players play C together otherwise it shifts to C. i.e. it stays if gets T or R otherwise it makes a shift.

3. WSLS 3 (S33): it plays C if the two other players play C together while, it shifts from the state C to D if only one of
the other players plays D. Moreover, in state D, it stays if at least one of the other players plays C and shifts to C if the
two other players play D together. i.e. it stays if it gets T , R or L otherwise it makes a shift.

4. WSLS 4 (S49): it still plays C if at least one of the other players plays C while, it shifts to the state D if the two
players play D together. Moreover, in state D, it plays D only if at least one of the other players plays C otherwise it
shifts to C. i.e. it stays if gets T , R, L or K otherwise it makes a shift.

5. WSLS 5 (S48): it still plays C if at least one of the other players plays C while, it shifts to the state D if the two players
play D together. Moreover, in state D, it always plays D. i.e. it stays if gets T , R, L, K or P otherwise it make a shift.
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4 Competition Between WSLS Strategies

In this section, we study the competition between WSLS strategies using an example for the three players
S48, S33, S49 such as player I (S48) against player III (S49) with player II (S33). We will get the following eight
sequences as follows:

• Case 1: If the three-player (S48, S33, S49) start with C

︷︸︸︷

S48 : C C C C C C C C C C ...
S33 : C C C C C C C C C C ... R

S49 : C C C C C C C C C C ...
︸︷︷︸

• Case 2: If players I and III (S48, S49) start with C but player II (S33) starts with D

︷︸︸︷

S48 : C C C C C C C C C C ...
S33 : D D D D D D D D D D ... K

S49 : C C C C C C C C C C ...
︸︷︷︸

• Case 3: If players I and II (S48, S33) start with C but player III (S49) starts with D

︷ ︸︸ ︷

S48 : C C D D D D D D D D ...

S33 : C D D C D D C D D C ... P+T+L

3
S49 : D D D C C D C C D C ...

︸ ︷︷ ︸

• Case 4: If player I (S48) starts with C but players II and III (S33, S49) start with D
︷ ︸︸ ︷

S48 : C D D D D D D D D D ...

S33 : D D C D D C D D C D ... P+T+L

3
S49 : D D C C D C C D C C ...

︸ ︷︷ ︸

• Case 5: If players II and III (S33, S49) start with C but player I (S48) starts with D

︷ ︸︸ ︷

S48 : D D D D D D D D D D ...

S33 : C D D C D D C D D C ... P+T+L

3
S49 : C C D C C D C C D C ...

︸ ︷︷ ︸

• Case 6: If player III (S49) starts with C but players I and II (S48, S33) start with D

︷ ︸︸ ︷

S48 : D D D D D D D D D D ...

S33 : D D C D D C D D C D ... P+T+L

3
S49 : C D C C D C C D C C ...

︸ ︷︷ ︸

• Case 7: If player II (S33) starts with C but players I and III (S48, S49) start with D

︷ ︸︸ ︷

S48 : D D D D D D D D D D ...

S33 : C D C D D C D D C D ... P+T+L

3
S49 : D D C C D C C D C C ...

︸ ︷︷ ︸
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• Case 8: If the three players (S48, S33, S49) start with D

︷ ︸︸ ︷

S48 : D D D D D D D D D D ...

S33 : D C D D C D D C D D ... P+T+L

3
S49 : D C C D C C D C C D ...

︸ ︷︷ ︸

From the previous cases, we have three regimes R1 = R, R2 = K and R3 = P+T +L

3 . When we do the perturbation,
we get:

In regime R1, if S48 and S49 play C instead of D then regime R1 will transfer to R3, and if S33 plays C instead of D
then regime R1 will transfer to R2. In regime R2, if S48 and S49 play D instead of C then regime R2 will transfer to R3,
and if S33 plays C instead of D then regime R2 will transfer to R1. In regime R3, if S48, S33 and S49 play C instead of
D in column 1, S33 and S49 play D instead of C in column 2, S33 plays C instead of D in column 3 and if S49 plays D
instead of C in column 3 then in all these cases, regime R3 will not change, but if S48 plays C instead of D in column 2
then regime R3 will transfer to R1 and also if S48 plays C instead of D in column 3 then regime R3 will transfer to R2.
Therefore, the corresponding transition matrix becomes





R1 R2 R3

R1 0 1/3 2/3
R2 1/3 0 2/3
R3 1/9 1/9 7/9



.

By calculate the left eigenvectors for the eigenvalue 1 according to equation (7), we get the following equations:

−v1 +
1

3
v2 +

1

9
v3 = 0,

1

3
v1 − v2 +

1

9
v3 = 0,

2

3
v1 +

2

3
v2 −

2

9
v3 = 0.

By solving the linear system of the previous equations with the equation v1 + v2 + v3 = 1, then we obtain the
eigenvector V as

V = (v1, v2, v3) =
(1

8
,
1

8
,
3

4

)
.

Now, we can get the payoff values by

E(S48, S33, S49) = v1.R1 + v2.R2 + v3.R3

=
1

8
R+

1

8
K +

3

4

P + T + L

3
=

R+K + 2T + 2L+ 2P

8
.

According to equation (8), the payoff vector Π=(π1, π2, π3, π4, π5, π6) is equal to (18 ,
1
8 , 0,

2
8 ,

2
8 ,

2
8 ), but we can use

Π = (π1, π2, π3, π4, π5, π6)

=
(n1

N
,
n2

N
,
n3

N
,
n4

N
,
n5

N
,
n6

N

)
=

1

N
(n1, n2, n3, n4, n5, n6)

where

N =
6∑

i=1

ni.

Finally, we can express the payoff as (n1, n2, n3, n4, n5, n6).

Using the same approach, we examined all possibililites for studying three strategies from the five WSLS strategies,
which are 125 possibililites times 8 sequences. Therefore, we were able to obtain the results in Tables 2:6 which represent
the payoff of player I against III when player II fixed as shown
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Table 2: The payoff vectors for player I against player III when player II fixed with the strategy WSLS 1 (S3)

Player II (S3) WSLS 1 WSLS 2 WSLS 3 WSLS 4 WSLS 5

is fixed S3 S35 S33 S49 S48

WSLS 1 (1, 0, 0, 0, 0, 1) (1, 1, 0, 0, 1, 1) (3, 3, 2, 0, 5, 3) (3, 3, 2, 0, 5, 3) (0, 3, 2, 0, 2, 3)
S3

WSLS 2 (1, 0, 1, 1, 0, 1) (1, 1, 0, 0, 0, 1) (2, 2, 1, 0, 1, 2) (6, 12, 5, 0, 11, 6) (0, 3, 2, 0, 2, 3)
S35

WSLS 3 (3, 0, 3, 3, 4, 3) (1, 1, 0, 0, 1, 1) (1, 1, 0, 0, 0, 1) (1, 1, 0, 0, 2, 1) (0, 1, 0, 0, 0, 1)
S33

WSLS 4 (3, 0, 3, 3, 4, 3) (3, 3, 3, 3, 5, 3) (1, 1, 1, 0, 1, 1) (0, 1, 0, 0, 0, 0) (0, 2, 1, 0, 1, 1)
S49

WSLS 5 (0, 0, 0, 3, 4, 3) (0, 0, 0, 3, 4, 3) (0, 0, 0, 1, 0, 1) (0, 1, 0, 1, 2, 1) (0, 0, 0, 0, 1, 1)
S48

Table 3: The payoff vectors for player I against player III when player II fixed with the strategy WSLS 2 (S35)

Player II (S35) WSLS 1 WSLS 2 WSLS 3 WSLS 4 WSLS 5

is fixed S3 S35 S33 S49 S48

WSLS 1 (1, 1, 0, 0, 1, 1) (1, 0, 0, 1, 0, 1) (2, 0, 1, 2, 1, 2) (6, 6, 5, 6, 11, 6) (0, 3, 2, 0, 2, 3)
S3

WSLS 2 (1, 1, 0, 0, 0, 1) (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) (1, 3, 2, 0, 2, 3)
S35

WSLS 3 (1, 1, 0, 0, 1, 1) (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) (1, 3, 0, 0, 0, 3)
S33

WSLS 4 (3, 3, 3, 3, 5, 3) (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) (3, 1, 0, 0, 0, 0) (1, 3, 2, 0, 2, 2)
S49

WSLS 5 (0, 0, 0, 3, 4, 3) (1, 0, 0, 3, 4, 3) (1, 0, 0, 3, 0, 3) (1, 1, 0, 2, 4, 2) (0, 0, 0, 0, 1, 1)
S48

Table 4: The payoff vectors for player I against player III when player II fixed with the strategy WSLS 3 (S33)

Player II (S33) WSLS 1 WSLS 2 WSLS 3 WSLS 4 WSLS 5

is fixed S3 S35 S33 S49 S48

WSLS 1 (3, 3, 2, 0, 5, 3) (2, 0, 1, 2, 1, 2) (1, 0, 0, 1, 0, 1) (1, 0, 1, 1, 1, 1) (0, 1, 0, 0, 0, 1)
S3

WSLS 2 (2, 2, 1, 0, 1, 2) (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) (1, 3, 0, 0, 0, 3)
S35

WSLS 3 (1, 1, 0, 0, 0, 1) (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) (1, 3, 0, 0, 0, 3)
S33

WSLS 4 (1, 1, 1, 0, 1, 1) (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) (3, 1, 0, 0, 0, 0) (1, 3, 2, 0, 0, 2)
S49

WSLS 5 (0, 0, 0, 1, 0, 1) (1, 0, 0, 3, 0, 3) (1, 0, 0, 3, 0, 3) (1, 1, 0, 2, 2, 2) (0, 0, 0, 0, 1, 1)
S48
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Table 5: The payoff vectors for player I against player III when player II fixed with the strategy WSLS 4 (S49)

Player II (S49) WSLS 1 WSLS 2 WSLS 3 WSLS 4 WSLS 5

is fixed S3 S35 S33 S49 S48

WSLS 1 (3, 3, 2, 0, 5, 3) (6, 6, 5, 6, 11, 6) (1, 0, 1, 1, 1, 1) (0, 0, 0, 1, 0, 0) (0, 1, 1, 1, 1, 1)
S3

WSLS 2 (6, 12, 5, 0, 11, 5) (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) (3, 0, 0, 1, 0, 0) (1, 2, 2, 1, 2, 2)
S35

WSLS 3 (1, 1, 0, 0, 2, 1) (1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) (3, 0, 0, 1, 0, 0) (1, 2, 0, 1, 2, 2)
S33

WSLS 4 (0, 1, 0, 0, 0, 0) (3, 1, 0, 0, 0, 0) (3, 1, 0, 0, 0, 0) (3, 2, 0, 1, 0, 0) (3, 2, 0, 1, 0, 0)
S49

WSLS 5 (0, 1, 0, 1, 2, 1) (1, 1, 0, 2, 4, 2) (1, 1, 0, 2, 2, 2) (3, 2, 0, 7, 0, 0) (3, 5, 0, 4, 9, 9)
S48

Table 6: The payoff vectors for player I against player III when player II fixed with the strategy WSLS 5 (S48)

Player II (S48) WSLS 1 WSLS 2 WSLS 3 WSLS 4 WSLS 5

is fixed S3 S35 S33 S49 S48

WSLS 1 (0, 3, 2, 0, 2, 3) (0, 3, 2, 0, 2, 3) (0, 1, 0, 0, 0, 1) (0, 1, 1, 1, 1, 1) (0, 0, 1, 0, 0, 1)
S3

WSLS 2 (0, 3, 2, 0, 2, 3) (1, 3, 2, 0, 2, 3) (1, 3, 0, 0, 0, 3) (1, 2, 2, 1, 2, 2) (0, 0, 1, 0, 0, 1)
S35

WSLS 3 (0, 1, 0, 0, 0, 1) (1, 3, 0, 0, 0, 3) (1, 3, 0, 0, 0, 3) (1, 2, 0, 1, 2, 2) (0, 1, 0, 0, 0, 1)
S33

WSLS 4 (0, 2, 1, 0, 1, 1) (1, 3, 2, 0, 2, 2) (1, 3, 2, 0, 0, 2) (3, 8, 0, 1, 0, 0) (3, 8, 9, 1, 0, 9)
S49

WSLS 5 (0, 0, 0, 0, 1, 1) (0, 0, 0, 0, 1, 1) (0, 0, 0, 0, 1, 1) (3, 5, 0, 4, 9, 9) (0, 0, 0, 0, 0, 1)
S48

4.1 The Domination Between WSLS Strategies

In this subsection, we will discuss the domination between the Win Stay-Lose Shift strategies for (3P-IPD). We note
that, Si outcompeted by Sj if both aji > aii and ajj > aij , where aii, aij , aji and ajj are elements of payoff matrix. If
the strategy Si outcompeted by Sj , we can write Si << Sj . Therefore, from Tables 2:6, we can get

Table 7: A list of strategies outcompeting Si

Player II: WSLS 1 Player II: WSLS 2 Player II: WSLS 3 Player II: WSLS 4 Player II: WSLS 5

S3 fixed S35 fixed S33 fixed S49 fixed S48 fixed

WSLS 1 S3 << S48 S49, S48 S33, S48 S33, S48 S48, S49

WSLS 2 S35 << S33, S48 — — — S48, S49

WSLS 3 S33 << S3 — — — —

WSLS 4 S49 << S33, S48 — — S35, S33 —

WSLS 5 S48 << S33 — — S35, S33 —
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4.2 The payoff Using Numerical Values

Now, we use some numerical values S = 0,P = 1,K = 3,L = 5,R = 7 and T = 9 then the expectation payoff for
player I against player III is given as in the following Tables 8:12

Table 8: The payoff with S = 0,P = 1,K = 3,L = 5,R = 7 and T = 9 when Player II (S3)

Player II (S3) WSLS 1 WSLS 2 WSLS 3 WSLS 4 WSLS 5

is fixed S3 S35 S33 S49 S48

WSLS 1 4 4 3.625 3.625 2.2

S3

WSLS 2 4.25 3.666667 3.375 3.904762 2.2

S35

WSLS 3 4.4375 4 3.666667 3.475 4.4375

S33

WSLS 4 4.4375 4.25 3.2 3 2.4

S49

WSLS 5 5 5 5 4.6 3

S48

Table 9: The payoff with S = 0,P = 1,K = 3,L = 5,R = 7 and T = 9 when Player II (S35)

Player II (S35) WSLS 1 WSLS 2 WSLS 3 WSLS 4 WSLS 5

is fixed S3 S35 S33 S49 S48

WSLS 1 4 5.666667 4.875 4.375 2.2

S3

WSLS 2 3.666667 7 7 7 2.636364

S35

WSLS 3 4 7 7 7 2.714286

S33

WSLS 4 4.25 7 7 6 2.8

S49

WSLS 5 5 5.181818 5 5 3

S48
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Table 10: The payoff with S = 0,P = 1,K = 3,L = 5,R = 7 and T = 9 when Player II (S33)

Player II (S33) WSLS 1 WSLS 2 WSLS 3 WSLS 4 WSLS 5

is fixed S3 S35 S33 S49 S48

WSLS 1 3.625 4.875 5.666667 4.4 2

S3

WSLS 2 3.375 7 7 7 2.714286

S35

WSLS 3 3.666667 7 7 7 2.714286

S33

WSLS 4 3.2 7 7 6 2.25

S49

WSLS 5 5 5.285714 5.285714 5 3

S48

Table 11: The payoff with S = 0,P = 1,K = 3,L = 5,R = 7 and T = 9 when Player II (S49)

Player II (S49) WSLS 1 WSLS 2 WSLS 3 WSLS 4 WSLS 5

is fixed S3 S35 S33 S49 S48

WSLS 1 3.625 4.375 4.4 9 3.6

S3

WSLS 2 3.473 7 7 7.5 3.4

S35

WSLS 3 4.2 7 7 7.5 2.25

S33

WSLS 4 7 6 6 6 6

S49

WSLS 5 4.6 5 5 7.5 4.2

S48

Table 12: The payoff with S = 0,P = 1,K = 3,L = 5,R = 7 and T = 9 when Player II (S48)

Player II (S48) WSLS 1 WSLS 2 WSLS 3 WSLS 4 WSLS 5

is fixed S3 S35 S33 S49 S48

WSLS 1 2.2 2.2 2 3.6 0.5

S3

WSLS 2 2.2 2.636364 2.714286 2.588235 0.5

S35

WSLS 3 2 2.714286 2.714286 4.25 2

S33

WSLS 4 2.4 2.8 2.25 4.5 2.1

S49

WSLS 5 3 3 3 4.2 1

S48
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Therefore, we show the best one among the WSLS strategies through some graphs as shown in Fig. 2

Fig. 2: The payoffs of player I against other strategies

We note that, in 2(a), when S3 is fixed, S48 is the best against S3, S35, S33 and S49, but S33 is the best against S48.
Strategies S33 and S49 have the same payoff against S3 also S3 and S35 have the same payoff against S48 and also S3,
S33 have the same payoff against S35. And in 2(b) and in 2(c), when S35 and S33 are fixed, S35, S33 and S49 are the best
strategies against S35 and S33, also S35 and S33 are the best strategies against S49, but S48 is the best with S3 and S48.
The strategies S3 and S33 have the same payoff with S3. Also in 2(d), when S49 is fixed, S3 is the best strategy against
S49 and vice versa, also S35 and S33 are the best against themselves, but S49 is the best with S3 and S48. The strategies
S35, S33 and S48 have the same payoff with S49 . But in 2(e), when S48 is fixed, S49 is the best strategy against S49 and
S48, but S48 is the best against S3, S35 and S33. The strategies S3 and S35 have the same payoff with S3 and S48. The
strategies S33 and S48 have the same payoff with S49.

5 Relatedness Between WSLS Strategies

A relationship is a numerical value denoting how much one player cares for another player’s payoff. We will use the
inclusive fitness method as in [10,22,23] for two-player. Since the payoff matrix of two-player Prisoner’s Dilemma with
relatedness is





C D

C R(1 + r) S + T r

D T + Sr P(1 + r)



. (10)
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where
0 ≤ r ≤ 1 (11)

In this section, we introduce the concepts of relationship in (3P-IPD). Therefore, the payoff matrix of three-player
Prisoner’s Dilemma with relatedness will be given by








CC CD DD

C R(1 + r)
2K(1 + r) + T r

2
S + T r

D
2T (1 + r) +Kr

2
L+ Sr P(1 + r)







. (12)

Now, by applying the effect of relatedness on Tables 2:6 with S = 0,P = 1,K = 3,L = 5,R = 7 and T = 9
through four cases of the value of r according to (12).

• Case 1: For r = 1 “Perfect Relationship”, we get the following Tables 13:17

Table 13: The payoff for player I against player III with Perfect Relationship when Player II (S3)

Player II (S3) WSLS 1 WSLS 2 WSLS 3 WSLS 4 WSLS 5

is fixed S3 S35 S33 S49 S48

WSLS 1 8 9.125 7.15625 7.15625 5.75

S3

WSLS 2 10.125 8.8333 7.75 8.05 5.75

S35

WSLS 3 8.84375 7.875 8.8333 7.3 8.84375

S33

WSLS 4 8.84375 8.15 7.3 10.5 6.6

S49

WSLS 5 8.45 8.45 10.75 8.4 3.5

S48

Table 14: The payoff for player I against player III with Perfect Relationship when Player II (S35)

Player II (S35) WSLS 1 WSLS 2 WSLS 3 WSLS 4 WSLS 5

is fixed S3 S35 S33 S49 S48

WSLS 1 7.875 11.833333 10.125 8.9 5.75

S3

WSLS 2 8.833333 14 14 14 6.5

S35

WSLS 3 7.875 14 14 14 7.357143

S33

WSLS 4 8.9 14 14 13.125 6.95

S49

WSLS 5 8.45 8.954545 11.21429 8.75 3.5

S48
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Table 15: The payoff for player I against player III with Perfect Relationship when Player II (S33)

Player II (S33) WSLS 1 WSLS 2 WSLS 3 WSLS 4 WSLS 5

is fixed S3 S35 S33 S49 S48

WSLS 1 7.15625 10.125 11.833333 9.1 6.25

S3

WSLS 2 9.6875 14 14 14 7.357143

S35

WSLS 3 8.833333 14 14 14 7.357143

S33

WSLS 4 7.3 14 14 13.125 8.5

S49

WSLS 5 10.75 9.516667 9.516667 9.6875 3.5

S48

Table 16: The payoff for player I against player III with Perfect Relationship when Player II (S49)

Player II (S49) WSLS 1 WSLS 2 WSLS 3 WSLS 4 WSLS 5

is fixed S3 S35 S33 S49 S48

WSLS 1 7.15625 8.9 9.1 19.5 8.4

S3

WSLS 2 8.05 14 14 15.375 7.85

S35

WSLS 3 7.3 14 14 15.375 8.5625

S33

WSLS 4 10.5 13.125 13.125 13.75 13.75

S49

WSLS 5 8.4 8.75 9.6875 16.625 7.85

S48

Table 17: The payoff for player I against player III with Perfect Relationship when Player II (S48)

Player II (S48) WSLS 1 WSLS 2 WSLS 3 WSLS 4 WSLS 5

is fixed S3 S35 S33 S49 S48

WSLS 1 5.75 5.75 6.25 8.4 3.5

S3

WSLS 2 5.75 5.590909 7.357143 6.279412 3.5

S35

WSLS 3 6.25 7.351743 7.357143 8.5625 6.25

S33

WSLS 4 6.6 5.95 6.1875 12.125 6.95

S49

WSLS 5 3.5 3.5 3.5 7.85 2

S48
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In this case and according to the Tables 13:17, we see that

1. When player II is WSLS 1 (S3), there is equilibrium between the pair < S33, S49 >.
2. When player II is WSLS 2 (S35), there is equilibrium between the pairs < S3, S49 >, < S35, S33 >, < S35, S49 >
and < S33, S49 >.
3. When player II is WSLS 3 (S33), the equilibrium is between the pairs < S35, S33 >, < S35, S49 > and < S33, S49 >.
4. When player II is WSLS 4 (S49), the equilibrium is only between the pairs < S3, S48 > and < S35, S33 >.
5. When player II is WSLS 5 (S48), the equilibrium is between the pairs < S3, S35 >, < S3, S33 > and < S35, S33 >.

Using the same approach, we can discuss the following cases:

• Case 2: For r = 0.9 “Strong Relationship”, we note that

1. There is no equilibrium between any pairs when player II WSLS 1 (S3).
2. When player II WSLS 2 (S35), there is equilibrium between the pairs < S35, S33 >, < S35, S49 > and < S33, S49 >.
3. When player II WSLS 3 (S33), there is equilibrium between the pairs < S35, S33 >, < S35, S49 > and < S33, S49 >.
4. When player II WSLS 4 (S49), the equilibrium is only between the pair < S35, S33 >.
5. When player II WSLS 4 (S49), the equilibrium is between the pairs < S3, S35 >, < S3, S33 > and < S35, S33 >.

• Case 3: For r = 0.1 “Weak Relationship”, we note that

1. There is no equilibrium between any pairs, when player II WSLS 1 (S3).
2. When player II WSLS 2 (S35), there is equilibrium between the pairs < S35, S33 >, < S35, S49 > and < S33, S49 >.
3. When player II WSLS 3 (S33), there is equilibrium between the pairs < S35, S33 >, < S35, S49 > and < S33, S49 >.
4. When player II WSLS 4 (S49), the equilibrium is only between the pair < S35, S33 >.
5. When player II WSLS 5 (S48), the equilibrium is between the pairs < S3, S35 >, < S3, S33 > and < S35, S33 >.

• Case 4: For r = 0 ”No Relationship”, we get the normal payoff given in tables 8:12 and we see that

1. There is no equilibrium between any pairs, when player II (S3).
2. When player II WSLS 2 (S35), there is equilibrium between the pairs < S35, S33 >, < S35, S49 > and < S33, S49 >.
3.When player II WSLS 3 (S33), there is equilibrium between the pairs < S35, S33 >, < S35, S49 > and < S33, S49 >.
4.When player II WSLS 4 (S49), the equilibrium is only between the pair < S35, S33 >.
5.When player II WSLS 5 (S48), the equilibrium is between the pairs < S3, S35 >, < S3, S33 > and < S35, S33 >.

6 Conclusion

We conclude that WSLS 1 S3 is the weakest strategy because it is attacked from other different strategies (at all
possibilities of player II). Nevertheless, WSLS 1 (S3) is stronger in only one case that when it plays against WSLS 3
(S33) with player II WSLS 1 (S3).

We can also note that, when the second player plays by WSLS 1 (S3), there is a cycle S3 → S33 → S48 → S3.

Whatever the strength of the relationship between players and whether the second player is WSLS 2 : 5, there is a
common equilibrium pair < S35, S33 >.

Future Work

1. Using the same approach for different strategies and study the effect of their behavior during competition with other
strategies.
2. Studying the effect of the length of the memory on competition between strategies.
3. Studying the possibility of applying the idea of this paper on the model of the alternating game (EG).
4. Discuss the dynamics for all equilibrium pairs that we have obtained.
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