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Abstract: It is believed that the E-Bayesian estimation method will be able to solve the problems caused by the process of choosing

the values of hyper-parameters for prior distributions in Bayesian estimates, which has attracted the attention of many authors. In this

paper, these approaches are used based on the latest method of censored sample called unified progressive hybrid censored sample

from the Rayleigh distribution are discussed. The Bayesian and E-Bayesian estimators are produced using four different loss functions.

E-Bayesian estimation also made use of three more hyper-parameter distributions. Finally, in order to assess the applicability of the

suggested model and different estimating techniques, the proposed model has been applied to real data.

Keywords: E-Bayesian estimation; Bayesian estimation; Maximum likelihood estimation; unified hybrid progressive censoring;

Rayleigh distribution.

1 Introduction

In statistical inference Bayesian approaches are based on the loss function and the a prior distribution which is proposed
as appropriate for the likelihood function, but the hyperparameter values may influence the a prior distribution and so
we often use the hierarchical Bayesian estimation method in this case. The concept of hierarchical prior distribution was
first proposed by Lindley and Smith [1]. The hierarchical Bayesian technique requires two steps to complete the prior
distribution setting, making it more resilient than the Bayesian method. The approach for constructing hierarchical prior
distribution was developed by Han [2]. Hierarchical Bayesian approaches have recently been applied to data analysis; see
Ando and Zellner [3], Osei et al. [4], Han [5] and Fernandez [6] for more information.

Rayleigh distribution was first proposed by Rayleigh [7], and various researchers have employed it in a variety of
disciplines of wisdom and technology since then. The Rayleigh distribution is widely used in statistical models, survival
analysis, and reliability at the moment. The cornerstone of significant of the treatment of meteorological radar signals
statistics is the Rayleigh distribution. It’s also commonly used in actuarial science and engineering to simulate population
lifetimes with a linearly increasing failure rate.

The Rayleigh distribution’s probability density function (pdf) and cumulative distribution function (cdf) are described
by

g(y|α) = 2αyexp
[
−αy2

]
,α,y > 0, (1)

G(y|α) = 1− exp
[
−αy2

]
,α,y > 0. (2)

Inferences for α in the Rayleigh distribution have been discussed by several authors. Harter and Moore [8] derived
an explicit form for the maximum likelihood estimator (MLE) of α based on type II censored data. Moreover, Bayesian
estimation and prediction problems for the α based on doubly censored sample have been considered by Raqab and Madi
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[9] and Fernandez [10]. Wu et al. [11] have derived the Bayesian estimator and prediction intervals based on progressively
type II censored samples. A recent account on progressive censoring schemes can be obtained in the monograph by
Balakrishnan [12] or in the excellent reviewarticle by Balakrishnan et al. [13].

Recent Górny and Cramer in [14] are suggested a general type of generalized progressive hybrid Censored scheme
(PHCS), called unified PHCS (UPHCS) to address some of the shortcomings of all PHCS. The UPHCS may be described
as follows. Consider n of identical items are put on life time test. Let T1,T2 ∈ (0,∞) are times and integer k,m are
pre-fixed integer numbers such that T1 < T2 and k < m with R = (R1,R2, ...,Rm) is also pre-fixed integers satisfying
n = m+R1 + . . .+Rm. At the time of first failure, R1 of the remaining units are randomly removed. Similarly, at the
time of the second failure R2, of the remaining units are removed and so on. If the kth failure occurs before time T1,
the experiment is terminated at min{max(Ym:m:n,T1) ,T2}. If the kth failure occurs between T1 and T2, the experiment is
terminated at min(Yrm:m:n,T2) and if the kth failure occurs after time T2, the experiment is terminated at Yk:n. Under this
censoring scheme, we can guarantee that the experiment would be completed at most in time T2 with at least k failure and
if not, we can guarantee exactly k failures. For recent work on the unified PHCS, see, for example, Kim and Lee in [15],
Górny and Cramer in [16] and Nagy and Alrashide in [17].

The primary goal of this study is to present a statistical comparison of Bayesian and E-Bayesian (EB) approaches for
estimating the parameter of the Rayleigh distribution under the UPHC data. The resulting estimators are obtained based
on four different loss functions. by using the square error loss function (SELF), the Degroot loss function (DLF), the
quadratic loss function (QLF) and the Linex loss function (LLF). This article is organized as follows: Section 2 provides
an overview of likelihood function depending on the UPHCS. In Section 3, determines the maximum likelihood estimates
(ML) of Rayleigh distribution’s parameter, In Section 4, Bayesian estimation of unknown parameter under different prior
distributions and different loss functions are computed. In Section 5, the formulas of EB are discussed. Comparison
between Bayes and EB estimates have been made using simulation study in Section 6. A real data set is analyzed in
Section 7. Finally, the paper is concluded in Section 8.

2 unified PHCS and Likelihood Function

Let Y be the unified progressive hybrid censored sample from distribution with the probability density function (PDF)
g(y), and the cumulative distribution function (CDF) G(y), then, based on the unified PHCS, the likelihood function is
given by

L(α|Y) =

[
D∗

∏
i=1

m

∑
j=i

(
R̃ j + 1

)] D∗

∏
i=1

g(yi:m:n)
[
G(yi:m:n)

]R̃i
[
G(T1)

]R̃t1
[
G(T2)

]R̃t2 , (3)

where G = 1−G and

Y =

{
(y1:m:n, . . . ,min{max(Ym:m:n,T1) ,T2}) if yk:m:n < T1,

(y1:m:n, . . . ,min{max(yk:m:n,T2) ,Ym:m:n}) if T1 < yk:m:n,

D∗ =





d1 ym:m:n < T1,

m T1 < ym:m:n < T2,

d2 yk:m:n < T2 < ym:m:n,

k T2 < yk:m:n,

and R̃, R̃k∗ = n− k−
k−1

∑
j=1

R̃ j, R̃t1 the number of units which removed at T1, and R̃t2 the number of units which removed at

T2. For more details, see Nagy and Alrashide in [17].

3 The ML Estimation

In this section, we derive the ML inference of the unknown parameter α for Rayleigh distribution based on the UPHCS.
From (1), (2), and (3), the likelihood function of α under the UPHCS can be derived as

L(α|Y) =

[
D∗

∏
i=1

m

∑
j=i

(
R̃ j + 1

)]
(2α)D∗

(
D∗

∏
i=1

yi

)
exp
{
−α

[
ψ
(
y,T1,T2

)]}
, (4)
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where ψ
(
y,T1,T2

)
=

D∗

∑
i=1

(
R̃i + 1

)
y2

i + R̃t1 lnT1 + R̃t2 lnT2, and yi = yi:D∗:n for simplicity of notation. From (4), The log-

likelihood function of α is given by

ln [L(α|Y)] ∝ D∗ ln(α)−α
[
ψ
(
y,T1,T2

)]
. (5)

By differentiate (5) with respect to α and solve the equation

∂ ln [L(α|Y)]

∂α
= 0,

so the ML estimator α̂ML of α is obtained as

α̂ML =
D∗

ψ
(
y,T1,T2

) . (6)

4 Bayesian and EB Estimation

In this Section, the Bayesian and EB etimators for the parameter α using SELF, DLF, QLF and LLF are derived. For
creating the Bayesian estimation, we suppose that the parameter α has gamma prior distribution with scale parameter b

and shape parameter a can be expressed as follows

P(α) =
ba

Γ (a)
αa−1 exp(−bα) ,b,a > 0. (7)

The posterior PDF of α is given from (4), (7), as follows.

P∗ (α|x) =

[
ψ
(
y,T1,T2

)
+ b
](D∗+a)

Γ (D∗+ a)
αD∗+a−1 exp

{
−α

[
ψ
(
y,T1,T2

)]}
, (8)

Here, Three different prior distributions of hyper-parameters are investigated in this section to see how they affect the
EB estimates of α . We select the hyper-parameters a and b to prove that P(α) is a decreasing function of α . The first
derivative of P(α) regarding α is as follows:

∂P(α)

∂α
∝ αe−bα [(α − 1)− bα] . (9)

Thus, for 0 < a < 1 and b > 0, the prior PDF P(α) is a decreasing function of α . Suppose that a and b, are independent
with bivariate PDF given by

p(a,b) = p(a)p(b), (10)

the EB estimates of the parameter α are expectation of the Bayesian estimate of α can be obtained as follows:

α̂EB = E [α̂B|x] =

∫

A

α̂B (a,b) p(a,b)dadb, (11)

According to three various prior PDF of the hyper-parameters a and b, the EB estimates of the parameter α can be derived.
As a result, prior distributions chosen to show how different prior distributions affect the estimation of the EB of α . We
suggest the following prior PDFs

p1 (a,b) =
1
c
, 0 < a < 1,0 < b < c,

p2 (a,b) =
2b
c2 , 0 < a < 1,0 < b < c,

p3 (a,b) =
2(c−b)

c2 , 0 < a < 1,0 < b < c,

(12)
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4.1 Bayesian and EB under SELF

Based on the SELF, the Bayes estimators of α is given by,

α̂BS = EP∗ [α] =
∫ ∞

0
απ∗ (α|x)dα

=
D∗+ a

ψ
(
y,T1,T2

)
+ b

. (13)

The EB estimate of α under the SEL based on p1 (a,b) , p2 (a,b) , and p3 (a,b) are computed from (11), (12) and (13),
respectively, as follows:

α̂EBS1 =
∫ 1

0

∫ c

0

1

c

[
D∗+ a

ψ
(
y,T1,T2

)
+ b

]
dbda

=
2D∗+ 1

2c
ln

(
1+

c

ψ
(
y,T1,T2

)
)
, (14)

α̂EBS2 =
∫ 1

0

∫ c

0

2b

c

[
D∗+ a

ψ
(
y,T1,T2

)
+ b

]
dbda

=
2D∗+ 1

c

[
1−

ψ
(
y,T1,T2

)

c
ln

(
1+

c

ψ
(
y,T1,T2

)
)]

, (15)

and

α̂EBS3 =

∫ 1

0

∫ c

0

2(c− b)

c

[
D∗+ a

ψ
(
y,T1,T2

)
+ b

]
dbda

=
2D∗+ 1

c

[(
1+

ψ
(
y,T1,T2

)

c

)
ln

(
1+

c

ψ
(
y,T1,T2

)
)
− 1

]
. (16)

4.2 Bayesian and EB under DLF

The Bayesian estimate of α under DLF loss function is given by

α̂BD =
EP∗
[
α2
]

EP∗ [α]
=

∫ ∞
0 α2P∗ (α|x)dα∫ ∞
0 απ∗ (α|x)dα

=
D∗+ a+ 1

ψ
(
y,T1,T2

)
+ b

. (17)

Based on p1 (a,b) , p2 (a,b) , and p3 (a,b) , under the DLF, the EB estimate of α , can be derived from (11), (12) and (17),
respectively as follows:

α̂EBD1 =
∫ 1

0

∫ c

0

1

c

[
D∗+ a+ 1

ψ
(
y,T1,T2

)
+ b

]
dbda

=
2D∗+ 3

2c
ln

(
1+

c

ψ
(
y,T1,T2

)
)
, (18)
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α̂EBD2 =

∫ 1

0

∫ c

0

2b

c

[
D∗+ a+ 1

ψ
(
y,T1,T2

)
+ b

]
dbda

=
2D∗+ 3

c

[
1−

ψ
(
y,T1,T2

)

c
ln

(
1+

c

ψ
(
y,T1,T2

)
)]

, (19)

and

α̂EBD3 =

∫ 1

0

∫ c

0

2(c− b)

c

[
D∗+ a+ 1

ψ
(
y,T1,T2

)
+ b

]
dbda

=
2D∗+ 3

c

[(
1+

ψ
(
y,T1,T2

)

c

)
ln

(
1+

c

ψ
(
y,T1,T2

)
)
− 1

]
. (20)

4.3 Bayesian and EB under QLF

The Bayesian estimate of α under QLF is given by

α̂BQ =
EP∗
[
α−1

]

EP∗ [α−2]
=

∫ ∞
0 α−1P∗ (α|x)dα∫ ∞
0 α−2P∗ (α|x)dα

=
D∗+ a− 2

ψ
(
y,T1,T2

)
+ b

. (21)

The EB estimate of α under the QLF based on p1 (a,b) , p2 (a,b) , and p3 (a,b) are computed from (11), (12) and (21),
respectively, as follows:

α̂EBQ1 =

∫ 1

0

∫ c

0

1

c

[
D∗+ a− 2

ψ
(
y,T1,T2

)
+ b

]
dbda

=
2D∗− 3

2c
ln

(
1+

c

ψ
(
y,T1,T2

)
)
, (22)

α̂EBQ2 =
∫ 1

0

∫ c

0

2b

c

[
D∗+ a− 2

ψ
(
y,T1,T2

)
+ b

]
dbda

=
2D∗− 3

c

[
1−

ψ
(
y,T1,T2

)

c
ln

(
1+

c

ψ
(
y,T1,T2

)
)]

, (23)

and

α̂EBQ3 =
∫ 1

0

∫ c

0

2(c− b)

c

[
D∗+ a− 2

ψ
(
y,T1,T2

)
+ b

]
dbda

=
2D∗− 3

c

[(
1+

ψ
(
y,T1,T2

)

c

)
ln

(
1+

c

ψ
(
y,T1,T2

)
)
− 1

]
. (24)
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4.4 Bayesian and EB under LLF

The Bayesian estimate of α under LLF is given by

α̂BL =
−1

υ
ln{EP∗ [exp(−υα)]}=

−1

υ
ln

{∫ ∞

0
exp(−υα)P∗ (α|x)dα

}

=
−1

υ
ln





[
ψ
(
y,T1,T2

)
+ b

ψ
(
y,T1,T2

)
+ b+υ

](a+D∗)


 . (25)

Also, based on p1 (a,b) , p2 (a,b) , and p3 (a,b) , under the LINEX loss function, the EB estimate of α , can be derived
from (11), (12) and (25), respectively as follows:

α̂EBL1 =
−1

υ

∫ 1

0

∫ c

0

1

c
ln





[
ψ
(
y,T1,T2

)
+ b

ψ
(
y,T1,T2

)
+ b+υ

](a+D∗)


dbda

=
2D∗+ 1

2υc

{
[
c+ψ

(
y,T1,T2

)]
ln

(
1+

υ

ψ
(
y,T1,T2

)
+ c

)
+υ

× ln

(
1+

c

ψ
(
y,T1,T2

)
+υ

)
−ψ

(
y,T1,T2

)
ln

(
1+

υ

ψ
(
y,T1,T2

)
)}

, (26)

α̂EBL2 =
−1

υ

∫ 1

0

∫ c

0

2b

c





[
ψ
(
y,T1,T2

)
+ b

ψ
(
y,T1,T2

)
+ b+υ

](a+D∗)


dbda

=
2D∗+ 1

2υc2

{
υci −υ

(
2ψ
(
y,T1,T2

)
+υ

)
ln

(
1+

c

ψ
(
y,T1,T2

)
+υ

)
+
[
ψ
(
y,T1,T2

)]2

× ln

(
1+

υ

ψ
(
y,T1,T2

)
)
−
(

c−
[
ψ
(
y,T1,T2

)]2)
ln

(
1+

υ

ψ
(
y,T1,T2

)
+ c

)}
(27)

and

α̂EBL3 =
−1

υ

∫ 1

0

∫ c

0

2(c− b)

c
ln





[
ψ
(
y,T1,T2

)
+ b

ψ
(
y,T1,T2

)
+ b+υ

](a+D∗)


dbda

2D∗+ 1

2c2υ

{
−cυ +

(
ψ
(
y,T1,T2

)
+ 2c

)
ln

(
1+

υ

ψ
(
y,T1,T2

)
)

+υ
(
2
(
ψ
(
y,T1,T2

)
+ c
)
+υ

)
ln

(
1+

c

ψ
(
y,T1,T2

)
+υ

)

+
(

c+
[
ψ
(
y,T1,T2

)]2)
ln

(
1+

υ

ψ
(
y,T1,T2

)
+ c

)}
(28)

The properties of E-Bayesian estimates under the proposed priors of the hyperparameters a and b have been discussed
by many authors, see for example Nagy et al. in [18]
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5 Simulation Study

In this section, simulation research compared the effectiveness of the Bayesian and E-Bayesian estimate algorithms under
different unified PHCS. To generate unified PHC data from Rayleigh distribution, we use the algorithms which used by
Nagy and Alrashide in [17].

We simulate unified PHCS by different selections of (n,m,k,T1,T2) and R = (R1, ...,Rm), where, n = 40 and k = 1
2
m,

m= 10,20,30 with different values of T1 =
1
2
T2, T2 = 0.5,1.0 and 2. We consider the true values of the Rayleigh parameter

α = 2. We computed the ML estimate, Bayesian and E-Bayesian estimates of α, under SELF, DLF, QLF, and LLF (with
ε = 0.5). The values of (a,b) are chosen to be (αb, α

0.005
) for informative prior (IP), (0,0) for noninformative prior (NIP)

and the E-Bayesian estimates are computed with c = 0.75. To determine the efficiency of the estimation, the mean square
error (MSE) and the estimated bias (EB) are calculated for each estimate. We take the different censoring schemes as
follows:

1.Scheme 1: R m
2
= Rm = n−m

2
, and Ri = 0 for all i 6= k,m.

2.Scheme 2: R1 = Rk =
n−m

2
− 2,Rm = 2, and Ri = 0 for all i 6= 1,k, and m.

The values MSE and EB for ML, Bayesian and E-Bayesian estimates under SELF have been reported in Table 1 and
Table 2, also, the values MSE and EB for Bayesian and E-Bayesian estimates under DLF have been reported in Table 3
and Table 4, while Tables 5 and Table 6 are present the values MSE and EB for Bayesian and E-Bayesian estimates under
QLF. Finally, Tables 7 and Table 8 are present the values MSE and EB for Bayesian and E-Bayesian estimates under LLF,
respectively.

Table 1: The values of MSE of ML and Bayesian with E-Bayesian estimates for α under SELF based on the different unified UHCSs.

α̂B

α̂BS

(n,m) Sch. T2 α̂ML IP NIP α̂EBS1 α̂EBS2 α̂EBS3

(40,10) 1 1 0.1319 0.0527 0.0580 0.0448 0.0475 0.0464

2 0.1412 0.0565 0.0621 0.0480 0.0508 0.0497

(40,20,) 1 0.1096 0.0438 0.0482 0.0373 0.0394 0.0386

2 0.1096 0.0439 0.0482 0.0373 0.0395 0.0386

(40,30) 1 0.1005 0.0402 0.0442 0.0342 0.0362 0.0354

2 0.0998 0.0399 0.0439 0.0339 0.0359 0.0351

(40,10) 1 2 0.1191 0.0476 0.0524 0.0405 0.0429 0.0419

2 0.0974 0.0390 0.0429 0.0331 0.0351 0.0343

(40,20,) 1 0.0751 0.0301 0.0331 0.0255 0.0271 0.0264

2 0.0836 0.0334 0.0368 0.0284 0.0301 0.0294

(40,30) 1 0.0836 0.0334 0.0368 0.0284 0.0301 0.0294

2 0.0938 0.0375 0.0413 0.0319 0.0338 0.0330

(40,10) 1 3 0.1893 0.0757 0.0833 0.0644 0.0682 0.0666

2 0.1745 0.0698 0.0768 0.0593 0.0628 0.0614

(40,20,) 1 0.0604 0.0242 0.0266 0.0205 0.0217 0.0213

2 0.0549 0.0220 0.0242 0.0187 0.0198 0.0193

(40,30) 1 0.0897 0.0359 0.0395 0.0305 0.0323 0.0316

2 0.0885 0.0354 0.0389 0.0301 0.0319 0.0312
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Table 2: The values of EB of ML and Bayesian with E-Bayesian estimates for α under SELF based on the different unified UHCSs.

α̂B

α̂BS

(n,m) Sch. T2 α̂ML IP NIP α̂EBS1 α̂EBS2 α̂EBS3

(40,10) 1 1 0.0551 0.0220 0.0242 0.0187 0.0198 0.0194

2 0.0589 0.0236 0.0259 0.0200 0.0212 0.0207

(40,20,) 1 0.0335 0.0134 0.0147 0.0114 0.0120 0.0118

2 0.0321 0.0128 0.0141 0.0109 0.0116 0.0113

(40,30) 1 0.0257 0.0103 0.0113 0.0088 0.0093 0.0091

2 0.0263 0.0105 0.0116 0.0090 0.0095 0.0093

(40,10) 1 2 0.1151 0.0460 0.0506 0.0391 0.0414 0.0405

2 0.0930 0.0372 0.0409 0.0316 0.0335 0.0327

(40,20,) 1 0.0160 0.0064 0.0070 0.0054 0.0057 0.0056

2 0.0240 0.0096 0.0106 0.0082 0.0086 0.0084

(40,30) 1 0.0272 0.0109 0.0120 0.0092 0.0098 0.0096

2 0.0272 0.0109 0.0120 0.0092 0.0098 0.0096

(40,10) 1 3 0.1883 0.0753 0.0828 0.0640 0.0678 0.0663

2 0.1736 0.0694 0.0764 0.0590 0.0625 0.0611

(40,20,) 1 0.0369 0.0147 0.0162 0.0125 0.0133 0.0130

2 0.0235 0.0094 0.0103 0.0080 0.0085 0.0083

(40,30) 1 0.0260 0.0104 0.0114 0.0088 0.0094 0.0091

2 0.0255 0.0102 0.0112 0.0087 0.0092 0.0090

Table 3: The values of MSE of ML and Bayesian with E-Bayesian estimates for α under DLF based on the different unified UHCSs.

α̂B

α̂BD

(n,m) Sch. T2 IP NIP α̂EBD1 α̂EBD2 α̂EBD3

(40,10) 1 1 0.0580 0.0638 0.0493 0.0522 0.0511

2 0.0621 0.0683 0.0528 0.0559 0.0547

(40,20,) 1 0.0482 0.0530 0.0410 0.0434 0.0424

2 0.0482 0.0531 0.0410 0.0434 0.0425

(40,30) 1 0.0442 0.0486 0.0376 0.0398 0.0389

2 0.0439 0.0483 0.0373 0.0395 0.0386

(40,10) 1 2 0.0524 0.0577 0.0446 0.0472 0.0461

2 0.0429 0.0472 0.0364 0.0386 0.0377

(40,20,) 1 0.0331 0.0364 0.0281 0.0298 0.0291

2 0.0368 0.0405 0.0313 0.0331 0.0324

(40,30) 1 0.0368 0.0405 0.0313 0.0331 0.0324

2 0.0413 0.0454 0.0351 0.0372 0.0363

(40,10) 1 3 0.0833 0.0916 0.0708 0.0750 0.0733

2 0.0768 0.0845 0.0653 0.0691 0.0676

(40,20,) 1 0.0266 0.0292 0.0226 0.0239 0.0234

2 0.0242 0.0266 0.0205 0.0217 0.0213

(40,30) 1 0.0395 0.0434 0.0335 0.0355 0.0347

2 0.0389 0.0428 0.0331 0.0350 0.0343
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Table 4: The values of EB of ML and Bayesian with E-Bayesian estimates for α under DLF based on the different unified UHCSs.

α̂B

α̂BD

(n,m) Sch. T2 IP NIP α̂EBD1 α̂EBD2 α̂EBD3

(40,10) 1 1 0.0242 0.0267 0.0206 0.0218 0.0213

2 0.0259 0.0285 0.0220 0.0233 0.0228

(40,20,) 1 0.0147 0.0162 0.0125 0.0133 0.0130

2 0.0141 0.0155 0.0120 0.0127 0.0124

(40,30) 1 0.0113 0.0125 0.0096 0.0102 0.0100

2 0.0116 0.0127 0.0098 0.0104 0.0102

(40,10) 1 2 0.0506 0.0557 0.0430 0.0456 0.0445

2 0.0409 0.0450 0.0348 0.0368 0.0360

(40,20,) 1 0.0070 0.0077 0.0060 0.0063 0.0062

2 0.0106 0.0116 0.0090 0.0095 0.0093

(40,30) 1 0.0120 0.0132 0.0102 0.0108 0.0105

2 0.0120 0.0132 0.0102 0.0108 0.0105

(40,10) 1 3 0.0828 0.0911 0.0704 0.0746 0.0729

2 0.0764 0.0840 0.0649 0.0687 0.0672

(40,20,) 1 0.0162 0.0178 0.0138 0.0146 0.0143

2 0.0103 0.0114 0.0088 0.0093 0.0091

(40,30) 1 0.0114 0.0126 0.0097 0.0103 0.0101

2 0.0112 0.0123 0.0095 0.0101 0.0099

Table 5: The values of MSE of ML and Bayesian with E-Bayesian estimates for α under QLF based on the different unified UHCSs.

α̂B

α̂BQ

(n,m) Sch. T2 IP NIP α̂EBQ1 α̂EBQ2 α̂EBQ3

(40,10) 1 1 0.0591 0.0650 0.0502 0.0532 0.0520

2 0.0632 0.0696 0.0538 0.0569 0.0557

(40,20,) 1 0.0491 0.0540 0.0417 0.0442 0.0432

2 0.0491 0.0540 0.0417 0.0442 0.0432

(40,30) 1 0.0450 0.0495 0.0383 0.0405 0.0396

2 0.0447 0.0492 0.0380 0.0402 0.0393

(40,10) 1 2 0.0534 0.0587 0.0454 0.0480 0.0470

2 0.0436 0.0480 0.0371 0.0393 0.0384

(40,20,) 1 0.0337 0.0370 0.0286 0.0303 0.0296

2 0.0375 0.0412 0.0318 0.0337 0.0330

(40,30) 1 0.0375 0.0412 0.0318 0.0337 0.0330

2 0.0420 0.0462 0.0357 0.0378 0.0370

(40,10) 1 3 0.0848 0.0933 0.0721 0.0763 0.0746

2 0.0782 0.0860 0.0664 0.0704 0.0688

(40,20,) 1 0.0271 0.0298 0.0230 0.0244 0.0238

2 0.0246 0.0271 0.0209 0.0221 0.0216

(40,30) 1 0.0402 0.0442 0.0341 0.0362 0.0354

2 0.0397 0.0436 0.0337 0.0357 0.0349
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Table 6: The values of EB of ML and Bayesian with E-Bayesian estimates for α under QLF based on the different unified UHCSs.

α̂B

α̂BQ

(n,m) Sch. T2 IP NIP α̂EBQ1 α̂EBQ2 α̂EBQ3

(40,10) 1 1 0.0247 0.0272 0.0210 0.0222 0.0217

2 0.0264 0.0290 0.0224 0.0237 0.0232

(40,20,) 1 0.0150 0.0165 0.0127 0.0135 0.0132

2 0.0144 0.0158 0.0122 0.0129 0.0127

(40,30) 1 0.0115 0.0127 0.0098 0.0104 0.0102

2 0.0118 0.0130 0.0100 0.0106 0.0104

(40,10) 1 2 0.0515 0.0567 0.0438 0.0464 0.0454

2 0.0417 0.0458 0.0354 0.0375 0.0367

(40,20,) 1 0.0072 0.0079 0.0061 0.0064 0.0063

2 0.0107 0.0118 0.0091 0.0097 0.0095

(40,30) 1 0.0122 0.0134 0.0104 0.0110 0.0107

2 0.0122 0.0134 0.0104 0.0110 0.0107

(40,10) 1 3 0.0843 0.0928 0.0717 0.0759 0.0742

2 0.0778 0.0855 0.0661 0.0700 0.0684

(40,20,) 1 0.0165 0.0182 0.0140 0.0149 0.0145

2 0.0105 0.0116 0.0089 0.0095 0.0093

(40,30) 1 0.0116 0.0128 0.0099 0.0105 0.0102

2 0.0114 0.0126 0.0097 0.0103 0.0100

Table 7: The values of MSE of ML and Bayesian with E-Bayesian estimates for α under LLF based on the different unified UHCSs.

α̂B

α̂BL

(n,m) Sch. T2 IP NIP α̂EBL1 α̂EBL2 α̂EBL3

(40,10) 1 1 0.0570 0.0627 0.0484 0.0513 0.0501

2 0.0610 0.0671 0.0518 0.0549 0.0537

(40,20,) 1 0.0473 0.0521 0.0402 0.0426 0.0417

2 0.0474 0.0521 0.0403 0.0426 0.0417

(40,30) 1 0.0434 0.0477 0.0369 0.0391 0.0382

2 0.0431 0.0474 0.0366 0.0388 0.0379

(40,10) 1 2 0.0515 0.0566 0.0437 0.0463 0.0453

2 0.0421 0.0463 0.0358 0.0379 0.0370

(40,20,) 1 0.0325 0.0357 0.0276 0.0292 0.0286

2 0.0361 0.0397 0.0307 0.0325 0.0318

(40,30) 1 0.0361 0.0397 0.0307 0.0325 0.0318

2 0.0405 0.0446 0.0345 0.0365 0.0357

(40,10) 1 3 0.0818 0.0900 0.0695 0.0736 0.0720

2 0.0754 0.0829 0.0641 0.0678 0.0663

(40,20,) 1 0.0261 0.0287 0.0222 0.0235 0.0230

2 0.0237 0.0261 0.0202 0.0213 0.0209

(40,30) 1 0.0387 0.0426 0.0329 0.0349 0.0341

2 0.0382 0.0421 0.0325 0.0344 0.0336
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Table 8: The values of EB of ML and Bayesian with E-Bayesian estimates for α under LLF based on the different unified UHCSs.

α̂B

α̂BL

(n,m) Sch. T2 IP NIP α̂EBL1 α̂EBL2 α̂EBL3

(40,10) 1 1 0.0238 0.0262 0.0202 0.0214 0.0210

2 0.0254 0.0280 0.0216 0.0229 0.0224

(40,20,) 1 0.0145 0.0159 0.0123 0.0130 0.0127

2 0.0139 0.0153 0.0118 0.0125 0.0122

(40,30) 1 0.0111 0.0122 0.0095 0.0100 0.0098

2 0.0114 0.0125 0.0097 0.0102 0.0100

(40,10) 1 2 0.0497 0.0547 0.0422 0.0447 0.0437

2 0.0402 0.0442 0.0341 0.0361 0.0353

(40,20,) 1 0.0069 0.0076 0.0059 0.0062 0.0061

2 0.0104 0.0114 0.0088 0.0093 0.0091

(40,30) 1 0.0118 0.0129 0.0100 0.0106 0.0103

2 0.0117 0.0129 0.0100 0.0106 0.0103

(40,10) 1 3 0.0813 0.0895 0.0691 0.0732 0.0716

2 0.0750 0.0825 0.0637 0.0675 0.0660

(40,20,) 1 0.0159 0.0175 0.0135 0.0143 0.0140

2 0.0101 0.0112 0.0086 0.0091 0.0089

(40,30) 1 0.0112 0.0124 0.0095 0.0101 0.0099

2 0.0110 0.0121 0.0094 0.0099 0.0097

6 Real Data Application

In this Section, we showcase an actual example of real data to show how the offered options perform in the application. We
give a real data example. These data, is used by Bhaumik et al. [19] to represent vinyl chloride data from clean upgradient
monitoring wells. This set of data has 34 observations, as 5.1 , 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8, 0.8, 0.4, 0.6 , 0.1, 1.8,
0.9, 2, 4 , 0.9, 0.4, 2, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1, 0.2 , 6.8, 1.2, 0.4, 0.2, and 0.1. We will use these data to generate
the unified PHCS, suppose m = 20, k = 10, Ri = 3 for i = 5,10,15, Rm = 5, and Ri = 0 otherwise, with different values
of T2 = 2T1 with T2 = 3,5 and 8.

Based on the unified PHCS and two different choices IP and NIP priors, the ML, Bayesian E-Bayesian estimates for
the unknown parameter α based on different unified PHCSs., are presented in Table 9.

7 Conclusions

In this Paper a statistical comparison of Bayesian and E-Bayesian approaches for estimating the parameter of the Rayleigh
distribution is present under the UPHC data. From the resulting estimators which obtained based on four different loss
functions, from the results in the above tables, we can note the following:

1.The values of mean squared error of all Bayesian and E-Bayesian estimatition are less than it in ML case.
2.The values of MSE of all E-Bayesian estimatition are less than it in Bayesian case.
3.The values of MSE of all E-Bayesian estimatition are less than it in Bayesian case.
4.In most cases, the values of MSE of E-Bayesian estimatition under DLF are less than it in all E-Bayesian cases.
5.The values of MSE of all estimatition with IP are less than it in NIP case.
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Table 9: The values of MSE of Bayesian and E-Bayesian estimates for α under LLF based on the different unified UHCSs.

Method T2 = 3 T2 = 5 T2 = 7

α̂ML 0.3756 0.2835 0.1433

α̂BS with IP 0.3778 0.2857 0.1455

α̂BS with NIP 0.3752 0.2826 0.1433

α̂EBS1 0.3757 0.2831 0.1437

α̂EBS2 0.3791 0.2865 0.1472

α̂EBS3 0.3686 0.2760 0.1366

α̂BD with IP 0.3982 0.2996 0.1517

α̂BD with NIP 0.3961 0.2968 0.1495

α̂EBD1 0.3960 0.2967 0.1494

α̂EBD2 0.3968 0.2975 0.1502

α̂EBD3 0.3897 0.2904 0.1431

α̂BQ with IP 0.3369 0.2578 0.1331

α̂BQ with NIP 0.3335 0.2544 0.1308

α̂EBQ1 0.3321 0.2530 0.1294

α̂EBQ2 0.3267 0.2476 0.1240

α̂EBQ3 0.3237 0.2446 0.1210

α̂BL with IP 0.3759 0.2847 0.1452

α̂BL with NIP 0.3733 0.2817 0.1430

α̂EBL1 0.3717 0.2801 0.1415

α̂EBL2 0.3661 0.2745 0.1359

α̂EBL3 0.3676 0.2759 0.1373
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