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In this paper, the notion of the limit of logarithmic likelihood ratio of random se-
quences, as a measure of dissimilarity between two probability measures, is intro-
duced. After establishing a ratio of two measures by means of constructing a new prob-
ability measure, we obtained the strong random deviation theorems for partial sums of
functions of arbitrary discrete random variables under suitable restrictive conditions.
As a direct application, we used our results to derive some limit properties of discrete
information source.
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1 Introduction

In recent years, important progresses have been made in the field of deviation of the
average of random variables from the expectations of their marginals or the reference mea-
sure. The main problem of the research area, tracing back to Liu [5] and [6], Liu and
Yang [7] and Wang [9], is to determine a relationship between the true probability distribu-
tion and its marginals. The present paper focuses on the the strong deviation theorems for
partial sums of arbitrary discrete random variables in more general settings.
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Let (Ω,F ,P) be a probability space, and {Fn, n ≥ 0} be an increasing sequence of
σ − fields with Fn ⊂ F for n ≥ 0, and suppose that {Xn,Fn, n ≥ 0} be an adapted
random variables taking values in S = {t0, t1, . . .} with a joint distribution of

pn(x1, . . . , xn), xi ∈ S, n = 1, 2, . . . (1.1)

Without loss of generality, we may assume pn(x0, . . . , xn) > 0. Set

pn(xn|x0, . . . , xn−1) = P(Xn = xn|X0 = x0, . . . , Xn−1 = xn−1), n ≥ 1, (1.2)

and Π be another measure on Ω defined as follows.

Π(X0 = x0, . . . , Xn = xn) = πn(x0, . . . , xn) = π0(x0)
n∏

i=1

πi(xi|x0, . . . , xi−1). (1.3)

For n ≥ 0, let fn(x0, · · · , xn) denote a real-valued measurable function defined on
Sn+1.

Definition 1.1. Let {Xn, n ≥ 0} be a sequence of random variables, and P, Π be two
probability measures defined as above, {σn, n ≥ 1} be a integer valued sequence with
σn ↑ ∞. Let

Ln(ω) =
Πn(X0, . . . , Xn)
Pn(X0, . . . , Xn)

, (1.4)

Λn(ω) = log Ln(ω). (1.5)

The random variable

γ(ω) = − lim inf
n

Λn(ω)
σn

, (1.6)

is called the limit of the random logarithmic likelihood ratio, relative to the measure Π, of
Xn, n ≥ 1, where log is the natural logarithm, ω is the sample point and Xn stands for
Xn(ω).

2 Some General Strong Deviation Theorems

In this section, we shall first examine the connection between the Strong Deviation
Theorems for arbitrary random variables and the Chung’s type conditions [4, Theorem 1].
Let {an} be a sequence of positive real numbers such that an+1 > an and limn→∞ an =
∞. Let {Ψn(t)} be a sequence of positive, even, continuous functions such that, for t1, t2 ∈
R+, t1 ≤ t2, there are constants 0 < αn ≤ 2, Kn > 0(n ≥ 1), satisfy,

tαn
1

Ψn(t1)
≤ Kn

tαn
2

Ψn(t2)
. (2.1)

For simplicity, we denote

Zn = fn(X0, . . . , Xn), n ≥ 0, (2.2)
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and

Wn = Zn · I[|Zn|≤an], (2.3)

where I[·] is the indicator function.

Theorem 2.1. Let {Xn, n ≥ 0}, {fn, n ≥ 0}, {σn, n ≥ 1} and γ(ω) be defined as in
Section 1 with σn ↑ ∞. Let

J = {ω : γ(ω) < ∞}, (2.4)

then

lim sup
n

1
σn

σn∑

i=1

KiEΠ[
Ψi(Wn)
Ψi(ai)

|X0, . . . , Xn−1] = c(ω) < ∞, P− a.s. (2.5)

implies that

lim inf
n

1
σn

σn∑

i=1

Wi − EΠ[Wi|X0, . . . , Xi−1]
ai

≥ α(γ(ω), c(ω)), P− a.s. ω ∈ J . (2.6)

lim sup
n

1
σn

σn∑

i=1

Wi − EΠ[Wi|X0, . . . , Xi−1]
ai

≤ β(γ(ω), c(ω)), P− a.s. ω ∈ J . (2.7)

where EΠ denotes expectation under Π,

α(x, y) = sup{ϕ(s, x, y), s < 0}, 0 ≤ x, y < +∞, (2.8)

β(x, y) = inf{ϕ(s, x, y), s > 0}, 0 ≤ x, y < +∞, (2.9)

ϕ(s, x, y) =
x

s
+

1
2
se2|s|y, 0 ≤ x, y < ∞. (2.10)

and

α(x, y) ≤ 0, β(x, y) ≥ 0, 0 ≤ x, y < ∞. (2.11)

α(0, y) = α(x, 0) = β(0, y) = β(x, 0) = 0, 0 ≤ x, y < ∞. (2.12)

lim
x→0+

α(x, y) = lim
x→0+

β(x, y) = 0. (2.13)

Proof. Define

Dx0,...,xn = {ω : Xi = xi, 0 ≤ i ≤ n}, xi ∈ S,

then

P(Dx0) = p0(x0), (2.14)

and

P(Dx0,...,xn) = pn(x0, . . . , xn) = p0(x0)
n∏

i=1

pi(xi|x0, . . . , xi−1), (2.15)
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Dx0,...,xn
is called an nth-order elementary cylinder. Let Nn be the collection of nth-order

elementary cylinders, N be the collection of φ and Ω and all cylinder sets. Let

Yi :=
Wi − EΠ[Wi|X0, . . . , Xi−1]

ai
, yi :=

wi − EΠ[Wi|X0 = x0, . . . , Xi−1 = xi−1]
ai

,

Q0(s) := π0(x0).

For a real number of s, let

Qi(s; x0, . . . , xi−1) := EΠ exp[sYi|X0 = x0, . . . , Xi−1 = xi−1], (2.16)

πi(s; x0, . . . , xi) :=
πi(xi|x0, . . . , xi−1) exp(syi)

Qi(s;x0, . . . , xi−1)
. (2.17)

Define a set function µs on N as follows:

µs(φ) = 0, µs(Ω) = 1, µs(Dx0) = π0(x0), (2.18)

µs(Dx0,...,xn) = µs(Dx0,...,xn−1)πn(s; x0, . . . , xn)

= π0(x0)
n∏

i=1

πi(s; x0, . . . , xi). (2.19)

It follows from (2.16)-(2.19) that µs is a measure on N . Since N is a semi-algebra, µs has
a unique extension to the σ−field σ(N ). Let

Ln(s;ω) :=
µs(DX0,...,Xn)
P(DX0,...,Xn)

. (2.20)

It is easy to see that {Nn, n ≥ 1} is a net relative to (Ω,F ,P). By Stromberg and Hewitt
[8], there exists A(s) ∈ σ(N ),P(A(s)) = 1, such that

lim
n

Ln(s; ω) = a finite number depending on ω, ω ∈ A(s). (2.21)

It implies that

lim sup
n

σ−1
n log Lσn(s; ω) ≤ 0, ω ∈ A(s). (2.22)

By (2.16)-(2.19) and (1.5), we have

log Lσn(s; ω) = s

σn∑

i=1

Yi −
σn∑

i=1

log Qi(s) + Λσn . (2.23)

Combing (2.22) and (2.23), we find that

lim sup
n

1
σn

[ σn∑

i=1

sYi + Λσn −
σn∑

i=1

log Qi(s)
]
≤ 0, ω ∈ A(s). (2.24)
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By (1.6) and (2.24), we have

lim sup
n

1
σn

σn∑

i=1

sYi ≤ γ(ω) + lim sup
n

1
σn

σn∑

i=1

log Qi(s), ω ∈ A(s). (2.25)

By (2.16) and the inequality 0 ≤ ex − 1 − x ≤ x2e|x|/2, for all x ∈ R, and the fact that
|Yi| ≤ 2, we have

0 ≤ Qi(s)− 1 = EΠ[exp(sYi)− 1− sYi]

≤ 1
2
s2e2|s|EΠY 2

i ≤ 1
2
s2e2|s|EΠ[(

Wi

ai
)2|X0, . . . , Xi−1]. (2.26)

Now with (2.1), we have
( |Wi|

ai

)2

≤
( |Wi|

ai

)αi ≤ Ki
Ψi(|Wi|)
Ψi(ai)

, (2.27)

which implies

EΠ[(
|Wi|
ai

)2|X0, . . . , Xi−1] ≤ KiEΠ[
Ψi(Wi)
Ψi(ai)

|X0, . . . , Xi−1]. (2.28)

Hence
0 ≤ Qi(s)− 1 ≤ 1

2
s2e2|s|KiEΠ[

Ψi(Wi)
Ψi(ai)

|X0, . . . , Xi−1]. (2.29)

We set

H = {ω : lim sup
n

1
σn

σn∑

i=1

KiEΠ[
Ψi(Wi)
Ψi(ai)

|X0, . . . , Xi−1] = c(ω) < ∞}. (2.30)

From (2.26), (2.29) and (2.30), we have

0 ≤ lim sup
n

1
σn

σn∑

i=1

[Qi(s)− 1] ≤ 1
2
s2e2|s|c(ω), ω ∈ H ∩A(s). (2.31)

By the inequality 0 ≤ log x ≤ x− 1 (x ≥ 1) and (2.31), we have

0 ≤ lim sup
n

1
σn

σn∑

i=1

log Qi(s) ≤ 1
2
s2e2|s|c(ω), ω ∈ H ∩A(s). (2.32)

By (1.6), (2.25), and (2.32), we have

lim sup
n

s

σn

σn∑

i=1

Yi ≤ γ(ω) +
1
2
s2e2|s|c(ω), ω ∈ H ∩ J ∩A(s). (2.33)

For s < 0, dividing both sides of (2.33) by s, we find that

lim inf
n

1
σn

σn∑

i=1

Yi ≥ γ(ω)
s

+
1
2
se2|s|c(ω), ω ∈ H ∩ J ∩A(s). (2.34)
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Note that P(A(s) ∩H) = 1, taking superimum over s < 0, we get (2.6).
For s > 0, by (2.33), we have

lim sup
n

1
σn

σn∑

i=1

Yi ≤ γ(ω)
s

+
1
2
se2|s|c(ω), ω ∈ J , (2.35)

which proves (2.7).

Corollary 2.1. Under the conditions of Theorem 2.1, if c(ω) = 0 or γ(ω) = 0, a.s. then

lim
n

1
σn

σn∑

i=1

Wi − EΠ[Wi|X0, . . . , Xi−1]
ai

= 0, P− a.s. (2.36)

Our next result is to estimate the strong deviation of {fi(X0, . . . , xi)} from its condi-
tional means, which will require the method of conditional moment generating functions.

Theorem 2.2. Under the above set up, if there is θ(ω) > 0 a.s., 0 < a < b, such that

lim sup
n

1
σn

σn∑

i=1

EΠ{exp[|bZi|]|X0, . . . , Xi−1} ≤ θ(ω). P− a.s. (2.37)

then, if ρ(γ(ω)) < a, we have

lim sup
n

1
σn

σn∑

i=1

{Zi − EΠ[Zi|X0, . . . , Xi]} ≤ 2γ(ω)
ρ(γ(ω))

, P− a.s., ω ∈ J (2.38)

lim inf
n

1
σn

σn∑

i=1

{Zi − EΠ[Zi|X0, . . . , Xi]} ≥ − 2γ(ω)
ρ(γ(ω))

, P− a.s., ω ∈ J (2.39)

Before proceeding with the proof, we need the following lemma.

Lemma 2.1. Let a, b, c be positive constants and

g(t, c) =
2θt

e2(a− b)2
+

c

t
, (2.40)

where θ > 0. Then g(t, c) attains its maximum value at t = ρ(c), where t = ρ(c)(0 <

|t| < a < b) is the unique solution of equation

2θt2 = e2c(a− b)2, (2.41)

and
g(ρ(c), c) =

2c

ρ(c)
, (2.42)

g(−ρ(c), c) = − 2c

ρ(c)
. (2.43)
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Proof of Theorem 2.2: Let t (|t| < a) be a real number, define

M0(t) := EΠ[exp(tZ0)]. (2.44)

For i ≥ 1, define

Mi(t; x0, . . . , xi) := EΠ[exp{tZi(ω)}|X0 = x0, . . . , Xi−1 = xi−1]

=
∑

xi∈S

exp{tfi(x0, . . . , xi)}πi(xi|x0, . . . , xi−1). (2.45)

Mi(t;x0, . . . , xi) is called the conditional moment generating function (CMGF) of Zi(ω)
given X0 = x0, . . . , Xi−1 = xi−1. For each real number t(|t| < a) and nonnegative
integer i, we set

mi(t; x0, . . . , xi) :=
exp{tfi(x0, . . . , xi)}πi(xi|x0, . . . , xi−1)

Mi(t; x0, . . . , xi)
. (2.46)

As in Theorem 2.1, we define a set function νt on N as follows:

νt(φ) = 0, νt(Ω) = 1, νt(Dx0) = π0(x0), (2.47)

νt(Dx0,...,xn) = νt(Dx0,...,xn−1)mn(t;x0, . . . , xn)

= π0(x0)
n∏

i=1

mi(t;x0, . . . , xi). (2.48)

Let
Ln(t;ω) :=

νt(DX0,...,Xn)
P(DX0,...,Xn)

. (2.49)

As in the proof of Theorem 2.1, we know that there exists a set B(t) ∈ σ(N ) with
P(B(t)) = 1, such that

lim
n

Lσn(t; ω) = a finite number depend on ω, ω ∈ B(t), (2.50)

so
lim sup

n
σ−1

n log Lσn(t; ω) ≤ 0, ω ∈ B(t). (2.51)

From (2.46), (2.47), and (2.49), we have

1
σn

log Lσn(t; ω) =
t

σn

σn∑

i=1

Zi − 1
σn

σn∑

i=1

logEΠ[exp{tZi}|X0, . . . , Xi−1]

− 1
σn

log(pn(X0, . . . , Xi)/[π0(X0)
σn∏

i=1

πi(Xi|X0, . . . , Xi−1)]).

(2.52)
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Combining (2.51), (2.52) and (1.6), we have

lim sup{ t

σn

σn∑

i=1

Zi − 1
σn

σn∑

i=1

logEΠ[exp{tZi|X0, . . . , Xi−1]} ≤ γ(ω), ω ∈ B(t).

(2.53)
and

lim sup
n

t

σn

σn∑

i=1

{Zi − EΠ[Zi|X0, . . . , Xi−1]}

≤ lim sup
n

1
σn

σn∑

i=1

{logEΠ[exp tZi|X0, . . . , Xi−1]− EΠ[tZi|X0, . . . , Xi−1]}

+ γ(ω), ω ∈ B(t). (2.54)

Note that

lim sup
n

1
σn

σn∑

i=1

{logEΠ[etZi |X0, . . . , Xi−1]− EΠ[tZi|X0, . . . , Xi−1]}

≤ lim sup
n

1
σn

σn∑

i=1

{[EΠ[etZi |X0, . . . , Xi−1]− 1− EΠ[tZi|X0, . . . , Xi−1]} (2.55)

≤ lim sup
n

1
σn

σn∑

i=1

EΠ[(etZi − 1− tZi)|X0, . . . , Xi−1]

≤ lim sup
n

1
σn

σn∑

i=1

EΠ[
t2

2
Z2

i e|tZi||X0, . . . , Xi−1] (2.56)

=
t2

2
lim sup

n

1
σn

σn∑

i=1

EΠ[eb|Zi|Z2
i e(|t|−b)|Zi||X0, . . . , Xi−1]

≤ t2

2
lim sup

n

1
σn

σn∑

i=1

EΠ[eb|Zi| 4e−2

(|t| − b)2
|X0, . . . , Xi−1] (2.57)

≤ 2θ(ω)t2

e2(a− b)2
, P− a.s. (2.58)

Here we have used the inequality log x ≤ x − 1 (for x > 0) in (2.55) , and 0 ≤ ex −
1 − x ≤ x2e|x|/2 for all x ∈ R in (2.56). While (2.58) follows from the fact that g(x) =
x2e−hx(x > 0, h > 0) attains its maximum value at x = 2/h.

By (2.55)-(2.58), we have

lim sup
n

t

σn

σn∑

i=1

{Zi − EΠ[Zi|X0, . . . , Xi−1]} ≤ 2θ(ω)t2

e2(a− b)2
+ γ(ω),P− a.s. ω ∈ J

(2.59)
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For 0 < t < a, from Lemma 2.4 and inequality (2.59), we have

lim sup
n

1
σn

σn∑

i=1

{Zi − EΠ[Zi|X0, . . . , Xi−1]}

≤ 2θ(ω)t
e2(a− b)2

+
γ(ω)

t
= g(t, γ(ω)) ≤ 2γ(ω)

ρ(γ(ω))
,P− a.s. ω ∈ J (2.60)

which proves (2.38).
For −a < t < 0, (2.39) can be proven in the same way. ¤

Corollary 2.2. Under the conditions of Theorem 2.2, if there is a θ(ω) > 0 and b > 0,
such that

lim sup
n

1
σn

σn∑

i=1

E{exp[|bZi|]|X0, . . . , Xi−1} ≤ θ(ω). P− a.s. (2.61)

then

lim
n

1
σn

σn∑

i=1

{Zi − E[Zi|X0, . . . , Xi]} = 0, P− a.s. (2.62)

Proof. In the proof of Theorem 2.2, if we take Π = P, then (2.62) follows directly.

In many statistical models, when assumptions cannot be safely made about the de-
pendence structure of a model, a natural approach is to regard the data as coming from
some specified distribution P. But P may be difficult to work with, and practitioners may
be led to use the production of marginals Π, which is an approximation. Suppose that
x̃n = (x0, . . . , xn) were generated from a distribution family denoted P(x̃n), but that
P(x̃n) is not known in detail. One may try to model the data by using a different con-
ditional distribution Π(x̃n) =

∏n
i=0 pi(xi), which assumes independence even when this

is not valid. We take the π′s to be the marginal from P, a nature starting choice. Here
we examine the deviation, based on likelihood ratio, of the average (1/n)

∑n
i=0 Xi from

(1/n)
∑n

i=0 EΠXi.
Let {Xn, n ≥ 0} be a stochastic sequence on the probability space {Ω,F ,P}, taking

values in S and with the joint distribution (1.1) and their marginal distributions are

pi(xi) = P(Xi = xi), xi ∈ S. (2.63)

Let Π be the measure of the product of the marginal distributions

Π(X0 = x0, . . . , Xn = xn) = π(x0, . . . , xn) =
n∏

i=0

pi(xi). (2.64)

Hence
EΠXi =

∑

xi∈S

xipi(xi). (2.65)
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Corollary 2.3. Under the assumptions of Theorem 2.2, let Π be as defined in (2.64), such
that

lim sup
n

1
σn

σn∑

i=1

EΠ{exp[|bXi|]} ≤ θ(ω). (2.66)

Then, for ρ(γ(ω)) < a, we have

lim sup
n

1
σn

σn∑

i=1

{Xi − EΠXi} ≤ 2γ(ω)
ρ(γ(ω))

, P− a.s., ω ∈ J (2.67)

lim inf
n

1
σn

σn∑

i=1

{Xi − EΠXi} ≥ − 2γ(ω)
ρ(γ(ω))

, P− a.s., ω ∈ J . (2.68)

3 Limit Properties of Arbitrary Discrete Information Sources

A question of importance in information theory is the study on Shannon-mcmillan-
Breiman theorem. In previous works, conditions such as ergodic,stationary or asymptotic
stationary were assumed, see e.g. [1–3]. In this section we avoid these assumptions by
the technique of CMGF and give a strong deviation theorem regarding the relative discrete
information density and random conditional entropy, which holds for arbitrary discrete
information sources. Before providing our next result, we review some basic concepts of
information.

Let {Xn, n ≥ 0} be a sequence of successive letters produced by an arbitrary infor-
mation source with the alphabet S = {t0, t1, . . . , } and with the joint distribution of (1.1),
let

fn(ω) = − 1
n

log p(X1, . . . , Xn), (3.1)

where ω is a sample point, and the quantity fn(ω) is called the relative entropy density

of {Xi, 1 ≤ i ≤ n}. Also let Π be another information source with the joint distribution
(1.3)

Definition 3.1. For i ≥ 1, let

hi(x1, . . . , xi−1) = −
∑

xi∈S

π(xi|x0, . . . , xi−1) log π(xi|x0, . . . , xi−1), (3.2)

Hi(ω) = hi(x1, . . . , xi−1). (3.3)

Hi(ω) is called the random conditional entropy of {Xi, 0 ≤ i ≤ n}.

Theorem 3.1. Let {Xn, n ≥ 0} be a sequence of succesive letters produced by an arbitrary
information source with the alphabet S and the joint distribution (1.1), fn(ω), γ(ω) and
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Hi(ω) be defined in (3.1), (1.6) and (3.3). If there is b > a > 0 such that

lim sup
n

1
n

n∑

i=1

EΠ{[p(Xi|X0, . . . , Xi−1)]b|X0, . . . , Xi−1} ≤ θ(ω). P− a.s. (3.4)

then, for ρ(γ(ω)) < a, we have

lim sup
n

{fn(ω)− 1
n

n∑

i=1

Hi(ω)} ≤ 2γ(ω)
ρ(γ(ω))

, P− a.s., ω ∈ J , (3.5)

lim inf
n

{fn(ω)− 1
n

n∑

i=1

Hi(ω)} ≥ − 2γ(ω)
ρ(γ(ω))

, P− a.s., ω ∈ J . (3.6)

Proof. In Theorem 2.2, let fi(x0, . . . , xn) = log pi(xi|x0, . . . , xi−1), (3.5) and (3.6) fol-
low immediately from (2.38) and (2.39).
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