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Abstract: In the current study, we introduce for the first time the transformation formulae corresponding to the Ramadan group

integral transform (RGT) of Riemann-Liouville and Caputo fractional derivatives. Noting that RGT is a generalization for Laplace as

well as Sumudu transforms. The obtained results make significant improvement and complement some known ones in the literature.

illustrative examples are explained to demonstrate that RGT is a potent and effective method for finding a fractional differential

equation’s analytical solution.
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1 Introduction

The fractional calculus is a theory that deals with integrals and derivatives of any real number, even complex ones. (see
[1] ). The fact that it is a generalization of the classical calculus means that many of its fundamental characteristics are
retained. The past few decades have demonstrated how useful fractional calculus is for explaining the characteristics of
actual materials, such as polymers ( see [2]). Applications of the fractional calculus can be found in a variety of scientific
disciplines, such as the theory of fractals, physics, engineering, economics, and finance (see Gorenflo and Mainardi [3]).
M. Caputo uses his own definition of fractional differentiation to formulate and address some viscoelasticity difficulties
( see [2]). In the theory of control of dynamical systems, where differential equations of fractional type are utilised to
describe the controlled system and the controller, fractional integrals and derivatives also emerge. Fractional differential
equations have attracted a lot of research attention, we recommend the reader to check these papers [[4], [5], [6], [7], [8],
[9] ]and references cited therein.

In this study, we provide RGT equations for the two most common definitions Riemann-Liouville and Caputo
fractional operators which are essential in fractional calculus. The theory of fractional derivatives and integrals, as well
as applications of this theory in pure mathematics, strongly rely on the Riemann-Liouville formulation (see [2]).
Additionally, the Caputo fractional operator is crucial in practical issues when integer order derivatives with conventional
initial conditions are involved.

Integral transforms like Laplace, Sumudu, and Fourier are utilised in differential equations of fractional type solutions,
which are crucial in helping to solve issues in applied science, mathematical physics, and engineering. Mohammed A.
Ramadan et al. recently introduced a new integral transform that combines Laplace and Sumudu transforms; for more
information, please see the publications [[10], [11], [12], [13]] and references cited therein. Here, using the Ramadan
group transform, we derive the Riemann-Liouville and Caputo fractional operators. We next use these findings to solve
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homogeneous and non-homogeneous differential equations of fractional type with non-zero initial conditions.
We provide several lemmas, definitions, and theorems that are crucial to the proofs of our conclusions in the sections that
follow.

Definition 1(See [10]). Suppose a set A described by

A = { f (t)|∃, t1, t2 > 0, | f (t)| ≤ M exp
|t|
ti , i f t ∈ (−1)i × [0,∞)},

then definition of the RGT is

K(s,u) = RG( f (t)) =























∞
∫

0

e−st f (ut)dt, 0 ≤ u < t2

∞
∫

0

e−st f (ut)dt, −t1 ≤ u < 0

Definition 2(See [10]). If F(s) and G(u) are the Laplace and Sumudu integrals transforms respectively of f (t), then, we

have the following relationships

F(s) = K(s,1),G(u) = K(1,u) and K(s,u) =
1

u
F(

s

u
)

Theorem 1(See [13, Theorem 3.1]). If K1(s,u) and 2(s,u) are the respective RGTs for the functions f (t) and g(t), then

RG[( f ∗ g)(t),(s,u)] = uK1(s,u)K2(s,u) (1)

where ∗ represents the convolution of f(t) and g(t).

Theorem 2(See [10, Theorem 2]). If n ≥ 1 and K(s,u) is the RGT of f (t), then the following is how to determine the

RGT of the nth derivative of f (t):

RG[( f n(t),(s,u)] =
snK(s,u)

un
−

n−1

∑
k=0

sn−k−1 f k(0)

un−k
.

Definition 3.As shown by Podlubny [1], The following are the definitions fractional integral operator of the Riemann-

Liouville of order ρ on the Lebesgue space L1[0,1]:

Iρ h(x) =

{

1
Γ (ρ)

∫ x
0 (x− t)ρ−1h(t)dt, ρ > 0,

h(x), ρ = 0.

Definition 4.As shown in [1], the Riemann-Liouville fractional derivative of order ρ > 0 is defined by

(Dρ h)(x) = (
d

dt
)m(Im−ρ h)(x), m− 1 ≤ ρ < m, m ∈ N. (2)

Definition 5.The fractional-order derivative with regard to Caputo sense defined by ([1]):

D
ρ
∗h(x) =

1

Γ (m−ρ)

∫ x

0
(x− t)m−ρ−1h(m)(t)dt, ρ > 0, x > 0, (3)

given that

m− 1 6 ρ < m, m ∈N.

So, it is possible to write

D
ρ
∗ xk =

{

0, if k ∈ N0 and k < ⌈ρ⌉,
Γ (k+1)

Γ (k+1−ρ)
xk−ρ , if k ∈ N0 and k ≥ ⌈ρ⌉,

(4)

where N= {1,2, . . .} and N0 = {0,1,2, . . .}.

Definition 6.( See [2]) In terms of two parameters, the Mittag-Leffler function is given by

Eα ,β (z) =
∞

∑
k=0

zk

Γ (αk+β )
],

such that α > 0, β > 0 and z belongs to the complex plane C.
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2 Main Results

Theorem 3.If K(s,u) is the RGT of the function f (t), then FRGT of Riemann-Liouville fractional integral of order α for

the function f (t) , as follows

RG[Iα
t f (t);(s,u)] =

uα

sα
K(s,u) (5)

Proof.Using the Riemann-Liouville integral’s definition, we obtain

Iα
t f (t) =

1

Γ (α)

∫ t

0
(t − τ)α−1 f (τ)dτ =

1

Γ (α)
[tα−1 ∗ f (t)], (6)

where ∗ denotes convolution of two functions. Now taking RGT to both sides of the previous equation, then by using
RGT-convolution theorem (See(1)) and table of RGT-transformations [10], we obtain

RG[Iα
t f (t);(s,u)] =

1

Γ (α)
u

uα−1

sα
Γ (α)K(s,u) =

uα

sα
K(s,u) (7)

Theorem 4.Let n ∈ N and α > 0 be such that n − 1 ≤ α < n and K(s,u) be the RGT of f (t), then the RGT of the

Riemann-Liouville fractional derivative of order α for f (t), is of the form

RG[Dα
t f (t);(s,u)] =

sα

uα
K(s,u)−

n−1

∑
k=0

sk

uk+1
[Dα−k−1

t f (t)]t=0 (8)

Proof.Let Dα
t f (t) = h(n)(t) = dn

dtn h(t), we can write

h(t) =
d−n

dt−n

dn

dtn
h(t)

=
d−n

dt−n
Dα

t f (t)

= In−α
t f (t), (9)

now by taking RGT to equation (9), next using (5), we reach to

RG[h(t);(s,u)] = RG[In−α
t f (t);(s,u)] =

un−α

sn−α
K(s,u). (10)

Also, from Theorem (2), we have

RG[Dα
t f (t);(s,u)] = RG[h(n)(t);(s,u)]

=
sn

un
RG[h(t);(s,u)]−

n−1

∑
k=0

sn−k−1h(k)(t)|t=0

un−k

=
sn

un

un−α

sn−α
K(s,u)−

n−1

∑
k=0

skh(n−k−1)(t)|t=0

uk+1

=
sα

uα
K(s,u)−

n−1

∑
k=0

skh(n−k−1)(t)|t=0

uk+1
, (11)

the fractional derivative of Riemann-Liouville (See (2)) allows us to write

h(n−k−1)(t)|t=0 =
dn−k−1

dtn−k−1
h(t)|t=0

=
dn−k−1

dtn−k−1
D
−(n−α)
t f (t)|t=0

= D
(α−k−1)
t f (t)|t=0, (12)
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hence, substituting from (12) into (11), we get

RG[Dα
t f (t);(s,u)] =

sα

uα
K(s,u)−

n−1

∑
k=0

sk

uk+1
[Dα−k−1

t f (t)]t=0.

The proof is finished with this.

Theorem 5.If n ∈ N and α > 0 be such that n− 1 ≤ α < n and K(s,u) be the RGT of f (t), then the RGT formula of

fractional derivative in the Caputo sense of order α for f (t), takes the form

RG[Dα
∗ f (t);(s,u)] =

sα

uα
K(s,u)−

n−1

∑
k=0

uk−α f (k)(0)

sk−α+1
(13)

Proof.Utilizing the meaning of the Caputo fractional derivative, we are able to write

Dα
∗ f (t) =

1

Γ (n−α)

t
∫

0

f (n)(u)(t − u)n−α−1du

=
1

Γ (n−α)

t
∫

0

h(u)(t − u)n−α−1du

= In−α
t h(t) (14)

where f (n)(t) = h(t), now by taking RGT to both sides of equation (14), then using (5), we have

RG[Dα
∗ f (t);(s,u)] = RG[In−α

t h(t);(s,u)] =
un−α

sn−α
RG[h(t);(s,u)]

=
un−α

sn−α
RG[ f (n)(t);(s,u)]

=
un−α

sn−α

[ sn

un
K(s,u)−

n−1

∑
k=0

sn−k−1 f (k)(0)

un−k

]

=
sα

uα
K(s,u)−

n−1

∑
k=0

uk−α f (k)(0)

sk−α+1
. (15)

The proof is finished with this.

Theorem 6.If f (t) is an exponentially ordered piecewise continuous function on the range [0,∞) , also suppose that α > 0
be such that 0 ≤ α < 1 and K(s,u) be the RGT of f (t), then the RGT formula of fractional derivative in the Caputo sense

of order α for f (t), takes the form

RG[Dnα
∗ f (t);(s,u)] =

snα

unα
K(s,u)−

n−1

∑
k=0

u(k−n)α(Dαk
∗ f )(0)

s(k−n)α+1
(16)

Proof.Using mathematical induction technique and RGT for Caputo fractional derivatives( See (13)), we obtain
For n = 1, formula (16) becomes

RG[Dα
∗ f (t);(s,u)] =

sα

uα
K(s,u)−

u−α

s−α+1
f (0),

which is true with RGT for Caputo fractional derivative ( See (13)).
For n = 2

RG[D2α
∗ f (t);(s,u)] = RG[Dα

∗ (D
α
∗ f (t));(s,u)] = RG[Dα

∗ h(t);(s,u)], (17)
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where h(t) = Dα
∗ f (t). Using RGT for Caputo fractional derivative ( See (13)) twice, hence (17) becomes

RG[D2α
∗ f (t);(s,u)] =

sα

uα
RG[h(t);(s,u)]−

u−α

s−α+1
h(0)

=
sα

uα
RG[Dα

∗ f (t);(s,u)]−
u−α

s−α+1
Dα
∗ f (0)

=
sα

uα

[ sα

uα
K(s,u)−

u−α

s−α+1
f (0)

]

−
u−α

s−α+1
Dα
∗ f (0)

=
s2α

u2α
K(s,u)−

u−2α

s−2α+1
f (0)−

u−α

s−α+1
Dα
∗ f (0), (18)

which is compatible with the formula (16). Finally, assume that the formula is true for n = r, hence

RG[Drα
∗ f (t);(s,u)] =

srα

urα
K(s,u)−

r−1

∑
k=0

u(k−r)α(Dαk
∗ f )(0)

s(k−r)α+1
, (19)

we want to prove that it is true for n = r+ 1, now

RG[D
(r+1)α
∗ f (t);(s,u)] = RG[Dα

∗ (D
rα
∗ f (t));(s,u)] = RG[Dα

∗ z(t);(s,u)], (20)

where z(t) = Drα
∗ f (t). Using RGT for Caputo fractional derivative ( See (13)) and (19), hence (17) becomes

RG[D
(r+1)α
∗ f (t);(s,u)] =

sα

uα
RG[z(t);(s,u)]−

u−α

s−α+1
z(0)

=
sα

uα
RG[Drα

∗ f (t);(s,u)]−
u−α

s−α+1
Drα
∗ f (0)

=
sα

uα

[ srα

urα
K(s,u)−

r−1

∑
k=0

u(k−r)α(Dαk
∗ f )(0)

s(k−r)α+1

]

−
u−α

s−α+1
Drα
∗ f (0)

=
s(r+1)α

u(r+1)α
K(s,u)−

r−1

∑
k=0

u(k−(r+1))α(Dαk
∗ f )(0)

s(k−(r+1))α+1
−

u−α

s−α+1
Drα
∗ f (0)

=
s(r+1)α

u(r+1)α
K(s,u)−

r

∑
k=0

u(k−(r+1))α(Dαk
∗ f )(0)

s(k−(r+1))α+1
. (21)

The proof is finished with this.

Theorem 7.The RGT of tβ−1Eα ,β (Atα), is given by

RG[tβ−1Eα ,β (Atα);(s,u)] = uβ−1sα−β (sα −Auα)−1
, (22)

given that

α > 0, β > 0 and A ∈ Cn×n with C a complex plane, such that the real part of the complex number s
u

is greater than

‖A‖
1
α .
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Proof.Using Mittag-Leffler function definition and RGT table of transformations (see [10]) , we obtain

RG[tβ−1Eα ,β (Atα);(s,u)] = RG[tβ−1
∞

∑
k=0

(Atα)k

Γ (αk+β )
]

=
∞

∑
k=0

AkRG[tαk+β−1;(s,u)]

Γ (αk+β )

=
∞

∑
k=0

Akuαk+β−1

sαk+β

=
1

u

∞

∑
k=0

Ak(
s

u
)−αk−β

=
sα−β

uα−β+1

∞

∑
k=0

Ak(
s

u
)−α(k+1)

=
sα−β

uα−β+1

(

(
s

u
)α −A

)−1

= uβ−1sα−β (sα −Auα)−1
. (23)

This completes the proof.

3 Examples

In this part, we look at a few examples of fractional differential equations that include both homogeneous and non-
homogeneous, which were previously solved by Laplace or Sumudu transforms, and here we solve them by RGT method
to illustrate the relevance of our work.

Example 1(See [8, Example 3.2]). Take into consideration the following non-homogenous differential equation of
fractional type involving fractional derivative of Riemann-Liouville

Dα
t y(t)− ay(t) = h(t), n− 1 < α < n (24)

with non-zero starting conditions

D
(α−k)
t y(t) = bk, k = 1,2, .....,n

where c and bk are constants and the fractional derivative of Riemann-Liouville of order α represented by Dα
t .

Taking RGT to both sides of equation (24) and using (8), we obtain

sα

uα
K1(s,u)−

n

∑
k=1

sk−1

uk
D
(α−k)
t y(t) |t=0 −aK1(s,u) = K2(s,u), (25)

where K1(s,u), and K2(s,u) are RGT functions of y(t) and h(t) respectively, now (25) takes the form

K1(s,u) =
uαK2(s,u)

(sα − auα)
+

∑n
k=1 bkuα−ksk−1

(sα − auα)

= uuα−1(sα − auα)−1K2(s,u)+
n

∑
k=1

bkuα−ksk−1(sα − auα)−1

= uRG[tα−1Eα ,α(atα);(s,u)]RG[h(t);(s,u)]+
n

∑
k=1

bkRG[tα−kEα ,α−k+1(atα);(s,u)]. (26)

Taking inverse RGT to both sides of equation (26)and using the convolution theorem for Ramadan group ( See (1)), we
get

y(t) =

t
∫

0

h(τ)(t − τ)α−1Eα ,α(a(t − τ)α)+ tα−kEα ,α−k+1(atα).
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Example 2(See [8, Example 3.4]). Think about the following homogenous differential equation of fractional type involving
Caputo fractional derivative

Dα
∗ y(t)+ ay(t) = 0, 0 < α ≤ 1, (27)

with non-zero initiating condition
y(0) = c

where c and a are constants and Dα
∗ denote Caputo fractional derivative of order α .

Taking RGT to both sides of equation (27) and using (13), we obtain

sa

ua
K(s,u)−

sα−1

u−α
c+ aK(s,u) = 0, (28)

where K(s,u) is the RGT of y(t), hence we can write

K(s,u) = sα−1(sα + auα)−1c

Inverse RGT is applied to both sides of the previous equation, yielding

y(t) = Eα ,1(−atα)c.

Example 3.Think about the following non-homogenous differential equation of fractional type involving Caputo fractional
derivative

Da
∗ f (x)+Db

∗ f (x) = g(x) (29)

with non-zero initial condition f (0) = c, where c is a constant and Da
∗,D

b
∗ represents fractional derivatives of order a, and

b respectively in the Caputo sense, such that 0 < a < b < 1.
Taking RGT to both sides of equation (29) and using (13), we obtain

sa

ua
K1(s,u)−

sa−1

ua
c+

sb

ub
K1(s,u)−

sb−1

ub
c = K2(s,u), (30)

where K1(s,u) and K2(s,u) are RGT of f (x) and g(x) respectively, hence we can write

[
sa

ua
+

sb

ub
]K1(s,u) = [

sa−1

ua
+

sb−1

ub
]c+K2(s,u),

and so

K1(s,u) =
K2(s,u)

[ sa

ua +
sb

ub ]
+

c

s

= uK2(s,u)
ub−1s−a

(sb−a + ub−a)
+

c

s
, (31)

taking the inverse Ramadan Group and using (23), we obtain

f (x) = g(x)⋆ tb−1Eb−a,b(−tb−a)+ c

=

x
∫

0

g(τ)(t − τ)b−1Eb−a,b(−(t − τ)b−a)+ c

4 Conclusion

In this paper, we deduce and demonstrate the Fractional Ramadan Group transform (FRGT) of fractional derivatives,
which represents a generalization of both Laplace and Sumudu fractional derivative transforms. Some key formulae for
FRGT are stated and demonstrated. These formulae are used to solve non-zero initial conditions homogeneous and non-
homogeneous fractional differential equations.

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


708 H. M. Arafa et al. : On Ramadan Group Transform of Fractional Derivatives...

References

[1] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integral derivative: theory and applications, World Scientific Publishing

Company,Gordon and Breach Science Publishers, Yverdon (Switzerland), 1993.

[2] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.

[3] R. Goreno and F. Mainardi, Fractals and fractional calculus in continuum mechanics, Springer, 1997.

[4] L. Kexue and P. Jigen, Laplace transform and fractional differential equations, Appl. Math. Lett. 24(12), 2019–2023 (2011).

[5] S. Kazem, Exact solution of some linear fractional differential equations by Laplace transform, Int. J. Nonlin. Sci. 16(1), 3–11

(2013).

[6] Y. Tian, S. Sun and Z. Bai, Positive solutions of fractional differential equations with-Laplacian, J. Funct. Space. 2017, (2017).

[7] H. M. Fahad, M. U. Rehman and A. Fernandez, On Laplace transforms with respect to functions and their applications to fractional

differential equations, Math. Meth. Appl. Sci. , (2021).

[8] D. S. Bodkhe and S. K. Panchal, On Sumudu transform of fractional derivatives and its applications to fractional differential

equations, Asian J. Math. Comput. Res. 11(1), 69–77 (2016).

[9] Q. D. Katatbeh and F. B. M. Belgacem, Applications of the Sumudu transform to fractional differential equations, Nonlin. Stud.

18(1), 99–112 (2011).

[10] M. A. Ramadan, K. R. Raslan, T. S. El-Danaf and A. R. Hadhoud, On a new general integral transform: some properties and

remarks, J. Math. Comput. Sci. 6(1), 103–109 (2016).

[11] M. A. Ramadan and A. R. Hadhoud, Double Ramadan group integral transform: definition and properties with applications to

partial differential equations, Appl. Math. 12(2), 389–396 (2018).

[12] M. A. Ramadan and A. K. Mesrega, Solution of partial and integro-differential equations using the convolution of Ramadan group

transform, Asian Res. J. Math. 11(3), 1–15 (2018).

[13] M. A. Ramadan, The convolution for Ramadan group integral transform: theory and applications, J. Adv. Tren. Bas. Appl. Sci. 1(2),

191–197 (2017).

c© 2023 NSP

Natural Sciences Publishing Cor.


	 Introduction
	 Main Results
	 Examples
	 Conclusion

