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Abstract: In this paper, we consider inverse problem arising in calibration of time-dependent volatility function from the Black-Scholes
model and analyze its ill-posedness phenomena. The forward operator of the inverse problem under some consideration decomposes into
an inner linear convolution operator and an outer nonlinear Nemytskii operator given by a Black-Scholes function. Using Chebyshev
collocation method, we transfer the inner linear operator to a linear system.Since the resulting matrix equation is badly ill-conditioned,
a regularized solution is obtained by employing the Tikhonov regularization method, while the choice of the regularization parameter
are based on generalized cross-validation(GCV) and L-curve criterions. Numerical case studies illustrate the efficiency and accuracy of
the presented method.
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1 Introduction

In recent years several models have been created to price
financial security products. Financial securities (options,
futures and forward contracts) have become essential
tools for corporations and investors over the past few
decades. Options can be used, for example, to hedge
assets and portfolios in order to control the risk due to the
movement in stock prices. European options and
American options are the two major types of options. An
European Call(Put) option is a financial derivative that
certifies the holder’s right but not obligation to buy (for a
Call option) or sell (for a put option) a specific amount of
an underlying security, for a fixed priceK (exercise
price), at a fixed future timeT (maturity or expiry). Since
an option scrutinizes a right it has a certain option value
or option price. Classical option pricing theory was
suggested by Black and Scholes [1] and extended by
Merton [2].

In the Black-Scholes world there is the important
quantity of volatility. Volatility is a measure of the
amount of fluctuation in the asset price, i.e., a measure of
the randomness. It has a major impact on the option
value. Knowing the volatility function allows for a better
understanding of underlying stochastic process of option
price. Most option traders invert the Black-Scholes

formula to determine the volatility (Called the implied
volatility) from the market option price. The implied
volatility of an option pricing model that depends on its
life and defines as function of time to maturity is called
volatility of term-structure. Often traders use this
volatility (for more details see [3,4,5]).

The mathematical problem that arises here consists in
finding (calibrating) a time-dependent volatility function
defined on a finite time intervalI := [0,T ] from the term
structure onI of observed prices of vanilla Call options
with a fixed strikeK > 0. In the fact, we want to convert
observed measurements (option prices) into information
about volatility function that we are interested in and it
isn’t observable. It has been observed to be an ill-posed
problem in the sense that reconstruction of volatility is
unstable with respect to errors in the data. Therefore the
calibration of volatility function is an inverse problem.
Existence and uniqueness and some properties of the
solution to this problem were established in [6].
Researchers in literature have used different methods for
approximating volatility function. For example, in [7]
authors used maximum entropy regularization (MER) to
find an estimation of volatility function and in [8] authors
explore the theoretical and numerical application of local
regularization methods for identifying volatility function.
In this work, we use Tikhonov regularization method with
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general cross validation (GCV) and L-curve criterions to
resolve ill-posedness of the problem.

This paper is organized as follows. In Section2 we
first discuss the original Black-Scholes model and expose
the mathematical model for pricing European option
when the model has time-dependent parameters. Then we
state the calibration of time dependent volatility function
from the option pricing model as an inverse problem and
investigate ill-posedness phenomena. Discretization of the
problem obtained from previous section in the form linear
system using Chebyshev collocation method will done in
Section3. In Section4 we describe Tikhonov
regularization method for resolving the ill-posed problem
of option pricing and introduce GCV and L-curve
ceriterions for determining regularization parameter. We
illustrate in Section5 the accuracy and efficiency of the
method with numerical examples. Finally Section6
concludes.

2 Mathematical formulate

The price of the asset or underlying derivatives(t)
follows a Geometric Brownian motionw(t), meaning that
s satisfies the following stochastic differential equation
(SDE):

ds(t) = µs(t)dt +σs(t)dw(t), (1)

the trend or driftµ (measures the average rate of growth
of the asset price), the volatilityσ (measures the standard
deviation of the returns), and no dividends are paid in that
time period.
Assume thatC is the Call option value,k exercise price
and let r denote the risk-free interest rate (constant for
0 ≤ t ≤ T ). If the market is complete (there are no
transaction costs (fees or taxes), the interest rates for
borrowing and lending money are equal, all parties have
immediate access to any information, all securities and
credits are available at any time and any size, all variables
are perfectly divisible and may take any real number,
individual trading will not influence the price and there
are no arbitrage opportunities), which means that any
asset can be replicated with a portfolio of other assets in
the market (see [9]), we can find the Call value of the
European option. Under the above assumptions and using
Ito’s lemma, the Call option value obtains as the
following boundary value problem of the Black-Scholes
equation [1]

∂C
∂ t

+
1
2

σ2s2 ∂ 2C
∂ s2 + rs

∂C
∂ s

− rC = 0, 0< s < ∞,0≤ t < T,

C(s,T ) = (s−K)+ = max(s− k,0), 0≤ s < ∞,

C(0, t) = 0, 0≤ t ≤ T,

C(s, t) = s−Ke−r(T−t)
, s → ∞.

(2)

We consider in this paper a different kind of the
Black-Scholes model, which is more realistic and focused
on time-dependent functions over the interval [0, T] using
a generalized geometric Brownian motion as stochastic
process for the prices(t) of an asset, on which options are
written. With constant drift µ > 0, time-dependent
volatilities σ(t), a dividend yieldsqdt in a time stepdt
and a standard Wiener processw(t), the stochastic
differential equation becomes

dS(t) = (µ −q)S(t)dt +σ(t)S(t)dw(t), 0< t < T. (3)

When the parametersr and q also become deterministic
functions of time, it follows from stochastic and analytic
considerations on arbitrage-free markets has to be
modified as follows:(see [5])

−
∂C
∂ t

=
σ2(t)

2
s2 ∂ 2C

∂ s2 +[r(t)−q(t)]s
∂C
∂ s

− r(t)C, (4)

0< s < ∞, t > 0.

whereC is the price of the derivative security. When we
apply the following transformations:

y = lns, u =C.exp(
∫ t

0
r(τ)dτ), (5)

then becomes

∂u
∂ t

=
σ2(t)

2
∂ 2u
∂y2 +[r(t)−q(t)−

σ2(t)
2

]
∂u
∂y

, (6)

−∞ < y < ∞, t > 0.

Given the initial conditionu(y,0), the solution to (6) can
be expressed as

u(y, t) =
∫ ∞

−∞
u(ξ ,0)φ(y−ξ , t)dξ , (7)

where

φ(y, t) =
exp(−

(y+
∫ t

0[r(τ)−q(τ)−
σ2(τ)

2
]dτ)2

2
∫ t

0 σ2(τ)dτ
)

√

2π
∫ t

0 σ2(τ)dτ
. (8)

For an asset with current asset priceX := X(0) > 0 at
time t = 0 we consider a family of European vanilla Call
options with a fixed strikeK > 0, a time dependent
risk-free interest rater(t)≥ 0, dividend yieldq(t)≥ 0 and
maturitiest varying through the whole intervalI. Then it
follows from stochastic considerations (for details see [5])
that the associated fair pricesC(t)(0 < t ≤ T ) of these
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options satisfy on an arbitrage-free market the equation

C(t) = Xe−
∫ t
0 q(τ)dτϕ(

ln
X
k
+

∫ t
0[r(τ)−q(τ)−

σ2(τ)
2

]dτ
√

∫ t
0 σ2(τ)dτ

)

− ke−
∫ t
0 r(τ)dτϕ(

ln
X
k
+

∫ t
0[r(τ)−q(τ)−

σ2(τ)
2

]dτ
√

∫ t
0 σ2(τ)dτ

−

√

∫ t

0
σ2(τ)dτ),

(9)

where

ϕ(z) =
1

2π

∫ z

−∞
e
−x2

2 dx, (10)

moreover, the payoff of a European Call at expiry provides

C(0) = max(X − k,0). (11)

The Black-Scholes-type formula (9) and (11) is originally
derived for positive continuous volatility functions, butit
also yields well-defined valuesC(t) ≥ 0(t ∈ I) if the
functionsσ2(t),r(t) andq(t) are Lebesgue-integrable and
almost everywhere finite and positive. Therefore the
direct problem of option pricing model with
time-dependent parameters can be expressed as the
following:

Direct Problem. The European Call price formula for
Black-Scholes option pricing model, with parameters
X > 0,r(τ) > 0,q(τ) ≥ 0,τ ≥ 0,s > 0 and time
dependent volatility functionσ(τ)> 0 is the following:

CBS =







Xe−
∫ τ
0 q(u)duϕ(d1)− ke−

∫ τ
0 r(u)duϕ(d2), s > 0,

max(X − ke−
∫ τ
0 r(u)du,0), s = 0,

(12)

whereCBS :=CBS(X ,k,r(τ),q(τ),τ ,s) and

d1 =
ln

X
k
+

∫ t
0[r(u)−q(u)−

σ2(u)
2

]du
√

∫ t
0 σ2(u)du

,

d2 = d1−

√

∫ t

0
σ2(u)du. (13)

The European put price formula can be deduced in a
similar manner. Also we can reformulate above solution
in terms of the auxiliary function

b(t) :=
∫ t

0
σ2(τ)dτ (14)

concisely as the following

C(t) =CBS(X ,K,r(t),q(t), t,b(t)), t ∈ I. (15)

The option price obtained from the Black-Scholes
pricing framework is function of parameters: asset prices,
strike pricek, riskless interest rater, dividend yield q,
time to expiryt and volatility σ . Except for the volatility
parameter, the other parameters are observable quantities.
The difficulties of setting volatility value in the price
formulas lie in the fact that the input value should be the
forecast volatility value over the remaining life of the
option rather than an estimated volatility value (historical
volatility) from the past market data of the asset price.
Since σ(t) cannot be solved explicitly in terms of
X ,s,r,q, t and option priceC from the pricing formulas,
the determination of the implied volatility has been
devoted a lot of attention of mathematicians in recent
years. In what follows, we try to state the inverse problem
arising in option pricing model.
We considerC(t) is the exact value of European Call
option andCδ (t) noisy data option pricing of equation
(15) such that,

‖Cδ (t)−C(t)‖L2(I) =

(

∫

I
(Cδ (τ)−C(τ))2dτ

) 1
2

≤ δ ,

we want to find appropriate approximations
uδ (t) := σ2

δ (t) from exact functionu(t) := σ2(t) by the
following accuracy

‖uδ (t)−u(t)‖L1(I) =
∫

I
(uδ (τ)−u(τ))dτ ≤ δ .

According to the notations used in [7], we write the
nonlinear forward operator equationF(u(t)) = C(t) such
that

F : D(F)⊂ L1(I)−→ L2(I),

F = N ◦ J,

where D(F) = {u(t) ∈ L1(0,T );u(t) ≥ 0 a.e. in[0,T ]},
with the inner linear convolution operator

J : L1(I)−→ L2(I),

J[v](t) =:
∫ t

0
v(τ)dτ ,

and the outer nonlinear Nemytskii operator

N : D+∩L2(I)⊂ L2(I)−→ L2(I),

[N(b)](t) :=CBS(X ,K,r, t,b(t)),

where D+ is the set of nonnegative functions over the
intervalI.
For identifying u(t), first we can find uniquelybδ (t)
based on previous theorem corresponding toCδ (t) by the
following nonlinear Nemytskii operator

[N(bδ )](t) :=Cδ
BS(X ,K,r, t,b(t)), (16)
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and then, determineuδ (t) by the following linear Volterra
integral operator

J[uδ ](t) =:
∫ t

0
u(τ)dτ = bδ (t), (17)

such that

‖uδ (t)−u(t)‖L1(I) ≤ δ .

Now for simplifying, we write above linear Volterra
integral equation in the formAu = b, where the operator
A is defined foru by

A[u(τ)] =
∫ t

0
u(τ)dτ = b(t), t ∈ [0,T ], (18)

where u(t) := σ2(t). Then A ∈ L(U), the space of
continuous linear operators fromU ≡ L2[0,T ] to U . We
will assume throughout that the datab(t) is such that
there exists a unique solutionu ∈ U of equation (19) and,
in particular, we require thatb(0) = 0.
The equation (18) is ill-posed, which has serious
implications in the usual case where we only have
available an approximationbδ ∈ U of U . The
ill-posedness means that the solutionuδ of Au = bδ

(when such a solution exists) may be arbitrarily far from
the solutionu of the unperturbed problem. Therefore,
some kind of regularization procedure will be needed to
solve the problem in the case of perturbed databδ (for
more details see [18]). Then the inverse problem of
calibrating the volatility term structureσ(t) from noisy
dataCδ (t) can be expressed as follows:

Inverse Problem. Determining of the time-dependent
volatility function σ(t),(0 < t < T ), under the
assumptions stated above from noisy observations
Cδ (t),(0 < t < T ) of the maturity-dependent fair price
function C(t),(0 < t < T ) in nonlinear forward operator
F(u(t)) =C(t), whereu(t) := σ2(t).

3 Numerical Approach

In this section we describe in greater details the
approximation algorithm adopted in this paper. First using
Newton’s method [10], we find bδ (t) from Cδ (t) in
equation (16) and then we try to obtainuδ (t)
corresponding toCδ (t) from bδ (t) with noise levelδ in
equation (17). In order to solve the equation (17) by
approximation we need to define:
i. The family of basis functions to approximate the
functionu(t).
ii. The interpolation nodes,ti.
According to the assumptions on the volatility function
(bounded over its domain and uniformly Holder
continuous on each compact subset of its domain), it’s

possible to get a finite dimensional approximation ofu(t)
in C[0,T ] by using the least square method [11] as

u(t)⋍ PN(t) =
N

∑
i=0

ciψi(t) (19)

where ci, i = 0,1,2, . . . ,N are real constants for
N = 1,2, . . . and ψi(t)s are a set of orthogonal
functions[11].
The error made by using a polynomial of orderN to
approximate the function givenu(t), can be easily
calculated as:

u(t)−PN(t) =
1

N +1
uN+1(ε)Π N

i=0(t − ti).

this error of the approximation (19) may be further
reduced by adding more functionsψi+1(t), ... to the
pervious set [11]. Coefficientsci, i = 0,1,2, . . . ,N in the
(19) are unknown and if these coefficients are determined,
then we get an estimation foru(t). Our approach can be
justified by appealing to Rivlin’s theorem, stating that
Chebyshev node polynomial interpolants are nearly
optimal polynomial approximants and has been shown to
perform well empirically [12]. Chebyshev nodes over
[0,T ] are as the following

ti =
1
2

T (1+cos(
(2i−1)π

2n
), i = 0,1,2, . . . ,N,

as important as the choice of the nodes interpolants is that
of a family of functions from which the approximantP
will be drawn. We suggest using a Chebyshev
polynomial. The Chebyshev polynomials of the first kind
are as the following

ψi(τ) = Ti(τ) = cos(i.arccos(τ)), i = 0,1,2, . . . ,N.

(20)

For determining coefficientsci, i = 0,1, . . . ,N, we use
Collocation method base on Chebyshev polynomials and
Chebyshev nodes, namely Chebyshev collocation
method.
The Chebyshev collocation method is one of the most
efficient tools for the numerical solution of intertemporal
optimizing. The principle of these methods is that the
solution is represented by a finite Chebyshev series with
unknown coefficients. This expression is substituted into
the equation and the coefficients are determined so that
the equation is satisfied at certain points within the range
under consideration. The number of points is chosen so
that, along with the conditions of equation, there are
enough equations to find the unknown coefficients. The
positions of the points in the range are chosen to make
small the residual obtained when the approximate
solution is substituted into the equation. This residual is
minimized if collocation point were roots of Chebyshev
polynomial. Lanczos in [11] calls this choice of points the
”selected points” principle or the method of collocation.
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By substituting (19) in the (17), for bδ (t), we have the
following equation

bδ (t) =
∫ t

0
(

N

∑
i=0

ciTi(τ))dτ. (21)

Based on Chebyshev collocation method, with considering
Chebyshev nodes over[0,T ] as selected points, we derive
the following linear system

bδ (ti) =
∫ ti

0
(

N

∑
i=0

ciTi(τ))dτ , i = 0,1,2, . . . ,N. (22)

The above mentioned system ofN +1 equations withN +
1 unknown coefficientsci, i = 0,1,2, . . . ,N will be in the
form

Au = b. (23)

where the matrixA and the vectorsu and b are as the
following

A =











∫ t0
0 T0(τ)dτ

∫ t0
0 T1(τ)dτ . . .

∫ t0
0 TN(τ)dτ

∫ t1
0 T0(τ)dτ

∫ t1
0 T1(τ)dτ . . .

∫ t1
0 TN(τ)dτ

...
...

. . .
...

∫ tN
0 T0(τ)dτ

∫ tN
0 T1(τ)dτ . . .

∫ tN
0 TN(τ)dτ











,

u =









c0
c1
...

cN









,b =











bδ (t0)
bδ (t1)

...
bδ (tN)











Since the original the first kind Volterra is ill-posed, the
ill-conditioning of the matrix A in equation (23) still
persists. In other words, the condition number of matrixA
increases dramatically with respect to the total number of
collocation points and therefore most standard numerical
methods cannot achieve good accuracy in solving the
matrix equation (23) due to the bad condition number of
the matrix A. For this purpose, the Tikhonov
regularization method is applied.

4 Tikhonov Regularization Method

In Section2, we showed calibration of the volatility
function in option pricing model is an ill-posed problem.
Therefore the condition number of matrixA in equation
(23) is large compared with the number of collocation
points. Several regularization methods have been
developed for solving an ill-conditional problem [13,14,
15,16,17]. In this work we adapt the Tikhonov
regularization method [18] to solve the resulting matrix
equation (23).
The Tikhonov regularized solution for equation (23) is

defined as the solution of the following least squares
problem:

minu∈U{‖Au−bδ‖2+α2‖u‖2}, (24)

where‖.‖ denotes the Euclidean norm andα is called the
regularization parameter, which controls the trade-of
between fidelity to the data and smoothness of the
solution. Equivalently, the solution is defined as the
solution of the normal equations onU ,

(A∗A+αI)u = bδ
, (25)

where A∗ ∈ L(U) is the (Hilbert) adjoint operator
associated withA. Standard Tikhonov regularization
theory (which is applicable to first-kind Volterra
problems) gives well-known conditions on the selection
of α = α(δ ) so thatuδ

α(δ ) → u in U asδ → 0.
The determination of a suitable value for the
regularization parameterα is crucial and is still under
intensive researches. We apply L-curve and GCV
criterions to choose the regularization parameterα and
compare them.
I. L-curve method. The L-curve is a plot of the squared
estimate norm of the regularized solution‖u‖ against the
squared norm of the regularized residual‖Au− b‖ for a
range of values of regularization parameters. Hansen [14,
15,16,19] proposes to choose the value of the
regularization parameter that corresponds to the point at
the corner of the curve. The corner is defined to be the
point on the L-curve with curvature of largest magnitude.
The name ”L-curve” implies that the shape of the curve
should resemble L letter closely.
II. GCV method. Generalized cross-validation (GCV)
criterion is to choose the regularization parameterα. The
GCV criterion is a very popular and successful method
for choosing the regularization parameter [19]. The GCV
method determines the optimal regularization parameter
by minimizing the following function:

G(α) =
‖Auδ

α −bδ‖2

(trace(I −AAI))2 (26)

whereAI = (AtrA+α2I)−1Atr is a matrix which produces
the regularized solutionuδ

α when multiplied with the right
hand sidebδ , i.e.,uδ

α = AIbδ .
In our computation, we used the MATLAB code
developed by Hansen [13] for solving the discrete
ill-conditioned system of equation (23)

5 Experimental Results

In this section we report numerical results to demonstrate
the accuracy of presented algorithm for calibrating time
dependent volatility function from Call option pricing
model. Since in the real market, we observe only noisy
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option pricesCδ (t) for t ∈ I = [0,T ] instead of fair option
pricesCexact(t), we find an approximation functionuδ (t)
of function uexact(t) corresponding to the noisy data
Cδ (t). In all of studied case a randomly distributed
perturbation δ × randn(N) is added to the
C(ti), i = 0,1,2, . . .N to generating the noisy data in the
form

Cδ (ti) =C(ti)+δ × randn(N); i = 0,1,2, . . . ,N (27)

where δ dictates the level of noise andrandn(.) is a
normal distribution function with zero mean and unit
standard deviation and it is realized using the MATLAB
function rand. Our algorithm is implemented using
MATLAB for testing purpose.
To test the accuracy of the approximate solution, we use
the root mean square error (RMSE) using a weighted
l2−norm as the following:

‖.‖ :=
‖uδ (t)−u(t)‖2

N +1
= (

∑N
i=0(|u

δ (ti)−u(ti)|)2

N +1
)

1
2

whereN +1 is the total number of test points distributed
in the domain[0,T ] and 0≤ ti ≤ T .

Example 1. Consider an 1 year European Call option
with the parameters, risk-free rater = 0.05 per annum,
exercise pricek = 0.5, initial stock priceX = 0.6, the
level of noise δ = 0.001 and the following volatility
function

u(t) = ((t −0.5)2+0.1)2
.

The L-curve plot is shown in Figure1. Figure2 is the
approximation volatility function(without reqularization)
computed using noisy data option pricing compared to the
actually volatility function withN = 10. Figure3 displays
regularized volatility function using Tikhonov
regularization and L-curve criterion compared to actually
volatility function. The RMSE values of volatility
function and condition number of resulting matrix in
different numbers of collocation points can be found in
the Table1.

N Cond(A) RMSE −Tikh RMSE −Unreg

5 1.4053×103 0.0413345 0.358242
10 1.1835×107 0.0060692 1.70217
15 4.1355×1011 0.004197 2.374658
30 1.8506×1018 0.00506602 4.41602

Table 1: Accuracy of solutions in Example1.N indicates number
of collocation points,Cond(A) condition number of resulting
matrix, RMSE −Tikh the root mean square error of regularized
solution andRMSE −Unreg the root mean square error without
regularization.
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Fig. 1: The L-curve plot of Example1 for data with noise level
δ = 10−3.
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Fig. 2: The representation of volatility function in Example1
without regularization.
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Fig. 3: The representation of Tikhonov regularized volatility
function with L-curve criterion in Example1.
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Example 2. Consider an 1 year European Call option
with the parameters,r = 0.05, k = 0.5, X = 0.6,
δ = 0.001 and the following volatility function

u(t) = 0.1+
0.9

1+100(2t −1)2 .

The GCV plot is shown in Figure4. Figure5 is the
volatility function computed using noisy data option
pricing without regularization compared to the exact
volatility function with N = 10. Figure6 displays
regularized volatility function using Tikhonov
regularization and GCV criterion compared to actually
volatility function. The RMSE values of volatility
function and condition number of resulting matrix in
different numbers of collocation points can be found in
the Table2.

N Cond(A) RMSE −Tikh RMSE −Unreg

5 1.4053×103 0.033377 0.768957
10 1.1835×107 0.00725633 1.741534
15 4.1355×1011 0.0092312 45.6294
30 1.8506×1018 0.0817829 16868.6

Table 2: Accuracy of solutions in Example2.N indicates number
of collocation points,Cond(A) condition number of resulting
matrix, RMSE −Tikh the root mean square error of regularized
solution andRMSE −Unreg the root mean square error without
regularization.

The comparison regularization parameters using L-curve
and GCV method for Example1 with the values of RMSE
can be found in Table3. The results shows that all the two
methods (L-curve and GCV) can achieve good solutions
with noise levelδ and RMSE for both examples are very
close.

Method Reg− parameter RMSE

Tikh-L-curve α = 1.10613×10−14 0.004562
Tikh-GCV α = 1.19110×10−14 0.009193

Table 3: The comparison of regularization parameters. Tikh-L-
curve indicates Tikhonov regularization with parameter selection
L-curve and Tikh-GCV indicates Tikhonov regularization with
parameter selection GCV.

6 Conclusion

In this study, we considered the inverse problem of
determining the unknown time dependent function in
option pricing model. The forward operator of the inverse
problem under consideration was decomposed into an
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Fig. 4: The GCV plot of Example2 for data with noise level
δ = 10−3.

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

1.0

ActuallVolatility
UnregularizedVolatility

Fig. 5: The representation of volatility function in Example2
without regularization.
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Fig. 6: The representation of Tikhonov regularized Volatility
function with GCV criterion in Example2.
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inner linear convolution operator and an outer nonlinear
Nemytskii operator given by a Black-Scholes function.
The inversion of the outer operator led to an ill-posed
problem. Using by Chebyshev collocation method, we
discrete outer operator in the form an ill-posed linear
system. The Tikhonov regularization method used for
resolving ill-posedness of system. We checked the ability
of two different methods, GCV and L-curve for
determining the regularization parameter to estimate a
stable solution. Meanwhile, the numerical results showed
that the algorithm designed in this paper is stable and the
coefficient ”volatility function” was recovered very well.

References

[1] F. Black and M. Scholes, The pricing of options and corporate
liabilities, The Journal of Political Economy81, 637-654,
(1973)

[2] Robert C. Merton, Theory of rational option pricing, Bell
Journal of Economics and Management Science4, 141-
183,(1973)

[3] J. Hull, Options, Futures and other Derivatives, Prentice-Hall,
Englewood Cliffs, NJ, (1997).

[4] P. Wilmott, S. Howison, J. Dewenney, The Mathematics
of Financial Derivatives, Cambridge University Press,
Cambridge, UK, (1995).

[5] K. Kwok, Mathematical Models of Financial Derivatives
(Singapore: Springer), (1998).

[6] T. Hein, B. Hofmann, On the nature of ill-posedness of an
inverse problem arising in option pricing, Inverse Problems
19, 1319-1338, (2003).

[7] B. Hofmann, R. Krmer, On maximum entropy regularization
for a specific inverse problem of option pricing, Journal of
Inverse Ill-Posed Problems13, 41-63, (2005).

[8] Cynthia Lester, Xiaoyue Luo, Ruya Huang, On local
regularization for an inverse problem of option pricing,
Applied Mathematics Letters24, 1481-1485, (2011).

[9] D. Tavella, C. Randall, Pricing Financial Instruments -
The Finite Difference Method, John Wiley and Sons, Inc.,
NewYork, (2000).

[10] C. T. Kelley, Solving Nonlinear Equations with Newton’s
Method, no 1 in Fundamentals of Algorithms, SIAM, (2003).

[11] C. Lanczos, Applied analysis, Dover publications (Reprint
of 1956 Prentice-Hall ed.),New York, (1988).

[12] Rivlin, J. Theodore, Chebyshev Polynomials: From
Approximation Theory to Algebra and Number Theory, 2nd
edition, New York: John Wiley and Sons, (1990).

[13] Hansen PC. Regularization tools: A Matlab package for
analysis and solution of discrete ill-posed problems. Numer
Algorithms6, 1-35, (1994).

[14] Hansen PC. Truncated SVD solutions to discrete ill-posed
problems with ill-determined numerical rank. SIAM J Sci
Stat Comput11, 503-18, (1990).

[15] Hansen PC. Analysis of the discrete ill-posed problems by
means of the L-curve. SIAM Rev34, 561-80, (1992).

[16] Hansen PC, OLeary DP. The use of the L-curve in the
regularization of discrete ill-posed problems. SIAM J Sci
Comput14, 1487-503, (1993).

[17] Hanke M, Hansen PC. Regularization methods for large-
scale problems. Surv Math Ind3, 253-315, (1993).

[18] Engl HW, Hanke M, Neubauer A. Regularization of inverse
problems. Mathematics and its applications,357. Dordrecht:
Kluwer Academic Publishers, (1996).

[19] Hansen PC. Rank-deficient and discrete ill-posed problems.
Philadelphia: SIAM, (1998).

c© 2013 NSP
Natural Sciences Publishing Cor.


	Introduction
	Mathematical formulate
	Numerical Approach
	Tikhonov Regularization Method
	Experimental Results
	Conclusion

