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Abstract: We provide new approximation solutions to nonlinear fractional order differential equations with Atangana-Baleanu

operator using the natural variational iteration method in this paper. To confirm the suggested method’s high accuracy, certain specific

instances are given, and the resulting solutions are compared to the exact and analytical data. The findings show that, for lower degree

of approximations, natural variational iteration method converge quickly to accurate solutions of the given problems.
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1 Introduction

There are numerous phenomena in physics, biology, chemistry, engineering, finance, and other applied sciences that
are represented by PDEs. In recent years, there has been a special interest in fractional PDEs, especially nonlinear ones,
because of their influence in many applied sciences, such as diffusion of biological populations, fluid flow, electromagnetic
waves, control theory of dynamical systems, and so on [1,2].

Fractional calculus, a fast-developing branch of mathematics, is the study of the integrals and derivatives of functions
of any order. It has been gaining popularity among scientists working on a range of issues due to the excellent results
gained when different tools from this calculus were utilized to simulate specific real-world situations. What makes this
calculus interesting to learn is the diversity of fractional operators. The range of fractional operators makes it easy to
choose the one that will produce the best results. Fractional calculus has many applications in the field of electrical,
electrochemistry, statistics, and probability [3].

Many sophisticated and efficient approaches have been devised and developed to discover the solutions of fractional
PDEs [3,4,5,6,7,8,9,10,11,12,13,14,15]. Our aim is to present the coupling method of NT and VIM, which is called as
the NVIM, and to used it to solve the fractional-order PDEs.

2 Basic Concepts

Definition 1.[13] Let f ∈ H1(ε1,ε2),ε1 > ε2, the ABC sense for 0 < κ < 1 is

ABCDκ
t ( f (t)) =

B(κ)

1−κ

∫ t

0
f
′
(ϑ)Eκ

(

−κ
(t −ϑ)κ

1−κ

)

dϑ (1)

where B(0) = B(1) = 1.
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Definition 2.[14] The NT is

N( f (t)) = R(u,s) =

∫ ∞

0
e−st f (ut)dt. (2)

The LT can be obtained by the NT by [15],

R(s,u) =
1

u

∫ ∞

0
e−st/u f (t)dt =

1

u
F(

s

u
). (3)

Definition 3.[15] The inverse natural transform of a function is definned by

N−1(R(u,s)) = f (t) =
1

2iπ

∫ p+i∞

p−i∞
est/uR(u,s)dt, s,u > 0, (4)

Lemma 1.Let N( f (t)) is the natural transform of f (t) ,then the natural transform of the fractional derivative with

Atangana-Baleanu operator in caputo sense of f (t) for κ ∈ (0,1) is

N(ABCDκ
t ( f (t))) =

B(κ)

1−κ +κ(
u

s
)κ

(

R(u,s)−
1

s
f (0)

)

. (5)

Proof.From [15], Laplace transform of Atangana-Baleanu-Caputo operator of f (t) is

L(ABCDκ
t ( f (t))) =

B(κ)

1−κ

sκ F(s)− sκ−1 f (0)

sκ +
κ

1−κ

, (6)

after a few simple steps, the following relationship can be obtained

L(ABCDκ
t ( f (t))) =

B(κ)

1−κ +κs−κ

(

F(s)−
1

s
f (0)

)

, (7)

from relation (3) , we get

N(ABCDκ
t ( f (t))) =

B(κ)

1−κ +κ(
u

s
)κ

(

1

u
F(

s

u
)−

1

s
f (0)

)

=
B(κ)

1−κ +κ(
u

s
)κ

(

R(u,s)−
1

s
f (0)

)

.

3 Analysis of the Method

Suppose that FPDE with AB-Caputo operator

ABCDκ
t v(x, t)+L(v(x, t))+M(v(x, t)) = f (x, t), (8)

with initial condition v(x,0) = v0(x),

Applying the NT to (8):

B(κ)

1−κ +κ(
u

s
)κ

(

N(v(t))−
1

s
v(0)

)

= N[ f (x, t)−L(v)−M(v)], (9)

by substituting initial condition of eq.(8)

v̄ =
1

s
v0(x)−

1−κ +κ(
u

s
)κ

B(κ)
N [L(v)+M(v)− f (x, t)] . (10)
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Appling VIM:

v̄n+1 = v̄n +λ



v̄n −
1

s
v0(x)+

1−κ +κ(
u

s
)κ

B(κ)
N[L(vn)+M(vn)− f (x, t)]



 , (11)

where λ is the Lag. mult., since 0 < κ < 1 ,then λ =−1, after applying the inverse of the NT to eq.(11)

vn+1 = v0(x)−N−1





1−κ +κ(
u

s
)κ

B(κ)
N[L(vn)+M(vn)− f (x, t)]



 , (12)

where is the initial iteration is v0(x, t) = v0(x), consequenty, we have

v(x, t) = lim
k→∞

vk(x, t).

4 Convergence Analysis

Now, define the operator A[v] as ,

A[v] =−N−1





1−κ +κ(
u

s
)κ

B(κ)
N[L(vn)+M(vn)− f (x, t)]



 , (13)

and also components wk,k = 0,1,2, ...,

w0 = v0

w1 = A[w0]

w2 = A[w0 +w1]

...

wk+1 = A[w0 +w1 + ...+wk], (14)

as a result, we get

v(x, t) = lim
k→∞

vk(x, t) =
∞

∑
k=0

wk(x, t) (15)

Theorem 1.Let H is a Hilbert space , and A defined in (13) is an operator from H to H.Then the series v = lim
k→∞

vk =

∑
∞
k=0 wk defined in (15) converges if ∃ 0 < δ < 1 s.t ‖wn+1‖ ≤ δ‖wn‖, k = 0,1,2,3, ....

Proof.Define {Sn}
∞
n=0 as ,

S0 = w0

S1 = w0 +w1

S2 = w0 +w1 +w2

...

Sn = w0 +w1 + ...+wn, (16)

now, we prove that {Sn}
∞
n=0 is a Cuchy sequance in the Hilbert space H.

‖Sn+1 − Sn‖= ‖
n+1

∑
i=0

wi −
n

∑
i=0

wi‖= ‖wn+1‖ ≤ δ‖wn‖ ≤ δ 2‖wn−1‖ ≤ ·· · ≤ ‖δ n+1‖w0‖. (17)
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For all n,m ∈ N,n ≥ m,we have

‖Sn − Sm‖ = ‖(Sn − Sn−1)+ (Sn−1 − Sn−2)+ ...+(Sm+1− Sm)‖

≤ ‖Sn − Sn−1‖+ ‖Sn−1− Sn−2‖+ ...+ ‖Sm+1− Sm)‖

≤ δ n‖w0‖+ δ n−1‖w0‖+ ...+ δ m+1‖w0‖

= δ m+1‖w0‖(δ
n−m−1 + δ n−m−2 + ...+ 1)

=
1− δ n−m

1− δ
δ m+1‖w0‖, (18)

since (δ n−m−1 + δ n−m−2 + ...+ 1), is a geometric series and 0 < δ < 1, then lim
n,m→∞

‖Sn − Sm‖= 0.

Therefore ,{Sn}
∞
n=0 is a Cuchy sequance in the Hilbert space H and therefore produces that the series solution v(x, t) =

∑
∞
k=0 wk(x, t), defined in (15) converges.

Theorem 2.Suppose that the series sotution ∑
∞
k=0 wk(x, t) mentioned in (15) is convergent to the solution v(x, t). If

∑
∞
k=0 wk(x, t) is used as an approximation to the solution v(x, t) of problem (8) then the maximum error , Em(x, t) is

estimated as Em(x, t)≤
1

1− δ
δ m+1‖w0‖

Proof.From theorem 1 , inequality (18)

‖Sn − Sm‖ ≤
1− δ n−m

1− δ
δ m+1‖w0‖, (19)

for n ≥ m, now , as n → ∞ then Sn → v(x, t) so ,

‖v(x, t)−
m

∑
k=0

wk‖ ≤
1− δ n−m

1− δ
δ m+1‖w0‖. (20)

Also, sine 0 ≤ δ ≤ 1 we have (1− δ n−m)< 1.
Therefor the above inquality becomes

‖v(x, t)−
m

∑
k=0

wk‖ ≤
1

1− δ
δ m+1‖w0‖. (21)

5 Application

We will solve two linear and non-linear equations and show tables of solution values and graphs to solve the two equations,
we will suppose that B(κ) = 1.

Example 1.Suppose that the linear time-fractional Newell-Whitehead-Segel equation [7] with Atangana-Baleanu-Caputo
operator

ABCDκ
t v(x, t) = vxx(x, t)− 2v(x, t), t > 0, 0 < κ ≤ 1, (22)

with initial condition v(x,0) = ex. Applying the fractional natural transform variational iteration method (FNVIM) to
(22),we get

vn+1 = ex −N−1
([

1−κ +κ(
u

s
)κ
]

N[2vn − vnxx]
)

(23)

Now, we find the approximate solutions as,

v0 = ex,

v1 = ex

(

κ −κ
tκ

Γ (κ + 1)

)

,

v2 = ex −N−1

(

[

1−κ +κ(
u

s
)κ
]

N

[

κex

(

1−
tκ

Γ (κ + 1)

)])

= ex

(

(1−κ +κ2)+ (κ − 2κ2)
tκ

Γ (κ + 1)
κ2 t2κ

Γ (2κ + 1)

)

, (24)
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Thus, the approximate solution of (23) can be written,

v(x, t) = ex

(

(1−κ +κ2)+ (κ − 2κ2)
tκ

Γ (κ + 1)
+κ2 t2κ

Γ (2κ + 1)
+ · · ·

)

, (25)

when choosing κ = 1 in eq.(25), it becames

v(x, t) = ex(1− t +
t2

2!
+ · · ·), (26)

ultimately, the exact solution of equation (22) ,v(x, t) = ex−t .

Example 2.Assuming that the non-linear time-fractional Burger equation [6] with Atangana-Baleanu operator in Caputo
sense

ABCDκ
t v(x, t) = vxx(x, t)− v(x, t)vx(x, t), t > 0, 0 < κ ≤ 1, (27)

with initial condition v(x,0) = x. Applying the fractional natural transform variational iteration method (FNVIM) to
(27),we can obtain

vn+1 = ex −N−1
([

1−κ +κ(
u

s
)κ
]

N[vnvnx − vnxx]
)

(28)

Now, we find the approximate solutions as,

v0 = x,

v1 = x−N−1
([

1−κ +κ(
u

s
)κ
]

N[x]
)

= x

(

κ −κ
tκ

Γ (κ + 1)

)

,

v2 = x−N−1

(

[

1−κ +κ(
u

s
)κ
]

N

[

κex

(

1−
tκ

Γ (κ + 1)

)])

= x

(

(1−κ2 +κ3)+ (2κ2− 3κ3)
tκ

(Γ (κ + 1))2
+ 2κ3 t2κ

Γ (2κ + 1)
−κ3 Γ (2κ + 1)

(Γ (κ + 1))2

t3κ

Γ (3κ + 1)

)

, (29)

Thus, the approximate solution of (27) can be written,

v(x, t) = x

(

(1−κ2+κ3)+ (2κ2− 3κ3)
tκ

(Γ (κ + 1))2
+ 2κ3 t2κ

Γ (2κ + 1)
−κ3 Γ (2κ + 1)

(Γ (κ + 1))2

t3κ

Γ (3κ + 1)
+ · · ·

)

, (30)

when choosing κ = 1 in eq.(30), it becames

v(x, t) = x(1− t + t2 −·· ·), (31)

ultimately, the exact solution of equation (27) ,v(x, t) =
x

1− t
.

6 Conclusion

We used FNVIM with ABFO to evaluate the fractional-order DEs in this work. The present technique is used to
demonstrate the solutions to cases. The FNVIM result closely resembles the precise solution to the provided issues. The
convergence of the fractional-order answers to integer-order solutions was confirmed by a graphical examination of the
results. Furthermore, the proposed method is clear, simple, and low-cost to implement; it may be extended to solve
additional fractional-order PDEs.
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