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Abstract: We addressed a mathematical model for Streptococcus Suis, an uncommon infectious illness that is contaminated, in the

current paper. The pig infection that eventually infects people is the source of the illness Streptococcus suis. This disease manifests in a

highly severe form in human transmissions, with the potential for both significant sickness and death. Seven population groups (some

from human populations and some from pig populations as well) have been examined in this article. We have analysed and studied

the given mathematical model of the illness using the Riemann Liouville’s fractional derivative and Laplace transformation. Using a

graphical representation of the solutions, we have also confirmed their existence and oneness.
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1 Introduction and Background

These days, one of the serious issues on the planet is zoonotic microorganism like SARS, pandemic flu H1N1, Avian flu,
West Nile infection and Novel Coronavirus [1,2,3]. Streptococcus Suis is a disease which is generally tracked down in
pigs all over the planet. This microorganism is primarily found in the swine’s upper respiratory tract, genitalia, and
intestinal areas [4,5]. The primary expert of septic and encephalitis in swine is the Gram-positive, shaped bacterium
known as Suis [6,7]. Sickness can spread from one swine to another in a farm very quickly. Streptococcus suis has been
reported to cause roughly 20 percent of pig deaths. Serotypes 1 to 31, 33, and 1 can all be grouped together under this
category [8,9,10]. Pigs are typically found to have serotypes 1 through 9 and 14 all around the world. The primary
human who contracted Streptococcus suis was located in Denmark in 1968. Suis can transfer from pigs to people, as the
current situation indicates. Serotype 2 is taken into account because it is frequently found in human diseases, however
occasionally the contaminations are caused by serotypes 4,5,9,14,16,21,24, and 31 [11,12,13,14]. Fever, migraines,
meningitis, septicemia, joint pain, pneumonia, and hearing loss are typical adverse symptoms of this virus. The
numerical display became a crucial tool for illustrating the components of the infection in order to stop the spread of the
disease. They can make a number of assumptions about how the illness will behave in the future. The model’s
arrangements can be recreated while still adhering to the restrictions from the conjecture. As of late, numerous numerical
models have been utilized to portray the way of behaving of the irresistible infection. The evenness and unevenness ideas
can be connected to the plague model [15,16,17,18]. The proposed models consider the transmission on pigs as it were.
Nonetheless, there has been an absence of exploration thinking about the sickness transmission among pigs and people.
In current article, we are going to analyze the problem with the help of mathematical modeling ([19,20,21,22,23]) and
fractional calculus. Mathematical modeling is the essential tool in today’s scenario for forecasting the impact and
consequences of different factors. Modeling is widely being used in many fields including medical field, engineering
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sector, production sector etc. The best and recent example is prediction of covid 19. When modeling is used together
with fractional calculus then it explains many typical phenomenon very well. Fractional calculus has vast background
and explains its advantage and existence quite well. In recent time, extensive research is going on with the help of
fractional calculus since it is attracting many researchers, scientists as well. fractional calculus is much in demand just
because of the fact that we can analyze the behaviour of different factors affecting the problem, at very micro level and
we can forecast as accurate as possible. In this article, we have put up a numerical model to represent how Streptococcus
suis spreads across humans and swines. We have separated the number of inhabitants in pigs and people in 4 and 3
subclasses, separately. We have additionally taken a look at the presence and security of the arrangement of the model.

2 Preliminaries

In this segment, we are going to give brief information about the basic definitions of the operator and transformation used
in the paper-

2.1 Riemann-Liouville’s fractional operator

The Riemann-Liouville’s fractional operator is explained below-

RLDα
x { f (x)}=

1

Γ (n−α)

dn

dxn

x
∫

0

(x− y)n−α−1
f (y)dy (1)

where α is the order of the derivative and 0 < α < 1.

2.2 Laplace Transform

The Laplace transformation ([24]) is one of the important transform in mathematics. It usually converts the system to
algebraic system which is easily solvable. The Laplace transform of f (t) is represented by L{ f (t)} and is explained as:

L{ f (t)}=

∞
∫

0

e−st f (t)dt, s > 0. (2)

2.3 Laplace transform of Riemann-Liouville’s fractional operator

The Laplace transform of the Riemann-Liouville’s fractional operator of order α is defined below:

L
[

RLDα
t { f (t)}

]

= sα F(s)−
n−1

∑
k=0

sn−k−1
[

DkIn−α f (t)
]

t=0
, n− 1 < α < n (3)

or sometimes we also used the following definition too-

L
[

RLDα
t { f (t)}

]

= sα F(s)− sα−1 f (0). (4)

The paper is organized as follows; fragment 1 arrangements with the start of the issue, area 2 contains the
pre-requirements, Section 3 is having the proposed mathematical model, portion 4 deals with the uniqueness and
existence of the solution, segment 5 contains the numerical solution of the model by Laplace transform. Section 6
contains the stability analysis of the model while segment 7 is having mathematical and graphical conversation part. Last
section manages the end and gauging of the issue.
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3 Mathematical Model

In this section, we’ll describe the hypothetical [25,26,27,28,29,30] scheme for how the Streptococcus Suis disease
spreads to humans and pigs. We suggest the SIQR-SIR model as an alternative summary model of Streptococcus suis
contamination in light of the outdated study of disease transmission model [31,32]. There are some ecological facts, such
as temperature and relative humidity. As a result, we think about how the air’s humidity affects the spread of disease in
the pig ranch. There are two subpopulations within the studied population. These are the populations of pigs and people.
Then, four and three subclasses are established for the two subpopulations of swines and humans, respectively. These are
pig defenseless class (Sp), pig irresistible class (Ip), pig confined class (Qp), pig recuperation class (Rp), human
susceptible class (Sh), human irresistible class (Ih) and human recuperation class (Rh) . We anticipate that N(t) is whole
public at time t,

Sp(t)+ Ip(t)+Qp(t)+Rp(t) = Np(t), (5)

and
Sh(t)+ Ih(t)+Rh(t) = Nh(t). (6)

Furthermore,

Sp(t)+ Ip(t)+Qp(t)+Rp(t)+ Sh(t)+ Ih(t)+Rh(t) = Nh(t)+Np(t) = N(t) (7)

If the total population of humans is Nh and whole inhabitants of pigs is Np at time t. Now, we may formulate dynamic
connections for Np(t) and Nh(t) as follows:

dNp(t)

dt
=

dSp(t)

dt
+

dIp(t)

dt
+

dQp(t)

dt
+

dRp(t)

dt
, (8)

dNh(t)

dt
=

dSh(t)

dt
+

dIh(t)

dt
+

dRh(t)

dt
. (9)

This disease in swine can be depicted by β1(1)MSpIp and new contamination in human can be portrayed by β2(1)ShIp +
β3(1)ShIh here each diseased pig in the susceptible class has a transmission coefficient per unit of time of β1(1), and each
member of the susceptible class who comes into contact with infected pigs has a transmission coefficient per unit of time
of β2(1). The amount of moisture in the air is M, and the transmission coefficient per person in susceptible class in contact

with infected is β3(1). We also presume that a pig cannot contract the sickness from a human. All boundaries are supposed
to be positive throughout the entire article. The following arrangement of differential equations can be used to address the
model of sickness transmission by Streptococcus suis:

dSp

dt
= N1 − b1Sp −β1(1)MSpIp, (10)

dIp

dt
= β1(1)MSpIp − a1Ip − b1Ip − δ1Ip, (11)

dQp

dt
= δ1Ip − a1Qp − b1Qp − ε1Qp, (12)

dRp

dt
= ε1Qp − b1Rp, (13)

dSh

dt
= N2 −β2(1)ShIp −β3(1)ShIh − µ1Sh, (14)

dIh

dt
= β2(1)ShIp +β3(1)ShIh −α1Ih − γ1Ih − µ1Ih, (15)

dRh

dt
= γ1Ih − µ1Rh. (16)

where b1 is the ejection rate for pigs, a1 is the ejection rate brought on by illness, the rate in pigs from the enticing
class to the disconnected class is δ1, ε1 is the rate of infection from detached class to recovered class, µ1 is average
mortality rate for humans, the mortality rate attributable to sickness is α1, and the rate at which an infectious class
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transmits information to a recovery class is γ1. The model is legitimate provided that a1 ≤ b1 and α1 ≤ µ1. Sp(0), Ip(0),
Qp(0), Rp(0), Sh(0), Ih(0) and Rh(0) denote the underlying population, for instance at time t=0. The upsides of populace
classes Sp(t), Ip(t),Qp(t),Rp(t),Sh(t), Ih(t),Rh(t) at time t are non-negative values. Now, we define a new model based
on Riemann- Liouville’s fractional differential operator, also we see that the RHS of the system has the unit (dimension)
time−1 but we have changed the derivative order to α , so the dimension at the LHS of system becomes time−α . To
overcome this mismatching, we have modified our system in following way:

RLDα
t

{

Sp

}

= N1 − bα
1 Sp −β α

1(1)
MSpIp

RLDα
t

{

Ip

}

= β α
1(1)

MSpIp − aα
1 Ip − bα

1 Ip − δ α
1 Ip

RLDα
t

{

Qp

}

= δ α
1 Ip − aα

1 Qp − bα
1 Qp − εα

1 Qp
RLDα

t

{

Rp

}

= εα
1 Qp − bα

1 Rp
RLDα

t {Sh}= N2 −β α
2(1)ShIp −β α

3(1)ShIh − µα
1 Sh

RLDα
t {Ih}= β α

2(1)ShIp +β α
3(1)ShIh −αα

1 Ih − γα
1 Ih − µα

1 Ih

RLDα
t {Rh}= γα

1 Ih − µα
1 Rh











































(17)

Further, for the sake of convenience, we have replaced the power terms by some other constant where bα
1 = b, β α

1(1) = β1,

aα
1 = a, δ α

1 = δ , εα
1 = ε , β α

2(1)
= β2, β α

3(1)
= β3, µα

1 = µ , αα
1 = α and γα

1 = γ . Then the system reduces to:

RLDα
t

{

Sp

}

= N1 − bSp−β1MSpIp
RLDα

t

{

Ip

}

= β1MSpIp − aIp− bIp− δ Ip
RLDα

t

{

Qp

}

= δ Ip − aQp− bQp − εQp
RLDα

t

{

Rp

}

= εQp − bRp
RLDα

t {Sh}= N2 −β2ShIp −β3ShIh − µSh
RLDα

t {Ih}= β2ShIp +β3ShIh −αIh − γIh − µIh
RLDα

t {Rh}= γIh − µRh







































(18)

where 0 < α < 1.

4 Existence and Uniqueness of the Solution

Theorem 1 Define k1, k2, k3, k4, k5, k6 and k7 for the given system of equations and also find their relationships.
Proof Since we have the system defining the Streptococcus Suis as given below:

RLDα
t

{

Sp

}

= N1 − bSp−β1MSpIp
RLDα

t

{

Ip

}

= β1MSpIp − aIp− bIp− δ Ip
RLDα

t

{

Qp

}

= δ Ip − aQp− bQp − εQp
RLDα

t

{

Rp

}

= εQp − bRp
RLDα

t {Sh}= N2 −β2ShIp −β3ShIh − µSh
RLDα

t {Ih}= β2ShIp +β3ShIh −αIh − γIh − µIh
RLDα

t {Rh}= γIh − µRh







































(19)

Now, applying the fundamental theorem of calculus, we have:

Sp(t)− Sp(0) =
RLIα

t [N1 − bSp−β1MSpIp] ,
Ip(t)− Ip(0) =

RLIα
t [β1MSpIp − aIp− bIp− δ Ip] ,

Qp(t)−Qp(0) =
RLIα

t [δ Ip − aQp− bQp − εQp] ,
Rp(t)−Rp(0) =

RLIα
t [εQp − bRp] ,

Sh(t)− Sh(0) =
RLIα

t [N2 −β2ShIp −β3ShIh − µSh] ,
Ih(t)− Ih(0) =

RLIα
t [β2ShIp +β3ShIh −αIh − γIh − µIh] ,

Rh(t)−Rh(0) =
RLIα

t [γIh − µRh] .



































(20)

Now, considering the one equation at a time, we have:

Sp(t)− Sp(0) =
RLIα

t [N1 − bSp−β1MSpIp] ,
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or

Sp(t)− Sp(0) =
1

Γ α

x
∫

0

{

N1 − bSp−β1MSpIp

}

(x−υ)α−1
dυ ,

or

Sp(t) = Sp(0)+
1

Γ α

x
∫

0

{

N1 − bSp−β1MSpIp

}

(x−υ)α−1
dυ .

Let us consider the following kernel;

k1 = N1 − bSp−β1MSpIp, (21)

Similarly, we can find the other kernels as well, given below:

k2 = β1MSpIp − aIp− bIp− δ Ip, (22)

k3 = δ Ip − aQp− bQp − εQp, (23)

k4 = εQp − bRp, (24)

k5 = N2 −β2ShIp −β3ShIh − µSh, (25)

k6 = β2ShIp +β3ShIh −αIh − γIh − µIh, (26)

and

k7 = γIh − µRh. (27)

Theorem 2 Establish that all kernels i.e. k1, k2, k3, k4, k5, k6 and k7 satisfy the Lipschitz condition [33,34].
Proof Initially, we will prove the Lipschitz condition for k1. Now suppose that Sp and Sp1

are two functions, then

∥

∥k1(t,Sp)− k1(t,Sp1
)
∥

∥=
∥

∥(N1 − bSp−β1MSpIp)− (N1 − bSp1
−β1MSp1

Ip)
∥

∥ ,

∥

∥k1(t,Sp)− k1(t,Sp1
)
∥

∥=
∥

∥−bSp−β1MSpIp + bSp1
+β1MSp1

Ip

∥

∥ ,

∥

∥k1(t,Sp)− k1(t,Sp1
)
∥

∥=
∥

∥b(Sp1
− Sp)+β1MIp (Sp1

− Sp)
∥

∥ ,

∥

∥k1(t,Sp)− k1(t,Sp1
)
∥

∥=
∥

∥(Sp1
− Sp)(b+β1MIp)

∥

∥ ,

∥

∥k1(t,Sp)− k1(t,Sp1
)
∥

∥≤
∥

∥(Sp1
− Sp)

∥

∥

∥

∥(b+β1MIp)
∥

∥ ,

∥

∥k1(t,Sp)− k1(t,Sp1
)
∥

∥≤ H
∥

∥(Sp1
− Sp)

∥

∥ ,

where
∥

∥(b+β1MIp)
∥

∥≤ H. In the same way, we get

∥

∥k2(t, Ip)− k2(t, Ip1
)
∥

∥=
∥

∥(β1MSpIp − aIp− bIp− δ Ip)− (β1MSpIp1
− aIp1

− bIp1
− δ Ip1

)
∥

∥ ,

or
∥

∥k2(t, Ip)− k2(t, Ip1
)
∥

∥=
∥

∥−β1MSp (Ip1
− Ip)+ a(Ip1

− Ip)+ b(Ip1
− Ip)+ δ (Ip1

− Ip)
∥

∥ ,

∥

∥k2(t, Ip)− k2(t, Ip1
)
∥

∥=
∥

∥(Ip1
− Ip)(a+ b+ δ −β1MSp)

∥

∥ ,

∥

∥k2(t, Ip)− k2(t, Ip1
)
∥

∥≤
∥

∥(Ip1
− Ip)

∥

∥

∥

∥(a+ b+ δ −β1MSp)
∥

∥ ,
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∥

∥k2(t, Ip)− k2(t, Ip1
)
∥

∥≤ H1

∥

∥(Ip1
− Ip)

∥

∥ ,

where
∥

∥(a+ b+ δ −β1MSp)
∥

∥≤ H1.
In the same manner, we get other expressions as well

∥

∥k3(t,Qp)− k3(t,Qp1
)
∥

∥≤ H2

∥

∥(Qp1
−Qp)

∥

∥ ,

where ‖(a+ b+ ε)‖ ≤ H2.

∥

∥k4(t,Rp)− k4(t,Rp1
)
∥

∥≤ H3

∥

∥(Rp1
−Rp)

∥

∥ ,

where ‖b‖ ≤ H3.

∥

∥k5(t,Sh)− k5(t,Sh1
)
∥

∥≤ H4

∥

∥

(

Sh1
− Sh

)∥

∥ ,

where
∥

∥(β2Ip +β3Ih + µ)
∥

∥≤ H4.

∥

∥k6(t, Ih)− k6(t, Ih1
)
∥

∥≤ H5

∥

∥

(

Ih1
− Ih

)∥

∥ ,

where ‖(α + γ + µ −β3Sh)‖ ≤ H5,

and
∥

∥k7(t,Rh)− k7(t,Rh1
)
∥

∥≤ H6

∥

∥

(

Rh1
−Rh

)
∥

∥ .

where ‖µ‖ ≤ H6.

Now, consider the recursive relation, given as follows:

Sp(n)(t) = Sp(0)+
1

Γ α

x
∫

0

k1

(

υ ,Sp(n−1)

)

(x−υ)α−1
dυ, (28)

Suppose that Un(t) = Sp(n)(t)− Sp(n−1)(t) So,

Un(t) =
1

Γ α

x
∫

0

k1

(

υ ,Sp(n−1)

)

(x−υ)α−1
dυ −

1

Γ α

x
∫

0

k1

(

υ ,Sp(n−2)

)

(x−υ)α−1
dυ,

Un(t) =
1

Γ α

x
∫

0

{

k1

(

υ ,Sp(n−1)

)

− k1

(

υ ,Sp(n−2)

)}

(x−υ)α−1
dυ .

Taking norms both sides, we have

‖Un(t)‖=
1

Γ α

∥

∥

∥

∥

∥

∥

x
∫

0

{

k1

(

υ ,Sp(n−1)

)

− k1

(

υ ,Sp(n−2)

)}

(x−υ)α−1
dυ

∥

∥

∥

∥

∥

∥

,

or

‖Un(t)‖=
1

Γ α

x
∫

0

[

∥

∥

{

k1

(

υ ,Sp(n−1)

)

− k1

(

υ ,Sp(n−2)

)}∥

∥

∥

∥

∥
(x−υ)α−1

∥

∥

∥

]

dυ .

Since k1 satisfies Lipschitz condition,

‖Un(t)‖=
1

Γ α
H

x
∫

0

∥

∥Sp(n−1)− Sp(n−2)

∥

∥

∥

∥

∥
(x−υ)α−1

∥

∥

∥
dυ . (29)

In the same manner, we can find other expressions too,

‖Vn(t)‖=
1

Γ α
H1

x
∫

0

∥

∥Ip(n−1)− Ip(n−2)

∥

∥

∥

∥

∥
(x−υ)α−1

∥

∥

∥
dυ , (30)

c© 2024 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 10, No. 1, 119-135 (2024) / www.naturalspublishing.com/Journals.asp 125

‖Wn(t)‖=
1

Γ α
H2

x
∫

0

∥

∥Qp(n−1)−Qp(n−2)

∥

∥

∥

∥

∥
(x−υ)α−1

∥

∥

∥
dυ , (31)

‖Tn(t)‖=
1

Γ α
H3

x
∫

0

∥

∥Rp(n−1)−Rp(n−2)

∥

∥

∥

∥

∥
(x−υ)α−1

∥

∥

∥
dυ , (32)

‖Xn(t)‖=
1

Γ α
H4

x
∫

0

∥

∥Sh(n−1)− Sh(n−2)

∥

∥

∥

∥

∥
(x−υ)α−1

∥

∥

∥
dυ , (33)

‖Yn(t)‖=
1

Γ α
H5

x
∫

0

∥

∥Ih(n−1)− Ih(n−2)

∥

∥

∥

∥

∥
(x−υ)α−1

∥

∥

∥
dυ , (34)

and

‖Zn(t)‖=
1

Γ α
H6

x
∫

0

∥

∥Rh(n−1)−Rh(n−2)

∥

∥

∥

∥

∥
(x−υ)α−1

∥

∥

∥
dυ . (35)

Theorem 3 Prove that the disease model with fractional order is a minimum system of Streptococcus Suis model.
Proof Since, we can see that equations (29)-(35) are bounded and we have also shown that kernels satisfy Lipschitz
condition, so the following results are obtained from the equations (29)-(35) using the iterative technique:

‖Un(t)‖ ≤
∥

∥Sp(0)
∥

∥+

{

1

αΓ α
Htα

}n

,

‖Vn(t)‖ ≤
∥

∥Ip(0)
∥

∥+

{

1

αΓ α
H1tα

}n

,

‖Wn(t)‖ ≤
∥

∥Qp(0)
∥

∥+

{

1

αΓ α
H2tα

}n

,

‖Tn(t)‖ ≤
∥

∥Rp(0)
∥

∥+

{

1

αΓ α
H3tα

}n

,

‖Xn(t)‖ ≤ ‖Sh(0)‖+

{

1

αΓ α
H4tα

}n

,

‖Yn(t)‖ ≤ ‖Ih(0)‖+

{

1

αΓ α
H5tα

}n

,

and

‖Zn(t)‖ ≤ ‖Rh(0)‖+

{

1

αΓ α
H6tα

}n

.

Hence, the existence of solution is checked and which is found to be continuous. So, we have

Sp(t) = Sp(n)(t)+Pn(t),

Ip(t) = Ip(n)(t)+Bn(t),

Qp(t) = Qp(n)(t)+Cn(t),

Rp(t) = Rp(n)(t)+Dn(t),

Sh(t) = Sh(n)(t)+En(t),
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Ih(t) = Ih(n)(t)+Fn(t),

and

Rh(t) = Rh(n)(t)+ Jn(t),

where Pn(t), Bn(t),Cn(t), Dn(t), En(t), Fn(t)and Jn(t) are the reminder terms of the series solutions. So,

Sp(t)− Sp(n)(t) =
1

Γ α

x
∫

0

k1

(

υ ,Sp(n)

)

(x−υ)α−1
dυ ,

or

Sp(t)− Sp(n)(t) =
1

Γ α

x
∫

0

k1 (υ ,Sp −Pn(υ)) (x−υ)α−1
dυ ,

or

Sp(t)− Sp(0)−
1

Γ α

x
∫

0

k1 (υ ,Sp) (x−υ)α−1
dυ = Pn(t)+

1

Γ α

x
∫

0

k1 (υ ,Sp −Pn(υ))(x−υ)α−1
dυ .

Now

∥

∥

∥

∥

∥

∥

Sp(t)− Sp(0)−
1

Γ α

x
∫

0

k1 (υ ,Sp) (x−υ)α−1
dυ

∥

∥

∥

∥

∥

∥

≤ ‖Pn(t)‖+

{

1

αΓ α
Htα

}

‖Pn(t)‖ .

Now taking n → ∞, we get

Sp(t) = Sp(0)+
1

Γ α

x
∫

0

k1 (υ ,Sp) (x−υ)α−1
dυ . (36)

We can conclude that the provided system’s solution exists since we can also discover the other expressions in a similar
manner.

Theorem 4 Show that the given system of equation representing the disease has a unique solution.
Proof Let’s assume that the given system has another set of solutions in order to demonstrate the solution’s uniqueness.
As we are only demonstrating the system’s initial equation at this time, suppose that Sp(1)(t) be another solution, hence

Sp(t)− Sp(1)(t) =
1

Γ α

x
∫

0

{

k1 (υ ,Sp)− k1

(

υ ,Sp(1)

)}

(x−υ)α−1
dυ .

Now, taking norms both sides, we have

∥

∥Sp(t)− Sp(1)(t)
∥

∥=
1

Γ α

x
∫

0

∥

∥k1 (υ ,Sp)− k1

(

υ ,Sp(1)

)
∥

∥

∥

∥

∥
(x−υ)α−1

∥

∥

∥
dυ ,

Now using Lipschitz condition, we have

∥

∥Sp(t)− Sp(1)(t)
∥

∥<

{

1

αΓ α
Htα

}n

,

which is true for all n, so Sp(t) = Sp(1)(t), Ip(t) = Ip(1)(t), Qp(t) = Qp(1)(t), Rp(t) = Rp(1)(t), Sh(t) = Sh(1)(t),
Ih(t) = Ih(1)(t) and Rh(t) = Rh(1)(t).
Hence, it shows that system has a unique solution.
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5 Solution of the Model by Using Laplace Transformation

We are having the mathematical model denoting the disease Streptococcus Suis as follows. In this section, we are going
to apply the Laplace transform [33,34,35,36] in our modified disease system for the mathematical analysis ([30,37,38,
39]) of the system.
Now changing the derivatives to Riemann Lioville’s fractional derivatives, we have

RLDα
t

{

Sp

}

= N1 − bSp −β1MSpIp,
RLDα

t

{

Ip

}

= β1MSpIp − aIp− bIp − δ Ip,
RLDα

t

{

Qp

}

= δ Ip − aQp − bQp− εQp,
RLDα

t

{

Rp

}

= εQp − bRp,
RLDα

t {Sh}= N2 −β2ShIp −β3ShIh − µSh,
RLDα

t {Ih}= β2ShIp +β3ShIh −αIh − γIh − µIh,
RLDα

t {Rh}= γIh − µRh.

(37)

Since we know that

L
{

RLDα f (t)
}

= sα F(s)− sα−1 f (0)

where 0 < α < 1.

Now applying Laplace transform both sides,

L
[

RLDα
t

{

Sp

}]

= L
{

N1 − bSp−β1MSpIp

}

,

L
[

RLDα
t

{

Ip

}]

= L
{

β1MSpIp − aIp− bIp− δ Ip

}

,

L
[

RLDα
t

{

Qp

}]

= L
{

δ Ip − aQp− bQp − εQp

}

,

L
[

RLDα
t

{

Rp

}]

= L
{

εQp − bRp

}

,

L
[

RLDα
t {Sh}

]

= L
{

N2 −β2ShIp −β3ShIh − µSh

}

,

L
[

RLDα
t {Ih}

]

= L
{

β2ShIp +β3ShIh −αIh − γIh − µIh

}

,

and

L
[

RLDα
t {Rh}

]

= L{γIh − µRh} .















































(38)

Hence, from the first equation of the system, we have

L
[

RLDα
t

{

Sp

}]

= L
{

N1 − bSp−β1MSpIp

}

,

doing some simplifications, we get

F(s) =
Sp(0)

s
+

1

sα
L
{

N1 − bSp−β1MSpIp

}

.

Now, again applying inverse Laplace transform both sides,

Sp = Sp(0)+L−1

[

1

sα
L
{

N1 − bSp−β1MSpIp

}

]

.

Similarly, from the second equation of the system, we have

L
[

RLDα
t

{

Ip

}]

= L
{

β1MSpIp − aIp− bIp− δ Ip

}

,

or

F(s) =
Ip(0)

s
+

1

sα
L
{

β1MSpIp − aIp− bIp− δ Ip

}

.

Now taking the inverse Laplace transform both sides, we get

Ip = Ip(0)+L−1

[

1

sα
L
{

β1MSpIp − aIp− bIp− δ Ip

}

]

.

In the same way, we get the remaining expressions,
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Qp = Qp(0)+L−1

[

1

sα
L
{

δ Ip − aQp− bQp − εQp

}

]

,

Rp = Rp(0)+L−1

[

1

sα
L
{

εQp − bRp

}

]

,

Sh = Sh(0)+L−1

[

1

sα
L
{

N2 −β2ShIp −β3ShIh − µSh

}

]

,

Ih = Ih(0)+L−1

[

1

sα
L
{

β2ShIp +β3ShIh −αIh − γIh − µIh

}

]

,

and

Rh = Rh(0)+L−1

[

1

sα
L{γIh − µRh}

]

.

6 Stability Analysis of Model

Theorem 1 Deduce the equilibrium points [40,41,42,43,44] of the model.
Proof We know that the equilibrium points of the system can be found be equating the equations to zero, so

N1 − bSp−β1MSpIp = 0
β1MSpIp − aIp− bIp− δ Ip = 0
δ Ip − aQp − bQp− εQp = 0
εQp − bRp = 0
N2 −β2ShIp −β3ShIh − µSh = 0
β2ShIp +β3ShIh −αIh − γIh − µIh = 0
γIh − µRh = 0



































(39)

By above system, we obtain equilibrium points given below, they are-
(1) Disease free equilibrium point

E1 =

(

N1

b
,0,0,0,

N2

µ
,0,0

)

(40)

(2) Swine disease free equilibrium point

E2 =

(

N1

b
,0,0,0,

A

β3

,
β3N2 − µA

β3A
,

γ

µ

β3N2 − µA

β3A

)

(41)

here A = α + γ + µ and remember that E2 exists provided that β3N2 − µA ≥ 0.
(3) Endemic equilibrium point

E3 =
(

S∗p, I
∗
p,Q

∗
p,R

∗
p,S

∗
h, I

∗
h ,R

∗
h

)

(42)

where S∗p =
B

β1M
, I∗p =

β1MN1−bB

β1BM
, Q∗

p =
δ I∗p

(a+b+ε) , R∗
p =

εδ I∗p
b(a+b+ε) ,

I∗h = 1
2β3A

(

X +
√

X2 + 4Aβ2β3N2I∗p

)

, S∗h =
N2

β2I∗p+β3I∗
h
+µ and

R∗
h =

γI∗h
µ where X = β3N2 −A

(

β2I∗p + µ
)

, B = a+ b+ δ .

Note that E3 exists only when β1MN1 − bB ≥ 0.

Theorem 2 The disease free point E1 is locally asymptotically stable if β3N2 < µA and β1MN1 < bB.
Proof The Jacobian matrix of the given system at E1 is-

J1 =























−b − β1MN1
b

0 0 0 0 0

0
β1MN1

b
−B 0 0 0 0 0

0 δ −(a+ b+ ε) 0 0 0 0
0 0 ε −b 0 0 0

0 − β2N2
µ 0 0 −µ − β3N2

µ 0

0
β2N2

µ 0 0 0
β3N2

µ −A 0

0 0 0 0 0 γ −µ























(43)
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The eigenvalues of J1 are

λ1 = λ2 =−b, λ3 = λ4 =−µ , λ5 =−(a+ b+ ε) , λ6 =
β1MN1

b
−B

and λ7 =
β3N2

µ −A.

Note that λ6 and λ7 are only negative when β1MN1 < bB and β3N2 < µA. Hence the disease free equilibrium of the
model is locally asymptotically stable when β1MN1 < bB and β3N2 < µA.

Theorem 3 The pig disease free point E2 is locally asymptotically stable if β3N2 > µA and β1MN1 < bB.
Proof The Jacobian matrix of the given system at E2 is-

J2 =























−b − β1MN1

b
0 0 0 0 0

0
β1MN1

b
−B 0 0 0 0 0

0 δ −(a+ b+ ε) 0 0 0 0
0 0 ε −b 0 0 0

0 − β2A

β3
0 0 − β3N2

A
−A 0

0
β2A

β3
0 0

β3N2

A
− µ 0 0

0 0 0 0 0 γ −µ























(44)

The corresponding Eigen values are

λ1 = λ2 =−b, λ3 =−µ , λ4 =−(a+ b+ ε) , λ5 =
β1MN1

b
−B,

λ6 =

−β3N2
A +

√

β2
3

N2
2

A2 −4µA

(

β3N2
µA −1

)

2

and λ7 =

−β3N2
A −

√

β2
3

N2
2

A2 −4µA

(

β3N2
µA −1

)

2
.

From here, we see that λ5 is negative if β1MN1 < bB and λ6, λ7 have negative real part when β3N2 > µA. Hence the pig
disease free equilibrium of the model is local asymptotically stable if β1MN1 < bB and β3N2 > µA.

Theorem 4 Endemic equilibrium E3 is locally asymptotically balanced if β3N2 < µA and β1MN1 > bB.
Proof The Jacobian matrix of the given system at E3 is-

J3 =



















−b−Ψ1 −Ψ2 0 0 0 0 0
Ψ1 Ψ2 −B 0 0 0 0 0
0 δ −(a+ b+ ε) 0 0 0 0
0 0 ε −b 0 0 0
0 −β2S∗h 0 0 −Ψ3 − µ −β3S∗h 0
0 β2S∗h 0 0 Ψ3 β3S∗h −A 0
0 0 0 0 0 γ −µ



















(45)

where Ψ1 =
β1MN1

B
− b, Ψ2 = B and Ψ3 =

−β2(β1MN1−Bb)
β1MB

+β3I∗h .

The corresponding Eigen values are

λ1 =−b, λ2 =−µ , λ3 =−(a+ b+ ε) , λ4 =
−
[

β1M
(

I∗p − S∗p
)

+B+ b
]

+Y1

2

λ5 =
−
[

β1M
(

I∗p − S∗p
)

+B+ b
]

−Y1

2
, λ6 =

−
[

β2I∗p +β3

(

I∗h − S∗h
)

+A+ µ
]

+Y2

2

and

λ7 =
−
[

β2I∗p +β3

(

I∗h − S∗h

)

+A+ µ
]

−Y2

2

where Y1 =
√

[

β1M
(

I∗p − S∗p
)

+B+ b
]2
− 4

[

β1M
(

BI∗p − bS∗p
)

+Bb
]

and Y2 =
√

[

β2I∗p +β3

(

I∗h − S∗h

)

+A+ µ
]2
− 4

[

β2AI∗p +β3AI∗h + µ
(

A−β3S∗h

)]

From above, it is clear that λ4 and λ5 have negative real part if β1MN1 > bB and λ6 and λ7 have negative real part if
β3N2 < µA. Therefore, the system is local asymptotically stable under the given conditions.
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7 Numerical Analysis of Model

During the numerical analysis of the proposed model, we have used some numeric values of the populations and the
parameters used. The values are given in the following table [45,46]:

S.N. Symbol Detail Numeric Value

1 Sp(0) Initial Pig susceptible 4057

2 Sh(0) Initial Human susceptible 50000

3 Ip(0) Initial Infected Pigs 1000

4 Ih(0) Initial Infected Humans 1000

5 Qp(0) Initial Isolated Pigs 0

6 Rp(0) Initial Recovered Pigs 0

7 Rh(0) Initial Recovered Humans 0

8 α Death rate by disease 0.9

9 β1 Trans.Coeff./unit time/pig contact with infected 0.000365

10 β2 Trans.Coeff./unit time/soul contact with infected pig 0.1

11 β3 Trans.Coeff./unit time/soul prone contact with infected 0.000465

12 N1 The recruitment rate of lone into swine farm 3275

13 N2 The recruitment rate of lone in humans 500

14 a Pig Death Rate by Disease 0.9

15 b Pig Removal Rate 0.75

16 µ Human natural death rate 0.9

17 γ Trans. rate from infectious class to recovery class 0.9

18 M Moisture in air 0.9

19 δ Rate from Infection class to Isolated class in pigs 0.9

20 ε Trans. rate from isolated class to recovery class 0.9

Table 1: Table with initial value and parameters

Now, using the above data into our proposed model, we got numerical results and by using these results, we plot different
graphs representing the mathematical situations of the different factors at different order of system. The figures are given
as below:
From these obtained results, we can see that human recovery rate is much faster than the pig recovery rate while human
infection is going down rapidly while pig infection is going higher side. At the point when we see the mathematical and
graphical solutions, we observe that our outcomes are more sensible in current situation. Thus, we can state that this illness
is more irresistible in pigs when contrasted with people.

8 Conclusion

We have define and studied the Streptococcus Suis fractional model with Riemann-Liouville fractional operator and also
proved the existence and uniqueness of their solution. We also calculated their numerical and graphical solutions as well.
When we studied the numerical solutions, we found that our results are more realistic and closer results in current
scenario. So, we can conclude that this disease is more infectious in pigs as compared to humans. We have constructed a
mathematical model using the SIQR model, which only takes into account the pig population, to forecast the disease
transmission of Streptococcus suis between pigs and humans. The SIQR-SIR model, which describes the epidemiology
of Streptococcus suis transmission between pigs and humans, is studied.

References

[1] K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman and P. Daszak, Global trends in emerging infectious

diseases, Nature 451(7181), 990-993, (2008).

[2] F. Li and L. Du, MERS coronavirus: an emerging zoonotic virus, Viruses 11(7), 663 (2019).

[3] J. S. Mackenzie and D. W. Smith, COVID-19: a novel zoonotic disease caused by a coronavirus from China: what we know and

what we don’t, Microbio. Australia 41(1), 45-50 (2020).

c© 2024 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 10, No. 1, 119-135 (2024) / www.naturalspublishing.com/Journals.asp 131

Fig. 1: Graph of pig susceptible w. r.t. time t, for α= 0.5, 0.7 and 0.9

Fig. 2: Graph representing pig infection with respect to time t, for α= 0.5, 0.7 and 0.9

[4] Z. R. Lun, Q. P. Wang, X. G. Chen, A. X. Li and X. Q. Zhu, Streptococcus suis: an emerging zoonotic pathogen, Lancet Infect.

Dis. 7(3), 201-209 (2007).

[5] H. J. Huh, K. J. Park, J. H. Jang, M. Lee, J. H. Lee, Y. H. Ahn and N. Y. Lee, Streptococcus suis meningitis with bilateral

sensorineural hearing loss, Korean J. Lab. Med. 31(3), 205-211 (2011).

[6] Y. Feng, H. Zhang, Z. Wu, S. Wang, M. Cao, D. Hu and C. Wang, Streptococcus suis infection: an emerging/reemerging challenge

of bacterial infectious diseases?, Virulence 5(4), 477-497 (2014).

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


132 Awatif Muflih Alqahtani and Manvendra Narayan Mishra: Mathematical Analysis of Streptococcus...

Fig. 3: Graph of pig isolated with respect to time t, for α= 0.5, 0.7 and 0.9

Fig. 4: Graph showing pig recovery with respect to time t, for α= 0.5, 0.7 and 0.9
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