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Abstract: The Hamiltonian formulation for higher derivatives is reformulated using fractional derivatives. More precisely, the
extended Maxwell-Chern—Simons Lagrangian density is reformulated using the Riemann-Liouville fractional derivative. The
equations of motion resulting from the extended Maxwell-Chern—-Simons Lagrangian density are obtained. Furthermore, the
Hamiltonian of the system is constructed. When fractional derivatives are replaced by integer order derivatives, the classical results are
obtained.
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1 Introduction

Fractional derivatives, which have many applications in physics, science, engineering, control, economics, mechanics, and
other fields, can be viewed as a generalization of classical calculus[1,2,3,4]. Actually, recently, physicists have applied
a fractional derivatives approach in order to deal with problems that cannot be solved by classical methods. Therefore,
fractional calculus appears as one of the most influential and commonly applicable methods for describing and explaining
a set of complicated physical systems. [5,6,7]. Generally, higher derivative theories are an essential field in theoretical
physics. Higher derivative theories were first proposed to remove infinities associated to point particles [8]. They can
enhance ultraviolet features in quantum field theories [9]. Furthermore, they have been obtained from string theory [10]
and non commutative theory [11] and have been utilized in electrodynamics[12], dark energy physics[13], and Lee-Wick
models [14].

The extended Maxwell-Chern—Simons model is an attractive instance of higher derivative field theory [15] [16].
Generally, the Maxwell-Chern—Simons theory is a (2+1) dimensional field model, which defines charged fermions
interactions with each other and with topologically massive propagating photons [17].

The fractional derivatives method was used by Jarab’ah and Nawafleh[18] to investigate nonconservative systems with
second order Lagrangian. They obtained the fractional Hamilton’s equations for nonconservative systems. The generated
equations were similar to fractional Euler— Lagrange equations.

Alawaida et al.[19] developed the Hamiltonian formulation of continuous field systems with third order using the
fractional derivatives method. They generated the fractional Euler and fractional Hamilton equations for these systems
from the fractional variational principle. In addition, Al-Oqali [20] reformulated Podolsky’s Lagrangian density in
fractional form using the Riemann—Liouville fractional derivative. He gained the equations of motion using the fractional
Euler-Lagrange equation. The Hamiltonian and the energy stress tensor are also generated in fractional form from the
Lagrangian density.

The remainder of this paper is organized as follows: Section 2 presents some basic definitions of fractional
derivatives. In Section 3, the Hamiltonian formulation of higher derivative field theories is reformulated using the
Riemann-Liouville fractional derivative. In Section 4, the fractional form of the Euler-Lagrange equation of the
extended Maxwell-Chern—Simons Lagrangian density is obtained. In section 5, the Hamiltonian density of the extended
Maxwell-Chern—Simons model in fractional form is constructed. Finally, Section 6 is devoted to the paper’s conclusion.
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2 Definitions of fractional derivatives

In this section, we briefly present some basic definitions utilized in this work. The left and right Riemann-Liouville
fractional derivative is defined as [21]:

The left Riemann—Liouville fractional derivative

1 d\" _
anf(x)Zm (a) /a (x—7)""**f(z)de e
The right Riemann-Liouville fractional derivative
o 1 —d\" [* n—o+1
Dy flx) = Th—a) \dx /a (T—x) f(z)dr. 2

where o represents the order of the derivative such that n — 1 < @ < n and I" represents the gamma function. If « is
an integer, these derivatives are defined in the usual sense, i.e.:

2210 = () s ®
DI (x) = <%>nf<t> “)

3 The Hamiltonian formulation of higher derivative field theories with Riemann-Liouville
fractional derivative

In this section, we will refomulate the generalized Euler—Lagrange equation, the generalized energy—momentum tensor,
and the Hamiltonian density of higher derivative theories using fractional derivatives [22].

Let us start with a Lagrangian

L(9,.D5, 0,005, D5, 0o Dt Dk .. .D ¢) (5)

na— xy ra xu]a xuz"'a xﬂN

Which for simplicity we consider to be a function of a scalar field and to depend on a finite number of N derivatives.
In this case, the action function corresponding to the above Lagrangian is given by

k k k (6)
Dt Dt ...DF ¢)

a xu]a xuz"'a xﬂN

The generalized Euler—Lagrange equation in fractional form is obtained by following the typical approach of
extremizing the action.

W —aDx, (8(aD§“¢)> + alxyaDx, (a(anmancvd))) -
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n nk k k _
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and the generalized energy—momentum tensor in the same way
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The Hamiltonian density in fractional form, which corresponds to the component 7", is now given by

W“DXO(P_
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H=—L+
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4 The fractional form of the Euler-Lagrange equation of the Extended
Maxwell-Chern-Simons Lagrangian density

As an example of a Lagrangian with a higher derivative, let us consider the Lagrangian for the extended
Maxwell-Chern—Simons model in 2+1 dimensions in the Lorentz gauge, which was proposed by Reyes [8]

—1 8 K Lok 4uy2

L = Fu P! Ee“f"V(DAa)anﬁAy— 5 (D5, AY) (10)

where A, is the four-vector potential, Fy,y = ,D¥ AY — DX A" is a four dimension antisymmetric second rank tensor,
y v

Nuv=diag (1,-1,1) spacetime metric raises and lowers the indices, £?PY the Levi-Civita tensor, fully antisymmetric, is

given by £°1?=1, and the constant g > 0 being a coupling coefficient of the Chern-Simons term.
To reformulate the extended Maxwell-Chern—Simons Lagrangian density in fractional form, we first define the
relations

aD)lgy = (aD;{mD)]g,-)?aD)]iﬂ = (anv_aD)]:i) (]])
A° = (¢5A)7 Ag = (¢57A) (12)

In fractional form, the Euler—Lagrange equation for such a Lagrangian density is given by

9L (92 ).
dAs 7\ 3(,DE Aq)

Y
k k —
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The first term Ay = 0. The second term in Eq. (13) may be evaluated as follows:
A _
(D%, Ac)
— pro 4 EeaBr(ma,) 5t 80 — 1f_9d
2 GBI 2\ 9(,DE Ag)
[n““,aDl;yAlulnvv,aDivAvl] (14)
= —rho 4 et () -

1
En,u,u/nvwwlSG Dk AV/+53“66 Dk“A,u/] (15)

u Curaxy via™x,

which can be rewritten as
— _F)LO' + ggalc(DAa)_

1
Sm*e,Dh,AY+ 077,k A (16)

2 a— Xy

= —F*7 4 2"49(0Aq) — 17, D) A" (17

a .X“
It follows that

%L
k _ _ pk pic
anl (a( Dk Ag)) anAF +

a—Xxy

(18)
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Similarly, the third term in Eq. (13) may be obtained as follows:

0. B J
a(aDl;yaD,lélAO') a(aDl;yaDl;lAO')

which can be simplified to

8
($e%7,0% DhcAa ) DAy (19)

= e refsy5g ol Ay (20)
_ %g“ﬁyn“AanﬁAy 1)

then we have

07
k k —
any anl (a(aDk DﬁaAo‘) )

Xpa

8 Loy, uA
28

a“xya~x)a

Dk Dk D’;BAy (22)
Substituting Egs. (18 and 22) into Eq. (13), we get

Dk F)Lc_ggalo Dk (DAG)—FT,AG Dk Dk Au+
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DY FH gsalc(DAa)aDﬁlAanL

%P7, D, Dk, DA Ay 24)

aZxhax)azxg

+,D% Dt AF =0

a= Xy

Dk PR =200 (749, Dk, Ao — P, Dl Ay ) +

Do Dy, A* =0 (25)

Setting A = y and o = B in the term SaanDﬁlAa in Eq. (25). This lead to following:

a=xp

Dt Fre-20 (P70,Dk a5 — P, DI Ay) +
DYs DX AR =0 (26)
a—xva x“
Dk, P40 (eP7o,Dk 45— eP7, Dl Ay) +

Do Dy, A =0 (27)

using the definition of the field strength tensor Fp, = Dk Ay— anyA > Eq. (27) can be written as:

aXﬁ

a—x)

k A 8 k ok
Dt F G+§g°BYDFﬁy+anoanﬂA“ =0 (28)

The above equation represents the fractional form of the modified Maxwell equations. It’s worth pointing out that for
k — 1, Eq. (28) simplifies to the usual Maxwell equation:

0, F*0 ¢ %s"ﬁVDFM+ 99 (9.A) =0 (29)
Equation (28) can be rewritten as follows, see appendix A.

(no + ge7P®) (Oq) =0 (30)

5 The Hamiltonian formulation of the Extended Maxwell-Chern—Simons Model with the
Riemann-Liouville fractional derivative

Consider A (x) and JDFA  as two independent configuration field variables with their corresponding conjugate momenta
defined by

Pt = 73% — Dt It = 7‘2"% 31
a(aDtA,U) a(aDtaDlA#)
By using Eq. (17), we can write the conjugate momenta IT* as
0¥ g
(- — ShBY pk
= aioh oy 25 Py ¢y
which reads in components
0.% g o
H(): :_OU DkA 33
a(ananA“) 28 a— Xxj J ( )
' = %gl’f (anA - aD’;.AO) (34)
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and the conjugate momenta P* is given by

0L D"< 9. >
- 9(DiA) T\ (DfDfA)

a

By making use of Eq. (17), we obtain

aZ 0 8
7 o O Sp00u Y
9 DiA,) e 04

or

0¥ g
7 _FOu_ S ou0a A Y
2 DfA,) 2o ()

Setting o¢ = 7y in the second term of Eq. (37), we get
0%

I DfAy)

Substituting Eqgs. (38 and 32) into Eq. (35), we get

8
== _F% _ ESMOV(DAy) —n (aD)’ijY)

g
P = —po L enr(uay) - (DL, AY) -

a = Xy

which read in components

8
PO — _p00 _ ESOOV(DAy) — 00 ( Dk Ay) _

a = Xy

0 k 8 ij Hk k
P :—(aDXyAV)—Es” DX D A;

a“xija™x

pi— o _ gsiOy(DAy) B nOi( Dk Ay) B

a .Xff)/
8 i k k
Eglﬁyanﬁan[AY
P = Fy+ S€li(0A,) — £ Dk pka
*OIJFZE( 7) 28 a“xgaty

Eq. (43) can be rewritten as

P = Fy+ %e”’ (0A4;) — gs"OYananAr

P = Fy+ %gif(DA D+ geol'fananAy—

(35)

™ (kA7) G6)

Xy

1K ( Dk AV) (37)

a = Xy
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or
P = Fyi + gs”(DA N+ %e'fanFjo

The Hamiltonian density is given by
H = PH DFA, +TTM . DF DFA, — &

Taking into account Egs. (10 and 32), then the Hamiltonian density in fractional form is

A = PO, DAy + P! DFA+

g 1o 1, .
EguﬁyaDﬁﬁAYaD;{aD;{Aﬂ - E (FOJ) + - (EJ) -

4

1
S e9PY(Ca), Dk Ay + 5 (oD%, A"

a = Xy

By using the relation [JA = an aD{‘ — 72 Eq. (48), simplified to

1

» Lo .
H =P DfAy+ P DiA = 5 (Foj)* + 5 (Fj)*+

2

8 LaBy
Se
2

The second term in Eq. (49) can be written as

I = 581[37 D Ay — 581] (anjAO 7aDtAj)

a Xﬁ
or 5
k i Ty k
aD[Aj = —ge”H’ +anjA0
k 2 i k
aDIAi = §8 I1 +aniA()
Multiply both sides of Eq. (52) by P!, we get
. 2
P .DkA; = gg’fP’Hf +P',Df Ay
or 5
Pl DA, = geijPiHj — P D Ag
The third term in Eq. (49) can be expressed as

Hi = %8” (anAj _aD)IngO) = %81']1:‘0]‘

It follows that 5 5
(Foi)* = 4(IT)* \ (&%)
The fourth term in Eq. (49) can be written in the following way:

ggaﬁy (VZAOC) aDiﬁAY — ggoﬁy (VZAO) aDI;ﬁAy+

= gsij (V*Ao) DA+

a = xj

8 LiBy
—&
2

2

2

(VA

Dk

axﬁ

(46)

(47)

) @

1 2
(V*Aa) DhyAr+5 (DhA") " @9)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

Ay (57)
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= €7 (V7Ao) JDhA; + €V (oD% 40— D4 A )
(V?Ai)  (59)
= 86l (2A0) ,DFA; — S (Ryj) (TPAs 60
=58 (V?Ao) JDLA; € (Foj) (V°Ai) (60)
Inserting Eq. (55) into Eq. (60), we get
ggaﬁ}’ (VzAOC) aD)lzﬁAY - %‘SU (VQAO) aD)Ig,'Aji
IT; (7°A;) - (61)

Substituting Egs. (54, 56, and 61) into Eq. (49), the Hamiltonian density can be written as

2 i 2(I)*
%”:POanAoJrgS”P,'ijPiaD)];Ajf L) +

(&%)
1 N
i (Fj)* + %8” (V?A0) DLA; — T (V°A) +

2(han) @

6 Conclousion

In this work, the Hamiltonian formulation for higher derivatives has been reformulated using fractional derivatives. For
higher order derivatives, the extended Maxwell-Chern—Simons Lagrangian density is refomulated in fractional form using
the Riemann-Liouville fractional derivative. The fractional form of the Euler—Lagrange equation and the Hamiltonian
density of these systems are obtained. The classical results are obtained when fractional derivatives are replaced by integer
order derivatives.

Appendix A: The Derivation of Equation (30):
We can write Eq. (28) as

8
Db, (DA% = Do) 4 D D A4 + S P

O (aD)’EﬁAyf aD)’gyAﬁ) =0 (A1)
The above equation can be rearranged as:

DA — Do D, A* 4 Do DE AF + %g“ﬁy

Sa™xy
D( Dt Ay—anyAﬁ) =0 (A2)

axl;

The second and third terms cancel after changing a dummy index from pto A. This leaves us with
8 k k
n°*CAq + S eP10 ( DAy~ anyAﬁ) =0 (A3)

a

using SUﬁCSGﬁa = 65, we rewrite Eq. (A.3) as:

NCAq+ $eP1e7P e 5,00 (Dl Ay — D Ap)
—0 (A4)
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or
n°*0Aq + g (e“ﬁ“aDiﬁAa - scﬁo‘anﬁaAﬁ) —0 (A.5)

let ¢ — B and B — « in the term £°P “aD)’EaA p of the above equation, we get
n°“Oa+ 50 (£9P, D% A + 7P, Dl Aq) =0 (A6)

It follows that
(nca +g86l3aaD§B) JAg =0 (A7)
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paper.
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