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Abstract: A family of decompositions {G0,G1, ...,Gk−1} of a complete bipartite graph Kn,n is a set of k mutually orthogonal graph

squares (MOGS) if Gi and G j are orthogonal for all i, j ∈ {0,1, ...,k−1} and i 6= j. For any subgraph G of Kn,n with n edges, N(n,G)
denotes the maximum number k in a largest possible set {G0,G1, ...,Gk−1} of MOGS of Kn,n by G. In this paper we compute some new

extensions of the well-known N(n,G)≥ 3, using a novel approach, where G represents disjoint unions of certain small trees subgraphs

of Kn,n.
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1 Introduction

In this paper, Km,n denotes to the complete bipartite graph
with partition sets of sizes m and n. Furthermore, Pn for
the path on n vertices, sG for s disjoint copies of G and Kn

for the complete graph on n vertices. We have shown that,
there exist mutually orthogonal graph squares (MOGS) of
complete bipartite graphs by disjoint union of graphs
using orthogonal squares. For thus reason, (MOGS) is
referred to as an extended mutually orthogonal Latin
squares (MOLS). It is well-known that orthogonal Latin
squares exist for every n /∈ {2,6}. A family of k

orthogonal Latin squares of order n is a set of k Latin
squares any two of which are orthogonal. It is customary
to denote N(n) =Max{k : ∃k MOLS} by the maximal
number of squares in the largest possible set of MOLS of
side n. In [1] display the fundamental result of (MOLS),
That is N(n,nK2) = N(n) = n − 1, where n is a prime
power. An edge decomposition of Kn,n by nK2 ≃ nK1,1 is
equivalent to a Latin square of side n, two edge
decompositions G and F of Kn,n by nK1,1 are orthogonal
if and only if the corresponding Latin squares of side n

are orthogonal; thus N(n,nK1,1) = N(n). The
computation of N(n) is one of the most complicated
problems in combinatorial designs; see the survey articles
by Abel et al. [2] and Colbourn and Dinitz in [3]. It is

clear that N(n,G) is a natural generalization of N(n).
Many authors studied MOGS of Kn,n by G, where
G 6= nK2 ( see the survey articles [4],[5],[6]). The two sets
{00,10, ...,(n − 1)0} and {01,11, ...,(n− 1)1} denote the
vertices of the partition sets of Kn,n. If there is no chance
of confusion, we will write (x,y) instead of {x0,y1} for
the edge between the vertices x0 and y1, see any row in
Figure 1.

2 Materials and Discussion

In the following, We now provide the basic definitions of
a G−Square over additive group Zn. We will represent the
graph G f by function f : Zn → Zn.. We define E(G f ) =
{(x, f (x)) : x ∈ Zn} . Note that the page of G f has the
property that υ (x) = 1 (degree of x)for all x ∈Zn.. That is,
it represents unions of stars which has the same direction.
In El-Shanawany (see [6]) give the formal definitions of
the terms of subgraph of Kn,n induced by a function over
additive group Zn as the follow,

Definition 1.Let G be a subgraph of Kn,n. Let f : Zn →Zn.

Then G is called f−starter if E(G) = ∪x∈Zn
(x; f (x)).

Definition 2.Let G be a f−starter graph, and let

β ∈ Zn..Then the graph G f + β with edge
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E(G f + β ) =
{

(x, f (x)+β ) : (x, f (x)) ∈ E(G f )
}

is

called the (β , f )−translate of G f .

Definition 3.If G is a f− starter graph, then the union of

all translates of G f forms an edge decomposition of Kn,n

i.e. ∪β∈Zn
E
(

G f +β
)

= E (Kn,n).

In the next, we introduce now the formal basic
definitions of a G−Square over additive group Zn.

Definition 4. (see [6]) Let G be a subgraph of Kn,n. A

square matrix L of order n is called a G−square if every

element in Zn occur exactly n times and the graphs

Gα ,α ∈ Zn with

E(Gα) = {(x,y) : L(x,y) = α;x,y ∈ Zn} are isomorphic

to graph G.

For an edge decomposition Gi we may associate
bijectively a n× n−square with entries belonging to Zn

denoted by Li = Li(x,y),0 ≤ i ≤ k− 1;x,y ∈ Zn with

Li(x,y) = α ⇔ (x,y) ∈ E(Gα ,i),α ∈ Zn. (1)

Similar to Definition4, we define:

Definition 5.(see [6]) Let i, j be different positive

integers. Two square matrices Li and L j of order n are

said to be orthogonal if for any ordered pair (a,b), there

is exactly one position (x,y) for Li(x,y) = a, and

L j(x,y) = b.That is, the two graph squares have the

property that, when superimposed, every ordered pair

occurs exactly once.

In [6] El-Shanawany presented an immediate result
of the Definition 4, N(3,K2 ∪ K1,2) = 3. Define the
3 mutually orthogonal (K2 ∪ K1,2)−squares of order 3 (
i.e. 3 mutually orthogonal decompositions
(MODs) o f K3,3 by K2 ∪K1,2) as follows:

M0 =





0 1 2
2 0 1
2 0 1



 , M1 =





0 1 2
1 2 0
0 1 2



 , M2 =





0 1 2
0 1 2
1 2 0



 .

As an immediate consequence of the Definition 4 and
the Equation 1, we will illustrate the following example.

Example 1.The subgraph G ≃ K2 ∪ K1,2 of K3,3 is a
f−starter graph G f induced by the function f : Z3 → Z3

defined by f (x) = x2 + sx, for all s,x ∈ Z3 as shown in
figure 1. Note that every row in figure 1 represents edge
decompositions of K3,3 by (K2 ∪K1,2). That is equivalent
Ms squares,s = 0,1,2.

Fig. 1: MODs G f = K1 ∪K1,2, of K3,3 induced by the function f

w.r.t. Z3.

3 Results and discussion

In this section, we use starter functions method to give
some new direct constructions for N(n,G) = k ≥ 3, where
G represent a disjoint unions of certain small trees of Kn,n.

Let p a prime number, Let f−starter function of
subgraph G of Kp,p with p edges, N(p,G f ) denotes the
maximum number k in a largest possible set
{G0,G1, ...,Gk−1} of MOGS of Kp,p by G f . For all
x,y ∈ Zp. Let Ls(x,y) = j, where y = f (x)+ sx+ j, for all
0 ≤ s ≤ k− 1, j ∈ Zp. Since j = y− f (x)− sx, then we
can write

Ls(x,y) = y− f (x)− sx. (2)

It is easily verified that for all different 0 ≤ s,r ≤ k − 1
the pair (Ls;Lr) is orthogonal for all x,y ∈ Zp under the
condition:

(Ls(x,y),Lr(x,y)) = (y− f (x)− sx ,y− f (x)− rx) . (3)

Theorem 1.N(11,K1,3 ∪2K1,2 ∪4K2)≥ 10

Proof.Let f (x) = (x + 1)4 be the starter function of the
subgraph (K1,3 ∪2K1,2 ∪4K2) of K11,11. From the
equation 1, 2, we have (K1,3 ∪2K1,2 ∪4K2)−Squares Ls

of order 11 which is defined as follows:

Ls(x,y) = y− f (x)− sx, for all 1 ≤ s ≤ 10. (4)

That is mean, there exist 10 MODs of K11,11

by (K1,3 ∪2K1,2 ∪4K2) . Applying Definition 5, it is
easily to see that for all different 1 ≤ k,r < 10 the
pair(Lk;Lr) is orthogonal under the condition

(Lk(x,y),Lr(x,y)) = (y− f (x)−kx ,y− f (x)− rx) , ∀x,y ∈ Z11
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We prove that the page obtained from the entries in L1 equal

to zero is isomorphic to
(

K1,3 ∪2K1,2 ∪4K2

)

. Also, a similar

argument can be applied to the other pages in L1,L2, ...,L10. It is

clear that every row contains one zero, there is exactly 1 column

has 3 zeros, 2 columns have 2 zeros, 4 columns have one

zero, 4 columns have no zeros. That is, for all x ∈ Z11, all

vertices x0 have degree one. There is exactly 1 vertex x1 has

degree 3, exactly 2 vertices x1 have degree 2, 4 vertices have

degree one, and exactly 4 vertices have degree zero.

As a direct construction of this theorem for s = 1,2 in
4 is the following to Squares Ls of order 11.

L1 =

































10 0 1 2 3 4 5 6 7 8 9
5 6 7 8 9 10 0 1 2 3 4
5 6 7 8 9 10 0 1 2 3 4
5 6 7 8 9 10 0 1 2 3 4
9 10 0 1 2 3 4 5 6 7 8
8 9 10 0 1 2 3 4 5 6 7
2 3 4 5 6 7 8 9 10 0 1
0 1 2 3 4 5 6 7 8 9 10
9 10 0 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9 10 0
1 2 3 4 5 6 7 8 9 10 0

































,

L2 =

































10 0 1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 10 0 1 2 3
3 4 5 6 7 8 9 10 0 1 2
2 3 4 5 6 7 8 9 10 0 1
5 6 7 8 9 10 0 1 2 3 4
3 4 5 6 7 8 9 10 0 1 2
7 8 9 10 0 1 2 3 4 5 6
4 5 6 7 8 9 10 0 1 2 3
1 2 3 4 5 6 7 8 9 10 0
3 4 5 6 7 8 9 10 0 1 2
2 3 4 5 6 7 8 9 10 0 1

































,

Theorem 2.N(13,K1,4 ∪3K1,2 ∪3K2)≥ 4.

Proof.Let f (x) = (x + 1)4 be the starter function of the
subgraph (K1,4 ∪3K1,2 ∪3K2 ) of K13,13. From the
equation 1, 2, we have (K1,4 ∪3K1,2 ∪3K2 )−Squares Ls

of order 13 which is defined as follows:

Ls(x,y) = y− f (x)− sx, for all s ∈ {1,5,8,12}. (5)

that is mean, there exist 4 MODs of K13,13

by (K1,4 ∪3K1,2 ∪3K2) . Applying Definition 5, it is
easily to see that for all different k,r ∈ {1,5,8,12}. the
pair(Lk;Lr) is orthogonal under the condition

(Lk(x,y),Lr(x,y)) = (y− f (x)−kx ,y− f (x)− rx) , ∀x,y ∈ Z13

We prove that the page obtained from the entries in L1 equal

to zero is isomorphic to
(

K1,4 ∪3K1,2 ∪3K2

)

. Also, a similar

argument can be applied to the other pages in L1,L5,L8,L12. It

is clear that every row contains one zero, there is exactly one

column has 4 zeros, three columns have two zeros, three

columns have one zero, and six columns have no zeros. That is,

for all x ∈ Z13, all vertices x0 have degree one. There is exactly

one vertex x1 has degree 4, exactly 3 vertices x1 have degree

two, exactly 3 vertices have one degree, and exactly 6 vertices

have degree zeros.

As a direct construction of this theorem for s = 1,5 in
5 is the following to Squares Ls of order 13.

L1 =









































12 0 1 2 3 4 5 6 7 8 9 10 11
9 10 11 12 0 1 2 3 4 5 6 7 8
8 9 10 11 12 0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8 9 10 11 12 0
8 9 10 11 12 0 1 2 3 4 5 6 7
12 0 1 2 3 4 5 6 7 8 9 10 11
11 12 0 1 2 3 4 5 6 7 8 9 10
5 6 7 8 9 10 11 12 0 1 2 3 4
9 10 11 12 0 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9 10 11 12 0
0 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 0
1 2 3 4 5 6 7 8 9 10 11 12 0









































,

L5 =









































12 0 1 2 3 4 5 6 7 8 9 10 11
5 6 7 8 9 10 11 12 0 1 2 3 4
0 1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 0 1
5 6 7 8 9 10 11 12 0 1 2 3 4
5 6 7 8 9 10 11 12 0 1 2 3 4
0 1 2 3 4 5 6 7 8 9 10 11 12
3 4 5 6 7 8 9 10 11 12 0 1 2
3 4 5 6 7 8 9 10 11 12 0 1 2
4 5 6 7 8 9 10 11 12 0 1 2 3
12 0 1 2 3 4 5 6 7 8 9 10 11
9 10 11 12 0 1 2 3 4 5 6 7 8
5 6 7 8 9 10 11 12 0 1 2 3 4









































.

Theorem 3.N(13,K1,3 ∪2K1,2 ∪6K2)≥ 6.

Proof.Let f (x) = (x3 + 1)5 be the starter function of the
subgraph (K1,3 ∪2K1,2 ∪6K2) of K13,13. From the equation
1,2, we have (K1,3 ∪2K1,2 ∪6K2)−Squares Ls of order 13
which is defined as follows:

Ls(x,y) = y− f (x)−sx, for all s ∈ {2,4,5,6,10,12 } (6)

That is mean, there exist 6 MODs of K13,13

by (K1,3 ∪2K1,2 ∪6K2) . Applying Definition 5. It is
easily to see that for all different
k,r ∈ {2,4,5,6,10,12 } the pair (Lk;Lr) is orthogonal
under the condition

(Lk(x,y),Lr(x,y)) = (y− f (x)−kx ,y− f (x)− rx) , ∀x,y ∈ Z13.

We prove that the page obtained from the entries in L2 equal to

zero is isomorphic to
(

K1,3 ∪2K1,2 ∪6K2

)

. Also, a similar

argument can be applied to the other pages in

L2,L4,L5, ..,L12. It is clear that every row contains one zero,

there is exactly one column have 3 zeros, 2 columns have two

zero, exactly 6 columns have one zeros, and 4 columns have no
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zeros. That is, for all x ∈ Z13, all vertices x0 have degree one.

There is exactly 1 vertex x1 has degree 3, exactly 2 vertices

x1 have degree two, exactly 6 vertices x1 have degree one, and 4

columns have degree zero.

As a direct construction of this theorem for s = 2,4 in
6 is the following to Squares Ls of order 13.

L2 =









































12 0 1 2 3 4 5 6 7 8 9 10 11
5 6 7 8 9 10 11 12 0 1 2 3 4
6 7 8 9 10 11 12 0 1 2 3 4 5
1 2 3 4 5 6 7 8 9 10 11 12 0
5 6 7 8 9 10 11 12 0 1 2 3 4
0 1 2 3 4 5 6 7 8 9 10 11 12

11 12 0 1 2 3 4 5 6 7 8 9 10
10 11 12 0 1 2 3 4 5 6 7 8 9
8 9 10 11 12 0 1 2 3 4 5 6 7
2 3 4 5 6 7 8 9 10 11 12 0 1
6 7 8 9 10 11 12 0 1 2 3 4 5
2 3 4 5 6 7 8 9 10 11 12 0 1
2 3 4 5 6 7 8 9 10 11 12 0 1









































,

L4 =









































12 0 1 2 3 4 5 6 7 8 9 10 11
3 4 5 6 7 8 9 10 11 12 0 1 2
2 3 4 5 6 7 8 9 10 11 12 0 1
8 9 10 11 12 0 1 2 3 4 5 6 7

10 11 12 0 1 2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10 11 12 0 1 2

12 0 1 2 3 4 5 6 7 8 9 10 11
9 10 11 12 0 1 2 3 4 5 6 7 8
5 6 7 8 9 10 11 12 0 1 2 3 4

10 11 12 0 1 2 3 4 5 6 7 8 9
12 0 1 2 3 4 5 6 7 8 9 10 11
6 7 8 9 10 11 12 0 1 2 3 4 5
4 5 6 7 8 9 10 11 12 0 1 2 3









































.

Theorem 4.N(17,K1,3 ∪4K1,2 ∪6K2)≥ 16.

Proof.Let f (x) = (x + 1)4 be the starter function of the
subgraph (K1,3 ∪4K1,2 ∪6K2) of K17,17. From the equation
1, 2, we have (K1,3 ∪4K1,2 ∪6K2)−Squares Ls of order 17
which is defined as follows:

Ls(x,y) = y− f (x)− sx, for all 1 ≤ s ≤ 16. (7)

That is mean, there exist 16 MODs of K17,17

by (K1,3 ∪4K1,2 ∪6K2) . Applying Definition 5, it is
easily to see that for all different 1 ≤ k,r < 16 the
pair (Lk;Lr) is orthogonal under the condition:

(Lk(x,y),Lr(x,y)) = (y− f (x)−kx ,y− f (x)− rx) , ∀x,y ∈ Z17

We prove that the page obtained from the entries in L1 equal to

zero is isomorphic to
(

K1,3 ∪4K1,2 ∪6K2

)

. Also, a similar

argument can be applied to the other pages in

L1,L2,L3, ..,L16. It is clear that every row contains one zero,

there is exactly one column have 3 zeros, 4 columns have two

zero, exactly 6 columns have one zeros, and 6 columns have no

zeros. That is, for all x ∈ Z17, all vertices x0 have degree one.

There is exactly 1 vertex x1 has degree 3, exactly 4 vertices

x1 have degree two, exactly 6 vertices x1 have degree one, and 6

columns have degree zero.

As a direct construction of this theorem for s = 1,2 in
7 is the following to Squares Ls of order 16.

L1 =



























































16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1

13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7

7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6

11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10

10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9

4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3

3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2

10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9

4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3

8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7

4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0



























































,

L2 =



























































16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9

13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12

3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0

4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1

12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11

10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9

16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8

12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11

7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6

3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1



























































.

4 conclusion

In conclusion, we can summarize our results in the following

table:

n G N(n,G)
11 K1,3 ∪2K1,2 ∪4K2 ≥ 10

13 K1,4 ∪3K1,2 ∪3K2 ≥ 4

13 K1,3 ∪2K1,2 ∪6K2 ≥ 6

17 K1,3 ∪4K1,2 ∪6K2 ≥ 16

.

Furthermore, we conjecture that obtain superior outcomes to

those in the above table.
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