# Solution of an Initial Value Problem of Cauchy Type for One Equation 

Bakhrom Irgashev ${ }^{1,2}$<br>${ }^{1}$ Namangan Engineering Construction Institute, Namangan, 160103 Uzbekistan,<br>${ }^{2}$ Institute of Mathematics of the Academy of Sciences of Uzbekistan Tashkent, 100174 Uzbekistan

Received: 2 Sep. 2022, Revised: 18 Oct. 2022, Accepted: 28 Oct. 2022
Published online: 1 Jan. 2024


#### Abstract

In this work, using pre-constructed partial solutions, a representation of the solution to the Cauchy problem for an equation with two variables, in which both derivatives are of fractional order, is obtained.


Keywords: RiemannLiouville fractional derivative, self-similar solution, Cauchy problem, explicit solution.

## 1 Introduction and Finding Particular Solutions

Consider the equation

$$
\begin{equation*}
L[u] \equiv D_{0 y}^{\alpha} u(x, y)-d D_{0 x}^{\beta} u(x, y)=0 \tag{1}
\end{equation*}
$$

where

$$
x, y>0,0<\alpha<1 ; 1<\beta<2 ; \alpha+\beta<2 ; d<0
$$

and $D_{0 y}^{\alpha}, D_{0 x}^{\beta}$ are derivatives of fractional order in the sense of Riemann-Liouville, respectively, orders $\alpha, \beta$ (see [1]) :

$$
D_{s t}^{v} \varphi(t)=\left\{\begin{array}{l}
\frac{\operatorname{sign}(t-s)}{\Gamma(-v)} \int_{s}^{t} \frac{\varphi(\tau) d \tau}{|t-\tau|^{v+1}}, v<0, \\
\varphi(t), v=0 \\
\operatorname{sign}^{n}(t-s) \frac{d^{n}}{d t^{n}} D_{s t}^{v-n} \varphi(t), n-1<v \leq n
\end{array}\right.
$$

Recently, specialists have increasingly intensively studied equations that have a fractional order. This is due to the wide application of these equations in the natural sciences and in life (see, for example, [1]-[6] and others).

When solving initial and boundary problems, it is important to know the fundamental solution. One of the methods for finding a fundamental solution is the method of preliminary construction of a self-similar solution. For example, this method was used to construct a fundamental solution of the heat equation [7]. The construction of self-similar solutions themselves is also important from both theoretical and practical points of view. In the articles [8]-[9] particular solutions of the type of self-similar solutions for model equations of high integer order were found. In works [10]-[15] self-similar solutions were constructed for equations with fractional derivatives using special integro-differential operators.

In this part of the article we will construct self-similar solutions to equation (1) in the form of the following series:

$$
\begin{equation*}
u(x, y)=y^{b} \sum_{n=0}^{\infty} c_{n}\left(x^{a} y^{c}\right)^{n+\gamma}=\sum_{n=0}^{\infty} c_{n} x^{a n+a \gamma_{y} y^{c n+c \gamma+b}} \tag{2}
\end{equation*}
$$

where the parameters $a, b, c, \gamma$ are unknown yet. Let be

$$
\overline{(a)}_{s}=a(a-1) \ldots(a-(s-1)), \overline{(a)}_{0}=1, \overline{(a)}_{1}=a .
$$

[^0]Taking (2) into account, we formally have that

$$
\begin{gather*}
D_{0 y}^{\alpha} u(x, y)=\frac{1}{\Gamma(1-\alpha)} \sum_{n=0}^{\infty} c_{n} x^{a n+a \gamma} \frac{d}{d y} \int_{0}^{y} \frac{\tau^{c n+c \gamma+b} d \tau}{(y-\tau)^{\alpha}}= \\
=\sum_{n=0}^{\infty} c_{n}\left(x^{a} y^{c}\right)^{n+\gamma} y^{b-\alpha} \frac{\Gamma(c n+c \gamma+b+1)}{\Gamma(c n+c \gamma+b-\alpha+1)} \tag{3}
\end{gather*}
$$

the same way

$$
\begin{equation*}
D_{0 x}^{\beta} u(x, y)=\sum_{n=0}^{\infty} \overline{(a n+a \gamma+2-\beta)}_{2} c_{n}\left(x^{a} y^{c}\right)^{n+\gamma_{x}-\beta} y^{b} \frac{\Gamma(a n+a \gamma+1)}{\Gamma(a n+a \gamma+3-\beta)} . \tag{4}
\end{equation*}
$$

Let now $a=\beta, c=-\alpha$, then taking into account (3),(4) from equation (1) we get

$$
\begin{gathered}
\sum_{n=0}^{\infty} c_{n}\left(x^{a} y^{c}\right)^{n} x^{\beta} y^{-\alpha} \frac{\Gamma(c n+c \gamma+b+1)}{\Gamma(c n+c \gamma+b-\alpha+1)}= \\
=d \sum_{n=0}^{\infty} \frac{(a n+a \gamma+2-\beta)_{2}}{} c_{n}\left(x^{a} y^{c}\right)^{n} \frac{\Gamma(a n+a \gamma+1)}{\Gamma(a n+a \gamma+3-\beta)},
\end{gathered}
$$

or

$$
\begin{gathered}
\sum_{n=0}^{\infty} c_{n}\left(x^{\beta} y^{-\alpha}\right)^{n+1} \frac{\Gamma(-\alpha(n+\gamma)+b+1)}{\Gamma(-\alpha(n+\gamma+1)+b+1)}= \\
=d \sum_{n=0}^{\infty} \overline{(\beta n+\beta \gamma+2-\beta)_{2}} c_{n}\left(x^{a} y^{c}\right)^{n} \frac{\Gamma(a n+a \gamma+1)}{\Gamma(\beta n+\beta \gamma+3-\beta)},
\end{gathered}
$$

hence the equality must be satisfied that

$$
\gamma_{1}=1-\frac{1}{\beta}, \gamma_{2}=1-\frac{2}{\beta} .
$$

Taking this into account, after some calculations and transformations we obtain a formula for finding the coefficients $c_{n}$ in the form:

$$
\begin{gathered}
c_{0}=\frac{1}{\Gamma(-\alpha \gamma+b+1) \Gamma(\beta \gamma+1)}, j=1,2 \\
c_{n}=\frac{1}{d^{n} \Gamma\left(-\alpha n-\alpha+\frac{\alpha}{\beta} j+b+1\right) \Gamma(\beta n+\beta-j+1)}, j=1,2 ; n=1,2, \ldots
\end{gathered}
$$

So, we have obtained the following formal partial solutions of equation (1), such as self-similar solutions, in the following form:

$$
\begin{equation*}
u_{j}(x, y)=x^{\beta-j} y^{-\alpha+j \frac{\alpha}{\beta}+b} e_{\beta, \alpha}^{\beta-j+1,-\alpha+j \frac{\alpha}{\beta}+b+1}\left(\frac{1}{d} x^{\beta} y^{-\alpha}\right), j=1,2, \tag{5}
\end{equation*}
$$

where

$$
e_{\lambda, v}^{\mu, \delta}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\lambda n+\mu) \Gamma(\delta-v n)}, \lambda>v, \lambda>0, z \in \mathbb{C}
$$

is a Wright type function [1]. All the above calculations were of a formal nature. Let us give expression (5) a legitimate meaning. The following theorem is true.

Theorem 1. If $d<0 ; x>0, y>0 ; 0<\alpha<1 ; 1<\beta<2 ; \alpha+\beta<2 ; j \frac{\alpha}{\beta}+b+1>0, j=1,2$; then the expressions (5) are partial solutions of the equation (1).

Proof. By direct calculation, we have

$$
D_{0 x}^{\beta} u_{j}(x, y)=\frac{1}{d} x^{\beta-j} y^{b-2 \alpha+j \frac{\alpha}{\beta}} e_{\beta, \alpha}^{-j+1+\beta,-2 \alpha+\frac{\alpha}{\beta} j+b+1}\left(\frac{1}{d} x^{\beta} y^{-\alpha}\right) .
$$

Using formula (2.2.12) from [1], we obtain

$$
x^{\beta-j} D_{0 y}^{\beta}\left(y^{-\alpha+j \frac{\alpha}{\beta}+b} e_{\beta, \alpha}^{\beta-j+1,-\alpha+j \frac{\alpha}{\beta}+b+1}\left(\frac{1}{d} x^{\beta} y^{-\alpha}\right)\right)=
$$

$$
=x^{\beta-j} y^{-2 \alpha+j \frac{\alpha}{\beta}+b} e_{\beta, \alpha}^{\beta-j+1,-2 \alpha+j \frac{\alpha}{\beta}+b+1}\left(\frac{1}{d} x^{\beta} y^{-\alpha}\right)
$$

Substituting the found fractional derivatives into the equation (1), we obtain an identity.
Theorem 1 is proved.
Solutions of the form (5) coincide with the solutions obtained in [11]. Let now

$$
b=\alpha-1-\frac{\alpha}{\beta}, d=-1
$$

consider expressions

$$
\begin{gathered}
V_{1}(x, \xi, y, \eta)=|x-\xi|^{\beta-1}(y-\eta)^{-1} e_{\beta, \alpha}^{\beta, 0}\left(-|x-\xi|^{\beta}(y-\eta)^{-\alpha}\right) \\
V_{2}=|x-\xi|^{\beta-2}(y-\eta)^{\frac{\alpha}{\beta}-1} e_{\beta, \alpha}^{\beta-1, \frac{\alpha}{\beta}}\left(-|x-\xi|^{\beta}(y-\eta)^{-\alpha}\right)
\end{gathered}
$$

known estimate [1]

$$
\begin{gathered}
\left|V_{1}(x, \xi, y, \eta)\right| \leqslant C|x-\xi|^{\beta-1-\beta \theta}|y-\eta|^{-1+\alpha \theta}, C-\text { const }, 0 \leqslant \theta \leqslant 2 \\
\left|V_{2}(x, \xi, y, \eta)\right| \leqslant C|x-\xi|^{\beta-2-\beta \theta}(y-\eta)^{\frac{\alpha}{\beta}-1+\alpha \theta}
\end{gathered}
$$

True lemma.
Lemma 1. Let $\varphi(x) \in C(R)$ and $|\varphi(x)| \leq S, \forall x \in R, 0<S-$ const, then

$$
\lim _{y \rightarrow+0}\left(y^{1-\alpha} \int_{-\infty}^{+\infty} V_{1}(x, \xi, y, 0) \varphi(\xi) d \xi\right)=2 \frac{\varphi(x)}{\Gamma(\alpha)}
$$

Proof. We have

$$
y^{1-\alpha} \int_{-\infty}^{+\infty} V_{1}(x, \xi, y, 0) \varphi(\xi) d \xi=I_{1}(x, y)+I_{2}(x, y)
$$

where

$$
\begin{aligned}
& I_{1}=y^{1-\alpha} \int_{-\infty}^{x} V_{1}(x, \xi, y, 0) \varphi(\xi) d \xi \\
& I_{2}=y^{1-\alpha} \int_{x}^{+\infty} V_{1}(x, \xi, y, 0) \varphi(\xi) d \xi
\end{aligned}
$$

Let's make a change of variables

$$
z=(x-\xi)^{\beta} y^{-\alpha}, \xi=x-z^{\frac{1}{\beta}} y^{\frac{\alpha}{\beta}}
$$

then we will have

$$
I_{1}=\frac{\varphi(x)}{\beta} \int_{0}^{+\infty} e_{\beta, \alpha}^{\beta, 0}(-z) d z+\frac{1}{\beta} \int_{0}^{+\infty} e_{\beta, \alpha}^{\beta, 0}(-z)\left(\varphi\left(x-z^{\frac{1}{\beta}} y^{\frac{\alpha}{\beta}}\right)-\varphi(x)\right) d z
$$

Let's consider each term separately. Considering formula (2.2.7) from [1], we have

$$
\begin{gather*}
\frac{\varphi(x)}{\beta} \int_{0}^{+\infty} e_{\beta, \alpha}^{\beta, 0}(-z) d z=\frac{\varphi(x)}{\beta} \lim _{A \rightarrow+\infty} \sum_{n=0}^{\infty} \int_{0}^{A} \frac{(-1)^{n} z^{n} d z}{\Gamma(\beta n+\beta) \Gamma(-\alpha n)}= \\
=\varphi(x) \lim _{A \rightarrow+\infty} \sum_{n=0}^{\infty} \frac{(-1)^{n} A^{n+1}}{(\beta n+\beta) \Gamma(\beta n+\beta) \Gamma(-\alpha n)}= \\
=\varphi(x) \lim _{A \rightarrow+\infty} A e_{\beta, \alpha}^{\beta+1,0}(-A)=\frac{\varphi(x)}{\Gamma(\alpha)} \tag{6}
\end{gather*}
$$

Further

$$
\begin{gather*}
\int_{0}^{+\infty} e_{\beta, \alpha}^{\beta, 0}(-z)\left(\varphi\left(x-z^{\frac{1}{\beta}} y^{\frac{\alpha}{\beta}}\right)-\varphi(x)\right) d z=\int_{0}^{M} e_{\beta, \alpha}^{\beta, 0}(-z)\left(\varphi\left(x-z^{\frac{1}{\beta}} y^{\frac{\alpha}{\beta}}\right)-\varphi(x)\right) d z+ \\
+\int_{M}^{+\infty} e_{\beta, \alpha}^{\beta, 0}(-z)\left(\varphi\left(x-z^{\frac{1}{\beta}} y^{\frac{\alpha}{\beta}}\right)-\varphi(x)\right) d z \\
\forall \varepsilon>0, \exists M>0,0<y<\delta \Rightarrow \\
\int_{0}^{M}\left|e_{\beta, \alpha}^{\beta, 0}(-z)\right|\left|\varphi\left(x-z^{\frac{1}{\beta}} y^{\frac{\alpha}{\beta}}\right)-\varphi(x)\right| d z \leq \\
\leq \sup _{0<z<M, 0<y<\delta}\left|\varphi\left(x-z^{\frac{1}{\beta}} y^{\frac{\alpha}{\beta}}\right)-\varphi(x)\right| \int_{0}^{M}\left|e_{\beta, \alpha}^{\beta, 0}(-z)\right| d z \leq \frac{\varepsilon}{2}  \tag{7}\\
\int_{M}^{+\infty}\left|e_{\beta, \alpha}^{\beta, 0}(-z)\right|\left|\varphi\left(x-z^{\frac{1}{\beta}} y^{\frac{\alpha}{\beta}}\right)-\varphi(x)\right| d z \leq \\
\leq 2 S \int_{M}^{+\infty}\left|e_{\beta, \alpha}^{\beta, 0}(-z)\right| d z=2 S \int_{M}^{+\infty} z^{-2}\left|z^{2} e_{\beta, \alpha}^{\beta, 0}(-z)\right| d z
\end{gather*}
$$

taking into account relation (2.2.8) from [1], we have

$$
\lim _{z \rightarrow+\infty}\left(z^{2} e_{\beta, \alpha}^{\beta, 0}(-z)\right)=\frac{1}{\Gamma(-\beta) \Gamma(2 \alpha)}
$$

from here

$$
\begin{equation*}
\int_{M}^{+\infty}\left|e_{\beta, \alpha}^{\beta, 0}(-z)\right|\left|\varphi\left(x-z^{\frac{1}{\beta}} y^{\frac{\alpha}{\beta}}\right)-\varphi(x)\right| d z \leq \frac{\varepsilon}{2} \tag{8}
\end{equation*}
$$

From (6),(7) and (8) we get

$$
\lim _{y \rightarrow+0} I_{1}(x, y)=\frac{\varphi(x)}{\Gamma(\alpha)}
$$

Similarly

$$
\lim _{y \rightarrow+0} I_{2}(x, y)=\frac{\varphi(x)}{\Gamma(\alpha)}
$$

## Lemma 1 is proved.

Lemma 2. Let be $\varphi(x) \in C(R)$ and $|\varphi(x)| \leq M, \forall x \in R, 0<M$ - const, then, function

$$
\begin{equation*}
u(x, y)=\int_{-\infty}^{+\infty} V_{1}(x, \xi, y, 0) \varphi(\xi) d \xi \tag{9}
\end{equation*}
$$

is a solution to equation (1).
Proof. According to the estimate of function $V_{1}$, the improper integral (9) converges. Further, we have

$$
\begin{gathered}
D_{0 x}^{\alpha}\left\{\int_{-\infty}^{+\infty} V_{1}(x, \xi, y, 0) \varphi(\xi) d \xi\right\}= \\
=\frac{1}{y} \frac{1}{\Gamma(2-\alpha)} \frac{\partial^{2}}{\partial x^{2}} \int_{0}^{x}\left(\int_{-\infty}^{+\infty} \frac{|t-\xi|^{\beta-1} e_{\beta, \alpha}^{\beta, 0}\left(-|t-\xi|^{\beta} y^{-\alpha}\right) \varphi(\xi)}{|x-t|^{\alpha-1}} d \xi\right) d t=
\end{gathered}
$$

$$
\begin{gathered}
=\frac{1}{y} \frac{1}{\Gamma(2-\alpha)} \frac{\partial^{2}}{\partial x^{2}} \int_{-\infty}^{+\infty} \varphi(\xi) d \xi\left(\int_{0}^{x} \frac{|t-\xi|^{\beta-1} e_{\beta, \alpha}^{\beta, 0}\left(-|t-\xi|^{\beta} y^{-\alpha}\right)}{|x-t|^{\alpha-1}} d t\right)= \\
=\int_{-\infty}^{+\infty} \varphi(\xi) D_{0 x}^{\alpha} V_{1}(x, \xi, y, 0) d \xi .
\end{gathered}
$$

The convergence of the last improper integral is proved in the same way as in Lemma 1. Similarly,

$$
D_{0 y}^{\beta}\left\{\int_{-\infty}^{+\infty} V_{1}(x, \xi, y, 0) \varphi(\xi) d \xi\right\}=\int_{-\infty}^{+\infty} \varphi(\xi) D_{0 y}^{\beta} V_{1}(x, \xi, y, 0) d \xi
$$

From here

$$
D_{0 y}^{\alpha} u(x, y)+D_{0 x}^{\beta} u(x, y)=0 .
$$

## Lemma 2 is proved.

## 2 Representation of the Solution to the Initial Problem

In this part of the article, we will apply the constructed self-similar solutions to solve the following initial value problem, such as the Cauchy problem.

Cauchy problem. In the region $\Omega=\{(x, y):-\infty<x<+\infty, 0<y \leq T\}, 0<T<+\infty, T-$ const, find a solution to the problem :

$$
\left\{\begin{array}{c}
D_{0 y}^{\alpha} u(x, y)+D_{0 x}^{\beta} u(x, y)=0, \\
\lim _{y \rightarrow+0}\left(y^{\alpha-1} u(x, y)\right)=\varphi(x),
\end{array}\right.
$$

where

$$
\begin{aligned}
& y^{\alpha-1} u(x, y) \in C(\bar{\Omega}), D_{0 y}^{\alpha} u(x, y), D_{0 x}^{\beta} u(x, y) \in C(\Omega) \\
& 0<\alpha<1 ; 1<\beta<2 ; \alpha+\beta<2 \\
& \varphi(x) \in C(R),|\varphi(x)|<M<\infty, \forall x \in R, 0<M-\text { const } .
\end{aligned}
$$

The results of Lemma 1 and Lemma 2 imply the validity of the following theorem.
Theorem 2. Function having the form:

$$
u(x, y)=\frac{\Gamma(\alpha)}{2} \int_{-\infty}^{+\infty} \frac{|x-\xi|^{\beta-1}}{y} e_{\beta, \alpha}^{\beta, 0}\left(-\frac{|x-\xi|^{\beta}}{y^{\alpha}}\right) \varphi(\xi) d \xi
$$

is a solution to the Cauchy problem.
Note. Note that the constructed self-similar solutions can be used to obtain a fundamental solution of the heat equation. Indeed, the heat equation

$$
u_{y}(x, y)-u_{x x}(x, y)=0
$$

can be written in equation form (1) (limiting case $\alpha=1, \beta=2$ ) as

$$
u_{y}(x, y)+u_{x x}(i x, y)=0
$$

further, having made some transformations, we will have

$$
\begin{gathered}
V_{2}=\frac{1}{\sqrt{y-\eta}} e_{2,1}^{1, \frac{1}{2}}\left(-i^{2}|x-\xi|^{2}(y-\eta)^{-1}\right)= \\
=\frac{1}{\sqrt{y-\eta}} \sum_{n=0}^{\infty} \frac{\left(\frac{(x-\xi)^{2}}{y-\eta}\right)^{n}}{\Gamma(2 n+1) \Gamma\left(-n+\frac{1}{2}\right)}=\frac{1}{\sqrt{\pi(y-\eta)}} e^{-\frac{(x-\xi)^{2}}{4(y-\eta)}} .
\end{gathered}
$$

That is, have obtained a fundamental solution of the heat equation.

## References

[1] A. V. Pskhu , Uravneniya v chastnykh proizvodnykh drobnogo poryadka [Partial differential equations of fractional order], Moscow: NAUKA, 2005. (in Russian).
[2] J. Singh, Analysis of fractional blood alcohol model with composite fractional derivative,Chaos Soliton. Fract. 140, 110127 (2020).
[3] J. Singh , D. Kumar and D. Baleanu, A new analysis of fractional fish farm model associated with Mittag-Leffler-type kernel, Int. J. Biomath. 13 (2), 2050010 (2020).
[4] V. V. Uchaikin, Fractional derivatives for physicists and engineers, Volume I Background and Theory Volume II Applications, Springer, 2013.
[5] R. R. Niqmatullin, Theoretical explanation of the "universal response", Phys. Stat. Sol. (b) 123 (2), 739-745 (1984).
[6] R. R. Niqmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. (b) 133 (1), 425-430 (1986).
[7] A. N. Tikhonov and A. A. Samarskiy , The equations of mathematical physics, 2nd ed., Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953.(in Russian).
[8] B. Yu. Irgashev, Construction of singular particular solutions expressed via hypergeometric functions for an equation with multiple characteristics,Differ. Equ. 56 (3), 315-323 (2020).
[9] M. Ruzhansky and A. Hasanov, Self similar solutions of some model degenerate partial differential equations of the second,third, and fourth order, Lobachevskii J. Math. 41 (6), 1103-1114 (2020).
[10] E. Buckwar and Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. App. 227(1), 81-97 (1998).
[11] Y.Luchko and R. Gorenflo, Scaleinvariant solutions of a partial differential equation of fractional order,Fract. Calc. Appl. Anal. 1 (1), 63-78 (1998).
[12] J. S. Duan , A. P. Guo and W. Z. Yun, Similarity solution for fractional diffusion equation, Abst. Appl. Anal. Article ID 548126, 1-5 (2014).
[13] B. Basti and N. Benhamidouche, Existence results of self-similar solutions to the Caputo-types space-fractional heat equation, Survey. Math. App. 15, 153-168 (2020).
[14] R. Gorenflo , Y. Luchko and F. Mainardi, Wright functions as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math. 118 (1-2) 175-191 (2000).
[15] F. Al-Musalhi and E. Karimov, On self-similar solutions of time and space fractional sub-diffusion equations, An Int. J. Opt. Cont. Theor. Appl. 11(3), 16-27 (2021).


[^0]:    * Corresponding author e-mail: bahromirgasev@gmail.com

