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Abstract: In recent papers, Mehdi Lachiheb has considered fluid viscosity through a peristaltic tube and a channel as a function of the

radial and axial components. This author discussed the trapping phenomenon at the centerline of a peristaltic tube and a channel, the

pressure rise, and the drag (friction) forces without a magnetic field. Considering the importance of magnetohydrodynamic fluids in

bioengineering and medical sciences, we discussed the effects of bivariation viscosity and magnetic field on the trapping phenomenon

at the centerline, separated flow on the wall surface of the peristaltic tube, the drag (friction) forces, and the pressure rise. To solve

the problem under low Reynolds and long wavelength assumptions, the velocity field and pressure gradient as functions of Hartmann

number, amplitude ratio, viscosity parameter, and volume flow rate were obtained using the perturbation approach in terms of Hartmann

number (M < 1). The peristaltic pumping and augmented pumping regions were discussed through drag (friction) forces and the

pressure rising. In addition, separation flow points on the surface of the wall were determined numerically.

Keywords: Fluid with bivariation viscosity; Magnetohydrodynamics; Newtonian fluid; Peristalsis; Separating flow; Trapping

1. Introduction

Many authors considered that some physiological
fluids’ viscosity is constant and discussed the
characteristics of pumping, the trapping phenomenon at
the tube’s centerline and a channel with peristalsis, and
the reflux phenomenon assuming Reynolds’ number is
low and the wavelength is long [1–5]. Other researchers
considered the viscosity of some physiological fluids as a
function of the radial component and they discussed the
pressure rise, friction force, peristaltic pumping and
augmented pumping assuming that the Reynolds number
is zero and the wavelength is long [6–16].

Few authors considered the viscosity of some
physiological fluids as a function of axial
component [17, 18]. One author considered the viscosity
of some physiological fluids as a function of radial and
axial components and discussed the trapping phenomenon
at the centerline of a tube and a channel with peristalsis,
reflux phenomenon, and the pumping characteristics in
the absence of a magnetic field [19, 20]. Several authors

considered the viscosity of some physiological fluids as a
function of the rate of strain of the fluids and discussed
the drag (friction) forces, pressure rise, peristaltic
pumping, and augmented pumping under zero Reynolds
number and long wavelength approximations [21–27].
To the best of our knowledge, no study has discussed the
trapping and separated flow phenomena of a fluid with
bivariable viscosity variation through a peristaltic tube in
the presence of a magnetic field. Thus, the present study
is the first to explain these phenomena.

The paper is structured as follows. Section 2 provides
the modeling and formulation of the problem in
cylindrical coordinates in the non-dimensional form with
cancelling wave number and Reynolds number. Section 3
presents the rate of volume flow. Section 4 includes the
perturbation solution. Section 5 focuses on separated flow
(trapping at the boundary). Section 6 discusses peristaltic
pumping, augmented pumping, trapping, and separated
flow for various physical parameters of interest. The
concluding remarks are summarised in Section 7.
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2. Problem Formulation

2.1. Geometric model

We addressed the creeping flow of a bivariable
viscosity Newtonian fluid via an axisymmetric shape in a
tube thickness that is uniform with a sin wave propagating
along its wall. The fluid is supposed to be in a transverse
magnetic field that is constant. For flows with a magnetic
Reynolds number that is small, the induced magnetic field
is insignificant. The outside electric field is ignored, and
the electric field owing to charge polarization is also
neglected. The heat generated by viscous and Joule
dissipation is ignored. The gravity effect is also ignored,
because gravity in the small intestine is transverse to the
flow and does not interact with fluid particles. The
problem’s geometry is depicted in Fig. 1. A wall’s

Fig. 1: Sketch of the problem

equation can be written as

ĥ = â+ b̂sin
2π

λ
(Ẑ − ct̂), (1)

where â is the tube’s inlet radius, λ is the wavelength, b̂ is
the wave’s amplitude, t̂ is the time and c is the wave
speed. The flow in stationary coordinates is unsteady in
coordinates that are fixed (R̂, Ẑ), but it can be viewed as
steady in the coordinates that are moving (r̂, ẑ), which
move at the same speed as the wave in the Ẑ-direction.
The frames have been connected as

Ẑ = ẑ+ c t̂, r̂ = R̂, (2)

Ŵ = ŵ+ c, û = Û , (3)

where Û , Ŵ and û, ŵ are the directions of radial and axial
velocity in the coordinates that are fixed and the
coordinates that are moving, respectively.

2.2. Magnetohydrodynamics

The governing equations are comprised of
Ampére–Maxwell law, magnetic Gauss law, Faraday’s

law, and Gauss’s law with relation to electric fields [28]:

∇×H = J+
∂D

∂ t
, (4)

∇ ·B = 0, (5)

∇×E = −
∂B

∂ t
, (6)

∇ ·D = ρc. (7)

The equations of constitutive, particularly B−H−m,
D−E−P relations, and OHM’s law for fields in motion
are next addressed

B = µeH+µ0m, (8)

D = εE+P, (9)

J = σ (E+V×B) . (10)

The lorentz force per unit charge

F=E+J×B, (11)

where V, B, E, J, H, D, P, m, ρc, µe, ε, and σ are
respectively the vector of velocity, vector of magnetic
field, electric field, vector of current density, the magnetic
field density, the electric density vector, the electric
polarization, the magnetization, the electric charge
density, the magnetic permeability, the electric
permeability, and the electrical conductivity.
Since the induced magnetic field is insignificant (thus,

∇ × E= − ∂B
∂ t
, gives E=0), when there is no outside

electric field. Eqs. (4–11) can be rewritten as follows:

∇×H = J, (12)

∇ ·B = 0, (13)

B = µeH, (14)

J = σ (V×B) , (15)

and the Lorentz force as:

F=J×B. (16)

In our problem, we take V=(û,0, ŵ) and B
=(µeH0,0,0) . Eqs. (14) and (15) clearly show that Eq.
(16) takes the following form:

F=−σ µ2
e H2

0 ŵ êz. (17)

where H0 denotes the constant transverse magnetic field
and êz denotes the axial unit vector.

2.3. Governing equations

The following are the motion equations and
boundary conditions (BCs) utilised in the coordinates that
are moving:
continuity equation is

1

r̂

∂ (r̂ û)

∂ r̂
+

∂ ŵ

∂ ẑ
= 0, (18)
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Navier–Stokes equations are as follows:

ρ

(

û
∂ û

∂ r̂
+ ŵ

∂ û

∂ ẑ

)

=−
∂ P̂

∂ r̂
+

∂

∂ r̂

(

2µ̂(r̂, ẑ)
∂ û

∂ r̂

)

+
∂

∂ ẑ

[

µ̂(r̂, ẑ)

(

∂ ŵ

∂ r̂
+

∂ û

∂ ẑ

)]

+
2µ̂(r̂, ẑ)

r̂

(

∂ û

∂ r̂
−

û

r̂

)

,(19)

ρ

(

û
∂ ŵ

∂ r̂
+ ŵ

∂ ŵ

∂ ẑ

)

=−
∂ P̂

∂ ẑ
+

∂

∂ ẑ

(

2µ̂(r̂, ẑ)
∂ ŵ

∂ ẑ

)

+
1

r̂

∂

∂ r̂

[

r̂ µ̂(r̂, ẑ)

(

∂ ŵ

∂ r̂
+

∂ û

∂ ẑ

)]

−σ µ2
e H2

0 ŵ, (20)

and BCs:

∂ ŵ

∂ r̂
= 0 at r̂ = 0, (21)

ŵ = −c, û =−c
d ĥ

d ẑ
at r̂ = ĥ = â+ b̂sin

2π

λ
ẑ, (22)

where µ̂(r̂, ẑ) is the bivariable viscosity function.

2.4. Dimensional Analysis and Approximations

The variables in Eqs. (1–3) and Eqs. (18–22)
introducing Reynolds number (Re), wavenumber (δ ), and
Hartmann number (M) are easy to non-dimensionalize
like this:

r =
r̂

â
, R =

R̂

â
, z =

ẑ

λ
, Z =

Ẑ

λ
, u =

λ û

â c
,

U =
λ Û

â c
, µ(r,z) =

µ̂(r̂, ẑ)

µ0

, w =
ŵ

c
, W =

Ŵ

c
,

δ =
â

λ
< 1, Re =

câρ

µ
, φ =

b̂

â
< 1, P =

P̂ â2

cλ µ0

,

t =
c t̂

λ
, M = µeH0â

√

σ

µ0

, h =
ĥ

â
= 1+ φ sin(2π ẑ),

(23)

where φ is the occlusion.
After substituting from Eqs. (23), then Eqs. (18–22) are
reduced to

1

r

∂ (ru)

∂ r
+

∂w

∂ z
= 0, (24)

Reδ 3

(

u
∂u

∂ r
+w

∂u

∂ z

)

=−
∂P

∂ r
+2δ 2 ∂

∂ r

(

µ(r,z)
∂u

∂ r

)

+δ 2 ∂

∂ z

[

µ(r,z)

(

δ 2 ∂u

∂ z
+

∂w

∂ r

)]

+2δ 2 µ(r,z)

r

×

(

∂u

∂ r
−

u

r

)

, (25)

Reδ

(

u
∂w

∂ r
+w

∂w

∂ z

)

=−
∂P

∂ z
+δ 2 ∂

∂ z

(

2µ(r,z)
∂w

∂ z

)

+
1

r

∂

∂ r

[

rµ(r,z)

(

δ 2 ∂u

∂ z
+

∂w

∂ r

)]

−M2w, (26)

∂w

∂ r
= 0 at r = 0, (27)

w =−1, u =−
dh

dz
at r = h. (28)

Assuming that the wavelength is long (δ = 0), Eqs. (25)
and (26) become

∂P

∂ r
= 0, (29)

∂P

∂ z
=

1

r

∂

∂ r
(rµ(r,z)

∂w

∂ r
)−M2w. (30)

In the following formula, Lachiheb [19, 20] considers the
viscosity of fluid passing through a peristaltic tube and a
channel based on radial and axial components:

µ(r,z) = e
− αr

h(z) or µ(r,z) = 1−
αr

h(z)
f or α << 1 (31)

where α is the viscosity parameter.

3. Volume Flow Rate

The volume flow rate Q can be computed using the
formula

Q = 2π

∫ ĥ

0
R̂Ŵ dR̂ (32)

where ĥ varies with t̂ and Ẑ. Taking Eqs. (2) and (3) and
substituting in Eq. (32) after that, the integrated yield

Q = q̂+πc ĥ2, (33)

where

q̂ =

∫ ĥ

0
2πŵr̂dr̂, (34)

is the time-independent volume flow rate in the

coordinates that are moving. Here, ĥ varies with ẑ alone
and it is determined by Eq. (22). Using the variables with
no dimensions, we get

F =
q̂

2πcâ2
=

∫ h

0
rwdr. (35)

Over a period T = λ
c

, the time-mean flow at a fixed

location Ẑ is referred to

Q̂ =
1

T

∫ T

0
Q dt̂. (36)

Substituting from Eq. (33) into Eq. (36) after that, the
integrated yield

Q̂ = q̂+πcâ2(1+
φ2

2
). (37)

In terms of determining the time-mean flow with no
dimensions Θ as

Θ =
Q̂

2πcâ2
, (38)

Eq. (37) can be rephrased as

Θ = F +
1

2
(1+

φ2

2
). (39)
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4. Perturbation Solution

The following is an example of how to solve the
current problem analytically using the perturbation
approach for small parameters M2

w = w0 +M2w
1
+O(M4), (40)

u = u0 +M2u
1
+O(M4), (41)

dP

dz
=

dP
0

dz
+M2 dP

1

dz
+O(M4), (42)

F = F
0
+M2F

1
+O(M4). (43)

Using Eqs. (40–42) as a substitute in Eqs. (24), (29), and
(30), we obtain the
zeroth-order system

1

r

∂ (ru
0
)

∂ r
+

∂w
0

∂ z
= 0, (44)

∂P
0

∂ r
= 0, (45)

∂P
0

∂ z
=

1

r

∂

∂ r

(

r µ(r,z)
∂w

0

∂ r

)

, (46)

BCs that are dimensionless

∂w0

∂ r
= 0 at r = 0, (47)

w0 = −1,u0 =−
dh

dz
at r = h. (48)

The first-order system

1

r

∂ (ru
1
)

∂ r
+

∂w
1

∂ z
= 0, (49)

∂P
1

∂ r
= 0, (50)

∂P
1

∂ z
=

1

r

∂

∂ r

(

r µ(r,z)
∂w

1

∂ r

)

−w
0
, (51)

BCs that are dimensionless

∂w1

∂ r
= 0 at r = 0, (52)

w1 = 0,u1 = 0 at r = h. (53)

4.1. Solution of the zeroth-order system

Solving Eq. (46) using Eq. (45) with respect to
boundary conditions (47) and (48) yields

w
0
=

1

4

dP
0

dz

(

r2 − h2
)

(

1+
2

3
α
( r

h
− 1
)

)

− 1. (54)

The rate of volume flow F
0

is calculated as follows:

F
0
=

∫ h

0
rw

0
dr. (55)

Integrating Eq. (55) using Eq. (54) and solving the the

outcome for
dP

0
dz

, we obtain

dP
0

dz
=

−16

h4

(

F
0
+

h2

2

)(

1−
4

5
α

)

. (56)

Substituting from Eq. (54) into Eq. (44) utilising the
boundary condition (48), the radial velocity u0 is
calculated as follows:

u
0
=

rh′

h3

[

4F
0

(

1−
r2

h2

)

+
4α

5

((

1−
r

h

)

r2

+10F
0

(

2r2

5h2
−

r3

3h3
−

1

15

))]

. (57)

4.2. Solution of first-order system

Eq. (54) is substituted into Eq. (51) and it resolved
using Eq. (50), boundary conditions (52) and (53) yield

w
1
=

1

64

(

r4 + 3h4 − 4r2h2
) dP0

dz
+

1

4

(

dP
1

dz
− 1

)

(

r2 − h2
)

+α

[(

−
h r2

24
(h+ r)+

77h4

1200

+
23 r5

1200h

)

dP0

dz
+

h2

6

(

r3

h3
− 1

)(

dP
1

dz
− 1

)]

. (58)

The rate of volume flow F
1

is calculated as follows:

F
1
=

∫ h

0
rw

1
dr. (59)

Integrating Eq. (59) using Eq. (58) and solving the

outcome for
dP

1
dz

, we obtain

dP
1

dz
=−

8F0

3h2
−

16F1

h4
−

1

3
+

8α

5

(

8F1

h4
+

2F0

21h2
+

1

21

)

.

(60)
Substituting from Eq. (58) into Eq. (49) using the
boundary condition (53), the radial velocity u1 is
calculated as follows:

u1 = h′
{

hr

24

(

1−
r4

h4

)

+
r

6h3

(

r2F0

(

1−
r2

h2

)

+24F1

(

1−
4r2

h2

))

+αr

[

r4

30h3
+

r3

45h2
+

16h

1575

−
23r5

350h4
+

r2F0

h3

(

−
23r3

105h3
+

2r2

15h2
+

2r

15h
−

1

21

)

+
4F1

h3

(

−
2r3

3h3
+

4r2

5h2
−

2

15

)]}

(61)

We get by substituting from Eqs. (54) and (58) into Eq.
(40) using Eq. (42) and disregarding the terms higher than
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O(M2)

w =
dP

dz

(

1

4

(

r2 − h2
)

+
α

6

(

r3

h
− h2

))

+M2

[

dP

dz

(

3h4

64
+

r4

64
−

h2 r2

16

)

+α

(

dP

dz

(

77h4

1200
+

23r5

1200h
−

h r2

24
(h+ r)

)

+
1

6

(

h2 −
r3

h

))

+
1

4

(

h2 − r2
)

]

− 1. (62)

Substituting from Eqs. (57) and (61) into Eq. (41) using
Eq. (43) and disregarding the terms larger than O(M2),
we’ve got

u = h′
{

r

h3

(

−r2 +

(

1−
r2

h2

)

4F

)

+
4rα

5h3

(

r2
(

1−
r

h

)

+10F

(

2r2

5h2
−

r3

3h3
−

1

15

))

+M2

[

rh

24

(

1−
r4

h4

)

+

(

1−
r2

h2

)

r3F

6h3
+αr

(

−
23r5

350h4
+

r4

30h3
+

r3

45h2

+
16h

1575
+

(

−
23r3

105h3
+

2r2

15h2
+

2r

15h
−

1

21

)

r2F

h3

)]}

(63)

Substituting from Eqs. (56) and (60) into Eq. (42) using
Eq. (43) and disregarding the terms larger than O(M2),
we’ve got

dP

dz
=

−16

h4

(

F +
h2

2

)(

1−
4

5
α

)

−
M2

3

[

1+
8F

h2
−

8α

35

(

1+
2F

h2

)]

. (64)

The pressure rising ∆P
λ

and drag (friction) forces F
λ

can

be expressed by

∆P
λ
=
∫ 1

0

(

dP

dz

)

dz, (65)

F
λ
=
∫ 1

0
h2

(

−
dP

dz

)

dz. (66)

Using the formula of Eq. (64), Eqs. (65) and (66) become

∆P
λ
= 2

(

1−
4

5
α

)

(

(

2− 4Θ +φ2
)(

2+ 3φ2
)

(1−φ2)7/2

−
4

(1−φ2)
3/2

)

+
M2

105

[

4α

(

2−
2− 4Θ +φ2

(1−φ2)
3/2

)

−35

(

1−
2
(

2− 4Θ +φ2
)

(1−φ2)
3/2

)]

, (67)

F
λ
= 4

(

1−
4

5
α

)

(

2+
4Θ − 2−φ2

(1−φ2)3/2

)

−M2

(

1+
φ2

2
+

8

3
Θ

(

1−
2α

35

))

. (68)

Furthermore, we obtain the solutions to the equations
given in Eqs. (44–53) in the following ways as µ = µ(r):

w =
dP

dz

(

1

4
(r2 − h2)+

α

6
(r3 − h3)

)

+M2

[

dP

dz

(

3h4

64
+

r4

64
−

h2 r2

16

)

+
1

4
(h2 − r2 )

+
α

24

(

dP

dz

(

1

50

(

23r5 + 77h4
)

− h r2 (h+ r)

)

+4(h3 − r3 )
)]

− 1, (69)

u = h′
{

r

h3

(

4F

(

1−
r2

h2

)

− r2

)

+
2

5
αr

(

1

3
+

2F

3h2

(

−
8r3

h3
+

9r2

h2
− 1

))

+M2

[

rh

24

(

1−
r4

h4

)

+
r3F

6h3

(

1−
r2

h2

)

+
αr

84

(

r2 +
32h2

25
−

92r5

25h3
+

7r4

5h2

+Fr

(

16

1575
−

92r5

525h5
+

r4

10h4
+

4r3

45h3
−

r2

42h2

))]}

,

(70)

dP

dz
=

−16

h4

(

F +
h2

2

)(

1−
4

5
αh

)

−
M2

3

(

1+ 8F −
8hα

35

(

1+
2F

h2

))

, (71)

∆P
λ
=−

8

(1−φ2)3/2
+

2
(

2− 4Θ +φ2
)(

2+ 3φ2
)

(1−φ2)7/2

+
8α

5

(

−

(

2− 4Θ +φ2
)(

2+φ2
)

(1−φ2)
5/2

+
4

(1−φ2)
1/2

)

+
M2

105

[

−35

(

1−
2
(

2− 4Θ +φ2
)

(1−φ2)
3/2

)

+4α

(

2−
2− 4Θ +φ2

5(1−φ2)1/2

)]

, (72)

and

F
λ
= 4

(

2−
2− 4Θ +φ2

(1−φ2)3/2

)

+
16α

5

(

2− 4Θ +φ2

(1−φ2)1/2
− 2

)

+M2

(

1+
φ2

2
−

8

3
Θ +

8α

105

(

2Θ +φ2
)

)

. (73)

5. Separated Flow (Trapping at the

Boundary)

Setting the vorticity on the boundary equal to zero
is a common condition used in boundary layer theory to
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anticipate separation

ξ =
∂u

∂ z
−

∂w

∂ r
= 0 on r = h. (74)

we get, by substituting from Eqs. (62) and (63) into Eq.
(74)

h3h′′− 4(2F + h2)−
(

8F + 3h2
)

h′2

−
4α

5

(

2F + h2
)(

1+ h′2
)

−
h2M2

6

(

1+
27h2α

35

)

(

2F + h2
)(

1+ h′2
)

= 0.

(75)

Substituting Eq. (23) into Eq. (75), we obtain

0 = 4
[(

1+π2φ (2φ +φ cos(4πz)+ sin(2πz))
)

(1+φ sin(2πz))2 + 2F
(

2π2φ2 (1+ cos(4πz))+ 1
)

]

+
4α

5

[(

1+ 2π2φ2 (1+ cos(4πz))
)

(φ sin(2πz)+ 1)2 + 2F
(

1+ 2π2φ2 (1+ cos(4πz))
)

]

+
M2

420
(1+φ sin(2πz))2 (35+ 27α)

(

1+ 2π2φ2 (1+ cos(4πz))
)

[(

φ2 (1− cos(4πz))+ 2(1+ 2F + 2φ sin(2πz))
)]

. (76)

To obtain flow points zs that are separate at the wall surface
for µ = µ(r,z), we solve Eq. (76) numerically. In addition,
we obtain separated flow points zs for µ = µ(r) by solving
numerically the following equation:

0 = 4
[(

1+π2φ (2φ +φ cos(4πz)+ sin(2πz))
)

(1+φ sin(2πz))2 + 2F
(

2π2φ2 (1+ cos(4πz))

+1)]+
4α

5

[(

1+ 4π2φ2 cos2 (4πz)
)

(1+φ sin(2πz))2 + 2F ((1+φ sin(2πz))
(

1+ 2π2φ2 (1+ cos(4πz))
))]

M2

420
[35+ 27α (1+φ sin(2πz))]

[

1+ 2π2 (1+ cos(4πz))φ2
]

(φ sin(2πz)+ 1)2

[

φ2 (1− cos(4πz))+ 2(1+ 2φ sin(2πz)+ 2F)
]

(77)

6. Numerical Results and Discussion

We derive analytical solutions to the governing
equations for peristaltic flow of a Newtonian fluid with
bivariation viscosity in the presence of a magnetic field
using a succession of regular perturbations when it comes
to the Hartmann number M. A digital computer was used
to perform computations for different values of the
parameter of viscosity α , occlusion φ , Hartmannnumber

M, and volume flow rate Θ to analyze the behaviour of
solutions. Pressure rise and volume flow rate of a fluid
whose viscosity can be either bivariation or a function of
a radial component relationships given by Eqs. (67) and
(72), respectively, are drawn in Figs. 2–4. Moreover, the
relations between drag (friction) forces and volume flow
rate of these types of fluids provided by Eqs. (68) and
(73), respectively, are drawn in Figs. 5–7. To discuss the
results quantitatively, these are the parameter values that
we used: â = 1.25cm, c = 2cm/min and λ = 8.01cm, as
given in references [6, 7]. The viscosity parameter α for
these types of fluids takes values 0 and 0.1, as reported in
the study by Srivastava et al. [7]. The small Hartmann
number M takes values 0,0.3, and 0.5, as given in
reference [23].

Figs. 2–4 show that as the volume flow rate increases,
the magnitude of the pressure rise decreases in the region
of peristaltic pumping, where Θ > 0 and ∆P

λ
> 0, but it

rises as the volume flow rate rises in the region of
augmented pumping, where Θ > 0 and ∆P

λ
< 0, for a

fluid with bivariation viscosity µ(r,z) and a fluid with
radial viscosity µ(r). This result indicates that peristaltic
pumping happens when the velocity field of the flow
increases in a contraction area., whereas augmented
pumping happens in a relaxation region in which the
velocity field of the flow decreases. Moreover, the
pressure rise of a fluid with bivariation viscosity is
smaller than that of a fluid with radial viscosity. This
phenomenon occurs because the viscosity of a fluid with
bivariation viscosity is smaller than the viscosity of a fluid
with radial viscosity for small viscosity parameter α .
Furthermore, the pressure rise is approximately
independent of small Hartmann number M for various
values of the volume flow rate of these fluids as shown in
Fig. 3. In addition, peristaltic pumping happens at
0 < Θ ≤ 0.08 for small occlusion (φ = 0.2) and at
0 < Θ ≤ 0.46 for high occlusion (φ = 0.6); otherwise,
augmented pumping happens for these fluids as illustrated
in Fig. 4.

Figs. 5–7 demonstrate that the magnitude of drag
(friction) forces decreases as the volume flow rate rises in
the region of peristaltic pumping, where Θ > 0 and
F

λ
< 0, but it rises as the volume flow rate rises in the

reflux (backward flow) region, where Θ > 0 and F
λ
> 0,

for a fluid with bivariation viscosity µ(r,z) and a fluid
with radial viscosity µ(r). Moreover, the friction force of
a fluid with bivariation viscosity is smaller than that of a
fluid with radial viscosity. Furthermore, the friction force
is approximately independent of small Hartmann number
M for various values of the volume flow rate of these
fluids, as shown in Fig. 6. Peristaltic pumping happens
approximately at 0 < Θ ≤ 0.05 for small occlusion
(φ = 0.2) and at 0 < Θ ≤ 0.34 for high occlusion
(φ = 0.6); otherwise, backward flow happens for these
fluids, as illustrated in Fig. 7.

Trapping phenomenon was studied by several
investigators. A bolus (a volume of fluid restricted in the
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frame of the wave by closed streamlines) is conveyed at
the speed of the wave, causing trapping at the centerline.
As previously explained by Siddiqui and Schwarz [29],
the trapping limits are calculated by computing the
proportion of the Θmin (minimum volume flow rate) and
Θmax (maximum volume flow rate) in relation to
occlusion φ . Eq. (62) gives us the minimum volume flow
rate Θmin when w = 0, r = 0 and h = 1+ φ and solving
the outcome for Θ . Substituting ∆P

λ
= 0 in Eq. (67) and

solving the outcome for Θ , we achieve then Θmax.
Physically, Θmin and Θmax must be real and address
inequity 0 ≤ Θmin ≤ Θmax. Therefore, trapping happens

such that 0 ≤ Θmin
Θmax

≤ 1 for all possible M, φ , and α values

as shown in Figs. 8 and 9, which are graphs of
Θmin
Θmax

against the occlusion φ for the cases {α = 0.1;
M = 0,0.3, and 0.5} and {M = 0.3; α = 0,0.1},
respectively. The graphs show that the trapping limits
increase with increasing small Hartmann number M and
the small viscosity parameter α . Moreover, the trapping
limits are smaller for bivariation viscosity than for
viscosity as a function of a radial component.
Furthermore, Shapiro et al. [2] found trapping limits that
match our results at M = 0 and α = 0.

We discuss the separated flow phenomena (trapping
on the boundary) by way of Figs. 10–12, which show the
relationship between the axial component zs of separation
flow points and occlusion φ . The graphs show at certain
values of volume flow rate Θ , Hartmann number M,
amplitude ratio φ , and viscosity parameter α that zs

bifurcates into two branches. One of them (upper branch)
approaches the contraction region’s exit, on the other
hand (lower branch) approaches the contraction region’s
inlet. Fig. 10 shows that the trapping region happens in
the contraction region for various volume flow rate values
but happens in the relaxation region only at {M = 0.3,
α = 0.1, and Θ = 0.2}. In addition, Fig. 10 clearly shows
fixed points (critical amplitude ratios) that interchange
their stability with other fixed points as the parameter
Θ changes. Thus, bifurcations of flow occur through a
uniform tube with peristalsis. Figs. 10–12 demonstrate
that the flow’s non-separation points happen
approximately at {{0 < φ < 0.04, Θ = 0.2},
{0 < φ < 0.08, Θ = 0.4}, {0 < φ < 0.16, Θ = 0.6},
M = 0.3, α = 0.1}, {0 < φ < 0.12, Θ = 0.5, α = 0.1, for
different values of M}, and {0 < φ < 0.11, Θ = 0.5,
α = 0, and M = 0.3}. The non-separation region
increases with an increasing volume flow rate Θ . In
addition, as the volume flow rate Θ increases, zs increases
in the contraction region’s inlet and decreases as
Θ increases in the contraction region’s exit. Moreover,
Fig. 11 shows that zs is approximately unaffected by the
small Hartmann number M at {α = 0.1, Θ = 0.5}.
Furthermore, zs is approximately unaffected by the small
viscosity parameter α at {M = 0.3, Θ = 0.5}, as shown
in Fig. 12. As shown in Figs. 11 and 12, the axial
component of flow points that are separated for a fluid

whose viscosity can be either bivariation or a function of
a radial component is approximately the same.

Fig. 2: The pressure rise ∆P
λ

against the volume flow rate Θ at

M = 0.3 and φ = 0.6

Fig. 3: The pressure rise ∆P
λ

against the volume flow rate Θ at

α = 0.1 and φ = 0.6
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Fig. 4: The pressure rise ∆P
λ

against the volume flow rate Θ at

M = 0.3 and α = 0.1

Fig. 5: The friction force F
λ

versus the volume flow rate Θ at

M = 0.3 and φ = 0.6

Fig. 6: The friction force F
λ

versus the volume flow rate Θ at

α = 0.1 and φ = 0.6

Fig. 7: The friction force F
λ

versus the volume flow rate Θ at

M = 0.3 and α = 0.1

Fig. 8: Θmin

Θmax
versus amplitude ratio φ at α = 0.1

Fig. 9: Θmin

Θmax
versus amplitude ratio φ at M = 0.3
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Fig. 10: The axial component of flow separation points zs versus

amplitude ratio φ at α = 0.1 and M = 0.3

Fig. 11: The axial component of flow separation points zs versus

amplitude ratio φ at α = 0.1 and Θ = 0.5

Fig. 12: The axial component of flow separation points zs versus

amplitude ratio φ at M = 0.3 and Θ = 0.5

7. Conclusion

As a result of previous analyses, we conclude that
the flow field of a fluid with bivariation viscosity through
a peristaltic tube in presence of a magnetic field is

remarkable. More exactly:
• The small viscosity parameter (α) of a fluid whose
viscosity is bivariation and a fluid whose viscosity is a
function of a radial component affects the pressure rise
and the drag (friction) forces. However, a small Hartmann
number (M) affects neither the pressure rise nor the drag
(friction) forces for a variety of flow rate values.
• The small occlusion (φ = 0.2) of the peristaltic wave
affects neither the pressure rise nor the drag (friction)
forces of a fluid whose viscosity can be either a
bivariation or a function of a radial component. However,
high occlusion (φ = 0.6) affects the pressure rise and the
drag (friction) forces of these types of fluids for a variety
of flow rate values.
• The small Hartmann number and small viscosity
parameter of the mentioned fluids affect the centerline’s
trapping limit of the peristaltic tube.
• The small Hartmann number and small viscosity
parameter of the mentioned fluids do not affect the flow
points that are separated (trapping) at the wall surface, but
volume flow rate affects these points for a variety of
amplitude ratio values.
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