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Abstract: A new method is proposed to obtain nonlinear Schrödinger equations by the chain of

Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) quantum kinetic equations. In that sense, we investigate the dynamics of

a quantum system including an infinite number of identical particles which interact via a (special) pair potential in the form of Dirac

delta-function.

Keywords: BBGKY hierarchy; quantum kinetic equations; quantum kinetic theory; correlation matrix; non-linear Schrödinger

equation.

1 Introduction

One of the well-known universal theories describing
non-linear phenomena in nature is the non-linear
Schrödinger equation [1,2,3,4,5,6,7,8,9,10,11] In the
classical version, it describes the phenomena of light
propagation in optical fibers, in the study of gravitational
waves on the surface of water under special conditions, in
the study of the phenomenon of Bose-Einstein
condensation and waves in plasma.

The nonlinear Schrödinger equation in quantum
physics is the basis for studying systems of bosons
interacting through a potential in the form of a delta
function. The study of systems of Bose particles
interacting through a potential in the form of a delta
function was carried out in the classic work of
Lieb-Liniger in 1963 in a one-dimensional system [12].

Both in the classical and in the quantum case, the
nonlinear equation describes the evolution of an
individual particle, without taking into account its
correlation with the rest of the particles of the system. In
the real world, all phenomena are described by moving
systems of interacting particles. Therefore, the
generalization of nonlinear phenomena describing the
nonlinear Schrödinger equation, taking into account all
correlations between particles, is an urgent task of our
time.

The present work is devoted to solving this problem
for quantum systems of particles. For this purpose, based
on the chain of quantum kinetic equations of
Bogolyubov-Born-Green-Kirkwood-Yvon for the
one-dimensional case, a chain of quantum equations for
correlation matrices is derived. Based on the perturbation
theory of series based on the Ishimaru method and
considering the interaction between particles in the form
of a delta function, the problem is reduced to solving the
homogeneous von Neumann equation and
inhomogeneous equations for wave functions. The
solutions of these equations are determined under initial
conditions and it is indicated how to use these solutions to
determine the solution of the chain of BBGKY quantum
kinetic equations for density matrices.

2 Solution of the chain of BBGKY quantum

kinetic equations for dense systems of

interacting particles

Let a quantum system of particles interacting through the
pair potential Φ be given. Consider, in the framework of
quantum statistical physics, a chain of quantum kinetic
equations describing the evolution of a given system of
particles [13,14,15,16,17,18,19]

i
∂ fn(t,x1, ...,xn;x′1, ...,x

′
n)

∂ t
=
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[Hn, fn)](t,x1, ...,xn;x′1, ...,x
′
n)+

1

v
Spx ∑

1≤i≤n

(Φ(|xi − x|)−Φ(|x′i− x|)×

fn+1(t,x1, ...,xn,x;x′1, ...,x
′
n,x), (1)

where fn(t) is the density matrix, xi denotes the position of
the ith particle in the three-dimensional Euclidean space
R3, [,] is the Poisson bracket, m is mass of particle and
2m = 1, h̄ = 1 ,0 ≤ t is the time. V is the volume and N is
the number of particles of the system; v is the volume per
particle, and H is the Hamiltonian of the system:

Hn = Tn +Un =− ∑
1≤i≤n

1

2
△xi

+ ∑
1≤i< j≤n

Φ(|xi − x j|),

where

Tn =− ∑
1≤i≤n

1

2
△xi

, Un = ∑
1≤i< j≤n

Φ(|xi − x j|)

and n ∈ N. Let us introduce the following notation:

f (t) = { f1(t,x1;x′1), f2(t,x1,x2;x1,x2), ...

..., fn(t,x1,x2, ...,xn;x′1,x
′
2, ...,x

′
n), ...}, n = 1,2, ...;

(H f (t))n = [Hn, f (t)n]; (T f (t)n = [Tn f (t)n];

(Dx f )n(t,x1,x2, ...,xn;x′1,x
′
2, ...,x

′
n) =

fn+1(t,x1,x2, ...,xn,x;x′1,x
′
2, ...,x

′
n,x);

(Ax f (t))n =
1

v
∑

1≤i≤n

[Φ(|xi − x|), f (t)n].

Then equation (1) takes the form

i
∂ fn(t)

∂ t
= H fn(t)+ SpxAx f (t). (2)

Statement: The chain of quantum kinetic equations
for correlation matrices has the form [20]

i
∂ϕ(t)

∂ t
= H ϕn(t)+

1

2
W (ϕ(t),ϕ(t))+

+Spx(AxDxϕ(t))+ Spx(Axϕ(t)∗Dxϕ(t)), (3)

where [21,22]

f (t)=Γ ϕ(t)= I+ϕ(t)+
ϕ(t)∗ϕ(t)

2
+ ...+

(∗ϕ(t))n

n!
+ ...,

(4)
(ϕ ∗ϕ)(X ,X ′) = ∑

Y∈X ;Y ′∈X ′
ϕ(Y ;Y ′)ϕ(X \Y ;X ′ \Y ′),

where

X =(x1,x2, ...,xn), X ′ =(x′1,x
′
2, ...,x

′
n), Y =(x1,x2, ...,xn′),

Y ′ = (x′1,x
′
2, ...,x

′
n′), n′ ∈ n, n′ = 1,2, .., I ∗ f = f ,

(∗ f )n = f ∗ f ∗ ...∗ f n time,

(U ϕ(t))n = ∑
1≤i< j≤n

(Φ(|xi − x j|)−Φ(|x′i − x′j|))ϕ(t)n,

(W (ϕ(t),ϕ)n = ∑
Y∈X ;Y ′∈X ′

(U (Y,Y ′;X \Y,X ′ \Y ′)×

ϕ(t,Y ;Y ′)ϕ(t,X \Y ;X ′ \Y ′).

Proof: To obtain (3), we substitute (4) in (2):

i
∂Γ ϕ(t)

∂ t
= H Γ ϕ(t)+ SpxAxΓ ϕ(t). (5)

On the basis

i
∂

∂ t
Γ ϕ(t) = i

∂

∂ t
ϕ(t)∗Γ ϕ(t), (6)

DxΓ ϕ(t) = Dxϕ ∗Γ ϕ(t), (7)

AxΓ ϕ(t) = Axϕ ∗Γ ϕ(t), (8)

AxDxΓ ϕ(t) = AxDxϕ ∗Γ ϕ(t)+

Axϕ(t)∗Dxϕ(t)∗Γ ϕ(t), (9)

T Γ ϕ(t) = T ϕ(t)∗Γ ϕ(t), (10)

U Γ ϕ(t) = U ϕ(t)∗Γ ϕ(t)+

1

2
W (ϕ(t),ϕ(t))∗Γ ϕ(t). (11)

Substituting (6)-(11) into (5), multiplying both sides
of the equation by Γ (−ϕ ,(t)), we obtain quantum kinetic
equations for correlation matrices (3).

This proves the statement.

In order to investigate our system on the basis of
reasoning similar to those in [13] , we set:

Φ(|xi − x j|) = vθ (|xi − x j|), (12)

and [20,23,24]

ϕn(t) = vn−1ψn(t). (13)

Based on (12),(13), equation (3) for n particles will take
the form

i
∂ψn(t,X ;X ′)

∂ t
= (T ψ)n(t,X ;X ′)+ v(U ψ)n(t,X ;X ′)+

1

2
W (ψ(t),ψ(t))n(X ;X ′)+ vSpx(AxDxψ)n(t,X ;X ′)+

Spx(Axψ ∗Dxψ)n(t,X ;X ′). (14)
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3 Solution of equation (14)

To solve equation (14), we use the perturbation theory
method and look for a solution to the equation in the form
of a series [20]:

(ψ)n(t,X ;X ′) = ∑
µ

vµψ µ
n (t,X ;X ′), (15)

n = 1,2,3, ...., µ = 0,1,2, , ....

Substituting the series (15) in 1-dimensional equation
(14) and equating the coefficients of equal powers of v,
we obtain the set of homogeneous and inhomogeneous
equations.

(i
∂

∂ t
+L1)(ψ)0

1(t) = 0, (16)

(i
∂

∂ t
+L1 +L2)(ψ)0

2(t) = S0
2(t), (17)

................................................

(i
∂

∂ t
+

s

∑
i=1

Li)(ψ)µ
n (t) = Sµ

s (t) (18)

where

L1(ψ)0
1(t,x1;x′1) =

△x′
1
−△x1

2m
ψ0

1 (t,x1;x′1)−

Spx(θ (|x1 − x|)−θ (|x′1− x|))ψ0
1 (t,x1;x′1)ψ

0
1 (t,x;x),

(Liψ
µ
1 (t,X ;X ′) =

△x′i
−△xi

2m
ψ µ

n (t,X1;X ′
1)−

Spx( ˜Axψ0)(t,x;x′i)(Dxψ µ)(t,X \ xi;X ′ \ x′i),

Sµ
n (t,X ;X ′) = (U ψ µ−1)(t,X ;X ′)+

1

2
∑

ν1+ν2=µ

(W (ψ(t)ν1 ,ψ(t)ν2))(X ;X ′)+

Spx( ˜AxDxψ µ−1(t,X ;X ′)

+Spx ∑
ν1+ν2=µ−1

∑
Y∈X ;Y ′∈X ′

( ˜Axψν1(t,Y ;Y ′)×

Dxψν2(t,X \Y ;X ′ \Y ′)),

where

˜Ax = ∑
1≤i≤n

[θ (|x1 − x|),ψn(t,X ;X ′)].

Equation (16) is the well-known von Neumann equation
for the Hartree-Fock system [25,26]

Thus, the solution of equation (14) is reduced to the
solution of homogeneous (16) and inhomogeneous (17),
(18) von Neumann equations for ψ0

1 and ψ
µ
n , respectively.

As considered in the [20],[23] series
ψn(t,X ,X ′) = ∑µ vµψ

µ
n (t,X ,X ′), where ψ0

1 is defined as

a solution to the von Neumann equation and ψ
µ
n are

determined based on the formula

ψ µ
n (t,X ;X ′) =

∫

dY

∫

dY ′
∫ t

−∞
dt ′Sµ

n (t
′
,Y,Y ′)×

⋂

1≥i≥n

G (t − t ′,xi,yi;x′i,y
′
i) (19)

which is the solution to the equation (14).
Here G (t,X ,Y ;X ′,Y ′) is the solution to the Cauchy

problem [23]

i
∂G (t − t ′,x1,y1;x′1,y

′
1)

∂ t
=−1

2
(△x1

−△x′1
)×

G (t − t ′,x1,y1;x′1,y
′
1)+ Spx(θ (|x1 − x|)−

θ (|x′1 − x|))ψ0
1 (t,x1;x′1)G (t − t ′,x,y1;x,y′1)+

Spx(θ (|x1 − x|)−θ (|x′1− x|))ψ0
1 (t,x;x)

G (t − t ′,x1,y1;x′1,y
′
1)

with the initial condition

G (0,x1,y1;x′1,y
′
1) = δ (x1 − y1)δ (x

′
1 − y′i).

Consider the 1-dimensional von Neumann equation [4,5,
27,28]:

i
∂ψ0

1 (t,x1;x′1)
∂ t

=
△x′1

−△x1

2m
ψ0

1 (t,x1;x′1)+

Spx(θ (|x1 − x|)−θ (|x′1− x|))ψ0
1 (t,x1;x′1)ψ

0
1 (t,x1;x1).

(20)
We define the density matrix as follows:

ψ0
1 (t,x1;x′1) = χ(t,x1)χ

∗(t,x′1). (21)

Substituting (21) into (20) and considering θ (|xi − x j|) in
the form of the delta function δ (|xi − x j|), we get the
solution of the equations [27,28]:

i
∂ χ(t,x1)

∂ t
=−△x1

χ(t,x1)+ 2cχ(t,x1)|χ(t,x1)|2,

χ(t,x1)|t=0 = χ(x1). (22)

i
∂ χ∗(t,x′1)

∂ t
=−△x′1

χ∗(t,x′1)+ 2cχ∗
1(t,x

′
1)|χ∗(t,x′1)|2,

χ∗(t,x′1)|t=0 = χ∗(x′1). (23)

Equations (22), (23) are non-linear Schrödinger
equations. If we know the solutions to these equations, we
can use them to determine the solution to the von
Neumann equation. As is known [4,5] at c > 0, the
solution of Eq. (22) has the form

χ(t,x1) =

√

2

c

(λ + iν)2 + exp[2ν(x1 − x0 − 2λ t)]

1+ exp[2ν(x1− x0 − 2λ t)]
, (24)
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where ν is the speed, the parameter λ characterizes the
amplitude. The speed ν is expressed through the parameter

λ as ν =
√

1−λ 2.

It should be noted that the following two relationships
take place:

2

c
|χ(t,x1)|2 = 1− ν2

ch2ν(x1 − x0 − 2λ t)

and
∫

|χ(t,x1)|2dx1 = n,

where n is the number of particles in the system [27].

Thus, the equations (22), (23) are non-linear
Schrödinger equations. If we know the solutions of the
equations (22), (23), we can determine the solution of the
von Neumann equation through them. Further, based on
the von Neumann solution, using and (13) and (4) we can
determine the density matrix, which is the solution of the
BBGKY chain of quantum kinetic equations for the
one-dimensional case.

4 Conclusion

Thus, the non-linear Schrödinger equation and its solution
are derived from the chain of BBGKY quantum kinetic
equations. This allows, in contrast to the nonlinear
Schrödinger equation, on the basis of the chain of
BBGKY to investigate nonlinear processes in large
systems consisting of an arbitrary number of interacting
particles.

It should be noted that the derivation of the nonlinear
Schrödinger equation could be easily derived following
the derivation of the Gross-Pitaevskii equation from the
BBGKY chain of quantum kinetic equations, without
taking into account the contribution of the external field
[29].
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