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Abstract: In this paper, several feedback control methods are proposed for some real-life industrial processes. All these methods

are designed to obtain an optimal tuning for the Fractional-order PID controller using two optimization techniques; Particle Swarm

Optimization (PSO) and Bacteria Foraging Optimization (BFO). Such methods have been inferred by including several approaches for

the fractional-order integro-differential Laplacian operators within the PSO and BFO algorithms. These approaches are: The Continued

Fractional Expansion (CFE) approach, Oustaloup’s approach, the 1st - and the 2nd-order El-Khazali’s approaches. Different forms of

integer-order rational transfer functions for such operators have been deduced corresponding to these approaches, which allow one to

develop realizable models for some industrial applications. Numerous numerical simulations of the dynamic responses are explored

and discussed for the purpose of illustrating the influence and the efficiency of all designed methods.

Keywords: PIλ Dδ -controller, particle swarm optimization algorithm, bacteria foraging optimization, Laplacian operator,

Oustaloup’s approach, continued fractional expansion approach, El-Khazali’s approaches.

1 Introduction

Over the past few decades, the fractional-order dynamic systems (FoDSs) together with their proposed controllers have
been extensively explored within different fields associated with applied science and engineering [1]. To meet the great
advance in modern control theories, several types of controllers have been and still being proposed; such as fuzzy-, neural
network-, predictive-, unified feedback-, and optimal-controllers [2]. The proportional–integral–derivative controller (or
simply PID-controller), which is one of the most significant controllers, is still being widely employed nowadays in a large
number of industrial processes. Actually, upwards of 90% of these processes are performed based on such controller [2].
The reason for this utilization is referred to some useful proprieties that this controller has. Furthermore, it has been shown
that this controller has a very simple construction, which allows engineers to easily understand its form. It, furthermore,
has a powerful performance to achieve a better change to the whole of the industrial process. In addition, it has been
declared that this controller is indeed simple to design and easy to implement within several real-time applications [2].
However, although all these features are inherent in this controller, it has been recently shown that it does not offer
an optimum adjustment for the controlled system because it generates a large overshoot in the response of the system.
This matter has increasingly motivated a lot of researchers to seek executable solutions for the purpose of improving
the performance of such controller. The main one of those granulomatous solutions have been established based on
employing the conception of fractional calculus, which handles the derivative, as well as the integral in its fractional-order
form instead of its integer-order one. The idea of this solution was based on proposing a modified controller of the PID-

controller itself which is called the Fractional-order PID controller (or simply PIλ Dδ -controller) [2,3,4]. This controller
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shows its superior robustness, outstanding performance, and high flexibility in comparison with the classical one. One of
the main reasons that makes this controller possesses such characteristics is the fractional-order of its differentiation and
integration operators that provides more degrees of freedom in system designing [5]. Notwithstanding all these features
for this controller, it faces a significant task, which has become a focal point for many researchers, represented by the
optimal tuning of its parameters that should be undoubtedly handled [6]. In particular, this controller has five parameters
that should be tuned in order to satisfy some needed features for the system. These parameters are the three constant gains
(Kp,Ki,Kd) for the proportional, integral and derivative terms, together with the fractional-order values of the integration
and differentiation operators (λ ) and (δ ), respectively [2].

Recently, many swarm intelligence algorithms have been widely developed for the purpose of facing immense number

of complicated optimization problems. Due to the fact that finding the parameters of the PIλ Dδ -controller is just one of
these problems, several optimization algorithms have been employed for tuning these parameters. Among all of such
algorithms, the Particle Swarm Optimization (PSO) and the Bacteria Foraging Optimization (BFO) algorithms have made
their mark and demonstrated their potency in this field [7]. The PSO algorithm, which was first proposed by Kennedy
and Eberhart in 1995 [8,9], enjoys simple procedures, efficient computations and easiness implementation [5,9]. On the
other hand, the BFO algorithm, which was proposed in 2002 by Passino [10], is a new arrival algorithm to the class
of optimization techniques, which characterized by a graceful structure and a biological motivation as reported [7]. In
general, the PSO and BFO algorithms have been successfully carried out in several industrial applications such as machine
learning, transmission loss reduction, harmonic estimation, optimal control engineering, and many more (see [11,12,13]
and references therein). However, in this work, these two algorithms will be implemented to find optimal values of the five

parameters of the PIλ Dδ -controller in order to meet high performance for some electric motor drives. More precisely, the
main target of such optimizations is to minimize the value of the fitness function in view of some constraints associated
with time or frequency domain, such as maximum settling time, rise time and overshoot, or subject to the gain and phase
margins of the system. Actually, these constraints play a key role in measuring the robustness of the system under control
[14,15]. It is quite natural that, after the successful of the optimization algorithms in obtaining the optimum values of

the PIλ Dδ -controller, attention would be directed toward the other major next task, which concerns with dealing with

the fractional-order Laplacian operator sλ and/or sδ (or simply s±α , where α = {λ , δ}), 0 < α < 1. As a result of the
arbitrariness of this operator, its analytical form could be only granted as a finite-order rational transfer functions enabling
one to analyze and design the controlled system without required handling of some tough time-domain formulations
[14,15]. These transfer functions, which are convenient to use and their features are quite close to the original system
features, could be generated using several methods and approaches such as the Continued Fraction Expansion (CFE) [16],
Matsuda’s [17], Carlson’s [18], and Oustaloup’s [16,17,19] approaches.

Recently, El-Khazali introduced his 1st- and 2nd-approaches in [20] and [21], respectively, for approximating s±α ,
where 0 < α < 1. It has been shown that such two approaches may have significant influence on the required optimum
results (see [14,15]). Besides, the use of these methods will, fortunately, reduce the order of the system more than any other
approaches. Therefore, from the perspective of the benefits of these two approaches, they will be next carried out together
with two other approaches, the CFE and Oustaloup’s approaches, to provide s±α with its corresponding rational transfer

functions. As far as we know, designing new PIλ Dδ -controllers for some electric motor drives systems using the PSO and
BFO algorithms via four approaches to s±α remains, up to this day, mostly unexplored topic. For simplicity, these optimal

controllers will be denoted by the PIλ Dδ -PSO/BFO via CFE approach, PIλ Dδ -PSO/BFO via Oustaloup’s approach,

PIλ Dδ -PSO/BFO via 1st -order El-Khazali’s approach, and PIλ Dδ -PSO/BFO via 2nd-order El-Khazali’s approach. In
addition, all these eight controllers will be compared in accordance with their performances in providing some handled
systems with best dynamic response characteristics, such as providing the minimal overshoot percentage, least rise time
and least settling time.

This paper will be organized as follows: The following next section introduces the concept of the fractional-order linear
time-invariant system, followed by some preliminaries associated with the fractional-order PID controllers which are
briefly presented in Section 3. Some finite-order rational approaches of the fractional-order integro-differential Laplacian
operators are described in Section 4, while the last section exhibits all numerical findings resulted from applying the
proposed schemes on two industrial applications, namely the linear Brushless (BLDC) DC motor and the Servo DC
motor.

2 Fractional-order linear time-invariant systems

Generally, the primary concepts of fractional calculus are employed to turn the so-called integer-order Linear
Time-Invariant (LTI) systems into their fractional-order cases to be next named the Fractional-order LTI systems (or
simply FoLTI systems) [3,22]. It is common knowledge that such systems are exact generalizations of those
integer-order ones. In view of some evidences reported [3,23], it was demonstrated that these FoLTI systems surpass the
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other classical counterparts because of their flexibility in considering further parameters. However, the following
fractional-order differential equation represents the considered FoLTI systems in this work [3]:

znDρny(t)+ ...+ z0Dρ0y(t) = wmDνmu(t)+ ...+w0Dν0u(t) (1)

where y(t) and u(t) are two variables over the time t that indicate to the control output and input of the system respectively,

and where D{ρi,νk} represents the Caputo operator of orders ρi; i = 1,2,3, ...,n, and νk;k = 1,2,3, ...,m, such that n,m∈N.

As a matter of fact, system (1) mathematically matches the LTI filter of infinite dimension. For the purpose of modeling
this system, one should realize its form as a finite-order rational transfer function, which will enable one to analyze and
design the controlled system without required handling of some tough time-domain formulations. In fact, the high/low
degree of these approximate transfer functions relies on the numerical method that generated them. In the same framework,
such transfer function plays a key role in representing the frequency response of LTI filters. In particular, the transfer
function of any of these filters can be represented by the ratio between two Laplace transforms of both system’s output
and input in accordance with zero initial conditions [24]. In other words, the transfer function that represents the standard
form of the FoLTI system given in (1) can be expressed as follows [24,25]:

G(s) =
Y (s)

U(s)
=

wmsνm +wm−1sνm−1 + ...+w1sν1 +w0sν0

znsρn + zn−1sρn−1 + ...+ z1sρ1 + z0sρ0
, (2)

where Y (s) = L {y(t)}, U(s) = L {u(t)} are the Laplace transforms of y(t) and u(t), respectively.

3 Fractional-order PID controllers

In 1997, Podlubny et al. proposed the main construction of the PIλ Dδ -controller in [26]. They evidently demonstrated
its advantages in providing more rapid response and better performance than the classical PID-controller. From this
point of view, several real-life industrial processes and applications are currently employing this controller. Actually, its
construction is based on adding two extra parameters (λ and δ ) to the main parameters, (Kp,Ki,Kd), of the PID-controller.
These two parameters, which respectively represent the fractional integral and differential operators, offer further degree

of freedom within tuning algorithms. However, the PIλ Dδ -controller is certainly deduced from the following integro-
differential equation [3,26]:

u(t) = Kpe(t)+KiJ
λ e(t)+KdDδ e(t), (3)

where Dδ is the Caputo operator of order δ , Jλ is the Riemann-Liouville operator of order λ , and e(t) is the error signal.

Taking the Laplace transform of (3) yields exactly the final version of the PIλ Dδ -controller, which would be of the
following form:

C(s) =
U(s)

E(s)
= Kp +Kis

−λ +Kdsδ . (4)

where E(s) = L {e(t)} is the Laplace transforms of e(t).

The next task focuses on taking the PIλ Dδ -controller along with two industrial systems for the purpose of improving
their process control. This involves carrying out a certain optimization algorithm trying to improve the unit-step response

of the system through optimal tuning the five parameters of the PIλ Dδ -controller. In this work, the PSO and BFO
algorithms will be implemented to find the optimum values of those parameters via several approaches for the operators
s±α shown in (4), where α = {λ , δ}, 0 < α < 1. From the perspective of the whole scheme, there is definitely an
optimization problem, which made it necessary to set up the so called fitness function within these algorithms. In view of
this fact, there are several common fitness functions that might be employed for designing the best points of the

PIλ Dδ -controller, such as Integral Time Square Error (ITSE), Integral Square Error (ISE), Integral Absolute Error (IAE)
and Integral Time-Absolute Error (ITAE). In particular, minimizing the value of any fitness function is the main target of

the considered optimization algorithm for the purpose of attaining the optimum values of the PIλ Dδ -controller. For more
details about these two algorithms and how some fitness functions look like within, the reader may refer to the references

[5,7,9,27,28,29]. However, the overall tuning process of the PIλ Dδ -controller’s parameters using PSO and BFO
algorithms could be described by the block diagram shown in Figure 1.
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Fig. 1: Block diagram of PSO/BFO running to tune the PIλ Dδ -controller

In addition to the role of the fitness functions in tuning the optimum parameters of the PIλ Dδ -controller, this work
utilizes one that depends on metering the main criteria associated with the time domain. More precisely, the fitness
function, which will be considered in this work, consists of four aspects; the steady-state error, settling time, rise time,
and peak overshoot [6,9]. However, the following is how the fitness function can be expressed [6,9]:

J = (1− eβ )(Mp +Ess)+ e−β (Ts −Tr), (5)

where β is the scaling factor, Mp is the peak overshoot, Ess is the steady state error, Ts is the settling time, and Tr is the
rise time.

It is worth noting that the scaling factor β , which typically relies on a designer’s choice, certainly determines the
contribution of the four mentioned aspects towards the primary fitness function [6,9]. In particular, we chose this factor
here to be equal 0.5, based on the assertion that when β is greater than 0.7, the steady states error and overshoot will be
further reduced, and when it is smaller than 0.7, the rise time and settling time will be further reduced [9].

4 Rational approaches of fractional-order operators

In this section, four finite-order rational approaches of the fractional-order integro-differential Laplacian operators, s±α

are taken into account, where 0 < α < 1. These approaches are: The 1st -order El-Khazali’s approach which has been
well defined in [20], the 2nd-order El-Khazali’s approach which has been broadly outlined in [16,21,23,25], Oustaloup’s
approach that were extensively employed in many references [25,30], and finally the CFE approach which is the only
approach that will be briefly described in this work for completeness.

4.1 The CFE approach

This method is deemed the primary mathematical approach for providing the operators s±α by proper rational transfer
functions. Such approach had been established based on the following approximation [31]:

(1+ z)α =
1

1− αz

1+
(1+α)z

2+
(1−α)z

3−
(2+α)z

2+
(2−α)z

5+
...+(n+α)z

2+
(n−α)z

2n+1+...

, (6)

where, 0 < α < 1 and n ∈N. For simplicity, the form in (6) can be expressed in the following equivalent form [27]:

(1+ z)α =
1

1−

αz

1+

(1+α)z

2+

(1−α)z

3+

(2+α)z

2+

(2−α)z

5+

(n+α)z

2+

(n−α)z

2n+ 1+
. (7)

For the purpose of obtaining a finite-order approximation of the operator sα , one might replace the term s− 1 instead of
the variable z in (7). This exchange step enables the nth-order approximation of such operator to be appeared around the
center frequency ω0 = 1rad/sec as follows [31]:

sα ∼=
α0sn +α1sn−1 + . . .+αn−1s+αn

αnsn +αn−1sn−1 + . . .+α1s+α0

, (8)
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where 0 < αi < 1, i = 0,1, ,2, . . . ,5. In particular, the coefficients’ values of αi can be found, for i = 0,1, ...,5. Besides,
the operator s−α can be simply obtained by inverting upside down the expression given in (18).

In general, the need to use the previously stated approaches arise immediately after obtaining the optimum values

of the PIλ Dδ -controller through some optimization algorithms. These four approaches, which will be just finite-order
rational transfer functions, allow one to analyze and design the controlled system without required handling some tough
time-domain formulations [14,15]. To highlight the major similarities between these approaches, two comparisons have
been made between all rational transfer functions for approximating the operator s0.5 in view of the time and frequency
responses. In particular, the step responses and the bode diagrams of the following approximations are exhibited in Figures
2 and 3, respectively.

– The 1st-El-Khazali’s approach:

s0.5 =
2.414s+ 1

s+ 2.414
. (9)

– The 2nd-El-Khazali’s approach:

s0.5 =
2.707s2 + 4.828s+ 0.7071

0.7071s2+ 4.828s+ 2.707
. (10)

– Oustaloup’s approach:

s0.5 =
10s5 + 298.5s4+ 1218s3+ 768.5s2+ 74.97s+ 1

s5 + 74.97s4+ 768.5s3+ 1218s2+ 298.5s+ 10
. (11)

– The CFE approach:

s0.5 =
11s5 + 165s4 + 462s3+ 330s2+ 55s+ 1

s5 + 55s4 + 330s3+ 462s2 + 165s+ 11
. (12)

In view of Figure 2, one might easily observed that all step responses of the operator s0.5 using the four approximations
given by (9)–(12), besides all the frequency responses shown in Figure 3, are almost identical responses.
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Fig. 3: Bode diagrams of s0.5 using (9)–(12).

5 Some industrial applications

From the principle of the extreme importance of electric motors in lots of industrial applications comes the need to
frequently pay attention to improve their performance as possible. Such motors can be found everywhere around us;
in our cars, fans, dryers, washers, pumps, air conditioners, refrigerators, etc. The speed of those motors is inversely
proportional to the flux of the magnetic field, and directly proportional to the armature voltage [32]. Thus, controlling of
the field current and/or the armature voltage will adjust their speed [32]. For this purpose, lots of controllers, including the

PIλ Dδ -controller, have been employed in order to carry out this controlling task. Actually, the PIλ Dδ -controller provides

an effective solution to several real-life control issues [9]. In this section, several PIλ Dδ -controllers in accordance with
two mainly types of electric motors, namely the Brushless DC motor (or simply BLDC motor) and the Servo DC motor,
will be designed in order to obtain better dynamic responses of their systems which in turn provide high performance for
these motors. Of course, all these design methods will be implemented through employing the PSO and BFO algorithms
with considering all aforesaid approaches of the operators s±α . Actually, it would be eight feedback design methods after

considering these two algorithms together with the four approaches of s±α . These methods are PIλ Dδ -PSO/BFO via

CFE approach, PIλ Dδ -PSO/BFO via Oustaloup’s approach, PIλ Dδ -PSO/BFO via 1st -order El-Khazali’s approach, and

PIλ Dδ -PSO/BFO via 2nd-order El-Khazali’s approach. However, the following two subsections focus on describing the

tune process of the PIλ Dδ -controller for BLDC and Servo DC motors, respectively.

5.1 Design of PIλ Dδ -controller for a linear BLDC motor

In recent time, several novel control strategies have been broadly established to enhance the performance of BLDC motor,
(see [9] and references therein). In [25], a special case of the BLDC motor system has been recently handled through
considering the coefficient of s consists of only one term in the denominator part via just using the 2nd-order El-Khazali’s

approach. However, in this part, we intend to design several optimal PIλ Dδ -controllers for speed control of a linear BLDC
motor rather than that previously proposed. For this purpose, we refer to the transfer function of the motor speed w(t) to
the armature voltage v(t) reported in [9,32] as follows:

G(s) =
W (s)

V (s)
=

Kt

JLs2 +(DL+ JR)s+KtKb

, (13)

where W (s) = L {w(t)} and V (s) = L {v(t)} are respectively the Laplace transforms of w(t) and v(t), and where Kt is
the motor torque constant, J is the moment of inertia, L is the inductance of the stator, D is the viscous coefficient, R is
the resistance of the stator, and Kb is the back electromotive force constant. In view of the parameters’ values given in [9],
one can obtained the following transfer function:

G(s) =
0.1433

0.052× 10−5s2 + 0.0002172s+ 0.02053489
. (14)

c© 2022 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 8, No. 3, 377-391 (2022) / www.naturalspublishing.com/Journals.asp 383

To demonstrate all feedback design methods of the PIλ Dδ -controllers, let us minimize, as much as possible, the
value of the fitness function given in (5) by executing the PSO and BFO algorithms that consider the four approaches of
the operators s±α mentioned in Section 4. The maximum number of iterations and the population size, within both two
algorithms, have been assumed 100 and 20, respectively. However, in order to obtain a clear view, we have arranged the

overall results of these optimizations by stating firstly the PIλ Dδ -controller C(s), secondly the same controller but via a
certain approach, and finally the closed-loop of the system H(s) according to each controller.

–The PIλ Dδ -PSO controller via 1st-order El-Khazali’s approach:

C(s) = 29.1798+
1

s0.862
+ 52s0.987, (15)

C{1st−Kh}(s) =
4.707e004s2+ 3.197e004s+ 3810

9.19s2 + 901.1s+ 97.94
, (16)

HPSO
{1st−Kh}(s) =

6746s2 + 4581s+ 546

4.779e− 006s4+ 0.002465s3+ 6746s2+ 4600s+ 548
. (17)

–The PIλ Dδ -PSO controller via 2nd-order El-Khazali’s approach:

C(s) = 1+
1

s0.928
+ 54s0.305382, (18)

C{2nd−Kh}(s) =
476.2s4 + 1568s3+ 1408s2+ 302.8s+ 13.43

4.111s4+ 23.44s3+ 29.59s2+ 9.975s+ 0.1777
, (19)

HPSO
{2nd−Kh}

(s) =
68.24s4 + 224.7s3+ 201.7s2+ 43.39s+ 1.925

2.138e− 006s6+ 0.0009051s5+ 68.33s4+ 225.2s3+ 202.3s2+ 43.6s+ 1.928
. (20)

–The PIλ Dδ -PSO controller via Oustaloup’s approach:

C(s) = 11.8738+
1

s0.733107
+ s0.22141, (21)

COus(s) =

429.5s10 + 3.375e004s9+ 7.778e005s8+ 6.432e006s7+ 2.073e007s6+ 2.652e007s5

+ 1.388e007s4+ 2.98e006s3+ 2.688e005s2+ 9560s+ 115

29.26s10+ 2402s9+ 5.664e004s8+ 4.763e005s7+ 1.536e006s6+ 1.933e006s5

+ 9.59e005s4+ 1.856e005s3+ 1.377e004s2+ 364.5s+ 2.772

, (22)

HPSO
Ous (s) =

61.55s10 + 4836s9+ 1.115e005s8+ 9.217e005s7+ 2.971e006s6+ 3.8e006s5

+ 1.989e006s4+ 4.27e005s3+ 3.852e004s2+ 1370s+ 16.48

1.522e− 005s12+ 0.007604s11+ 62.7s10+ 4898s9+ 1.127e005s8+ 9.318e005s7+

3.003e006s6+ 3.84e006s5+ 2.009e006s4+ 4.308e005s3+ 3.88e004s2+ 1377s+ 16.54

. (23)

–The PIλ Dδ -PSO controller via the CFE approach:

C(s) = 20.5491+
1

s0.968724
+ s0.091, (24)

CCFE(s) =

1.896e004s10+ 7.188e005s9+ 8.023e006s8+ 3.672e007s7+ 7.87e007s6+ 8.372e007s5

+ 4.474e007s4+ 1.175e007s3+ 1.431e006s2+ 7.406e004s+ 1335

859.2s10+ 3.286e004s9+ 3.674e005s8+ 1.678e006s7+ 3.566e006s6+ 3.723e006s5

+ 1.913e006s4+ 4.627e005s3+ 4.662e004s2+ 1481s+ 1.516

, (25)
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HPSO
CFE(s) =

2717s10+ 1.03e005s9+ 1.15e006s8+ 5.262e006s7+ 1.128e007s6+ 1.2e007s5

+ 6.411e006s4+ 1.684e006s3+ 2.05e005s2+ 1.061e004s+ 191.3

0.0004468s12+ 0.2037s11+ 2742s10+ 1.038e005s9+ 1.158e006s8+ 5.297e006s7

+ 1.135e007s6+ 1.207e007s5+ 6.451e006s4+ 1.693e006s3+ 2.06e005s2+ 1.064e004s+ 191.3

. (26)

–The PIλ Dδ -BFO controller via 1st-order El-Khazali’s approach:

C(s) = 8.4891+
6.0935

s0.7581
+ 20.0919s0.8048, (27)

C{1st−Kh}(s) =
726.4s2+ 599.8s+ 280.1

5.2s2 + 34.65s+ 6.472
, (28)

HBFO
{1st−Kh}(s) =

104.1s2 + 85.95s+ 40.14

2.704e− 006s4+ 0.001147s3+ 104.2s2+ 86.67s+ 40.27
. (29)

–The PIλ Dδ -BFO controller via 2nd-order El-Khazali’s approach:

C(s) = 13.8469+
4.9298

s0.2575
+ 11.8752s0.5831, (30)

C{2nd−Kh}(s) =
96.99s4 + 523.9s3+ 905.8s2+ 503.4s+ 87.38

1.252s4 + 13.34s3+ 30.87s2+ 20.18s+ 3.446
, (31)

HBFO
{2nd−Kh}

(s) =
13.9s4 + 75.07s3+ 129.8s2+ 72.14s+ 12.52

6.51e− 007s6+ 0.0002788s5+ 13.93s4+ 75.36s3+ 130.4s2+ 72.55s+ 12.59
. (32)

–The PIλ Dδ -BFO controller via Oustaloup’s approach:

C(s) = 3.2985+
4.1654

s0.1852
+ 11.3321s0.3326, (33)

COus(s) =

134.9s10 + 1.05e004s9+ 2.631e005s8+ 2.325e006s7+ 8.435e006s6+ 1.197e007s5

+ 7.223e006s4+ 1.722e006s3+ 1.712e005s2+ 6129s+ 71.8

2.346s10+ 244.3s9+ 7849s8+ 8.787e004s7+ 3.88e005s6+ 6.532e005s5

+ 4.445e005s4+ 1.153e005s3+ 1.18e004s2+ 420.6s+ 4.626

, (34)

HBFO
Ous (s) =

19.33s10 + 1504s9+ 3.77e004s8+ 3.332e005s7+ 1.209e006s6+ 1.715e006s5

+ 1.035e006s4+ 2.468e005s3+ 2.453e004s2+ 878.3s+ 10.29

1.22e− 006s12+ 0.0006366s11+ 19.43s10+ 1511s9+ 3.788e004s8+ 3.351e005s7

+ 1.217e006s6+ 1.729e006s5+ 1.044e006s4+ 2.492e005s3+ 2.477e004s2+ 886.9s+ 10.38

. (35)

–The PIλ Dδ -BFO controller via the CFE approach:

C(s) = 9.7776+
14.5668

s0.8676
+ 10.6973s0.9061, (36)

CCFE(s) =

3.533e005s10+ 8.136e006s9+ 6.829e007s8+ 2.69e008s7+ 5.908e008s6+ 7.955e008s5

+ 6.726e008s4+ 3.363e008s3+ 8.997e007s2+ 1.098e007s+ 4.815e005

142.9s10+ 4.654e004s9+ 9.041e005s8+ 6.302e006s7+ 1.902e007s6+ 2.757e007s5

+ 1.955e007s4+ 6.672e006s3+ 9.913e005s2+ 5.347e004s+ 230.1

, (37)
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HBFO
CFE (s) =

5.063e004s10+ 1.166e006s9+ 9.786e006s8+ 3.854e007s7+ 8.465e007s6+ 1.14e008s5

+ 9.639e007s4+ 4.819e007s3+ 1.289e007s2+ 1.573e006s+ 6.9e004

7.433e− 005s12+ 0.05525s11+ 5.065e004s10+ 1.167e006s9+ 9.806e006s8+ 3.868e007s7

+ 8.505e007s6+ 1.146e008s5+ 9.679e007s4+ 4.833e007s3+ 1.291e007s2+ 1.574e006s+ 6.9e004

.

(38)

To spotlight the dissimilarities between all previous design methods, some numerical results of the closed-loop transfer
functions given in (17), (20),(23), (26), (29), (32),(35), and (38) are exhibited in Figure 4, Figure 5, and Table 1.
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A closer examination to the above numerical results demonstrates to us that all proposed controllers are often
competing in providing high performance response specifications of all their corresponding closed-loop systems. In
particular, there are some slight improvements of the step responses achieved using PSO algorithm over that of BFO
algorithm. For example, one can observe that the minimum overshoot of the linear BLDC motor system has been

occurred when the PIλ Dδ -controller is designed by carrying out the PSO algorithm via Oustaloup’s approach. Generally,

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


386 S. Momani, I. M. Batiha: Tuning of the Fractional-order PID Controller...

Table 1: Step responses of (17), (20),(23), (26) & (29), (32),(35), (38)

Step Response HPSO
{1st−Kh}

HPSO

{2nd−Kh}
HPSO

CFE HPSO
Ous HBFO

{1st−Kh}
HBFO

{2nd−Kh}
HBFO

CFE HBFO
Ous

Rise Time 0.0084 0.0114 5.6222e-004 0.0098 0.0010 0.0097 0.0045 2.7177e-004

Settling Time 0.0146 0.0190 0.0192 0.0119 0.0156 0.0161 0.0067 0.0183

Settling Min. 0.9022 0.9754 0.4776 0.9934 0.6642 0.9138 0.9125 0.2946

Settling Max. 0.9998 0.9986 1.7023 0.9997 1.5802 0.9979 1.0110 1.8335

Overshoot 0.3497 0.0465 70.8166 0.0000 58.5431 0.3507 1.1086 85.0407

Peak 0.9998 0.9986 1.7023 0.9997 1.5802 0.9979 1.0110 1.8335

Peak Time 0.0441 0.0533 0.0016 0.0243 0.0025 0.0344 0.0100 7.8800e-004

all feedback design methods satisfy excellent results, except two methods (PIλ Dδ - PSO via CFE and PIλ Dδ -BFO via
1st-order El-Khazali’s approach) due to the have provided high overshoots as one could observe.

5.2 Design of PIλ Dδ -controller for Servo DC motor

Many modern industrial applications rely on Servo DC motors in their running. For example, but not limited to, these
motors are employed in robotics, especially in regard to determine their precision positioning, and also control their speed.
In other words, the Servo DC motors typically use a feedback controller for the purpose of controlling their position and/or
their speed. In [25], a Servo motor system has been recently handled in term of enhancing its performance through using
Carlson’s approach and the 2nd-order El-Khazali’s approach. However, likewise to the previous subsection, we purpose,
in this part, to design several feedback methods for controlling the position of the Servo DC motor. In [2], in light of its
position, LTI system of the Servo DC motor model have been addressed, and then the transfer function of the angular
position θ (t) to the applied voltage v(t) has been obtained. That is;

G(s) =
Θ(s)

V (s)
=

1.91

s3 + 21s2+ 20s
, (39)

where Θ(s) = L {θ (t)} and V (s) = L {v(t)} are the Laplace transforms of θ (t) and v(t), respectively. From now on,

all PIλ Dδ -controllers will be tuned optimally by the PSO and BFO algorithms via the four approaches mentioned before
in order to examine and compare all dynamic responses for all resultant closed-loop systems. The maximum number of
iterations and the population size have been assumed 100 and 20 in both algorithms, respectively. However, the overall
results of these two optimizations can be arranged in the following manner.

–The PIλ Dδ -PSO controller via 1st-order El-Khazali’s approach:

C(s) = 34.4612+
57

s0.33223
+ 26.8735s0.876195, (40)

C{1st−Kh}(s) =
592.8s2+ 1650s+ 1390

1.729s2+ 18.72s+ 10.25
, (41)

HPSO
{1st−Kh}(s) =

1132s2+ 3151s+ 2655

1.729s5 + 55.03s4+ 438s3+ 1722s2+ 3356s+ 2655
. (42)

–The PIλ Dδ -PSO controller via 2nd-order El-Khazali’s approach:

C(s) = 1+
49.421

s0.306845
+ 45s0.911, (43)

C{2nd−Kh}(s) =
394.3s4 + 1535s3+ 2410s2+ 1651s+ 435.8

0.2231s4+ 10.17s3+ 29.69s2+ 23.22s+ 4.048
, (44)

HPSO
{2nd−Kh}

(s) =
753s4 + 2931s3+ 4603s2+ 3154s+ 832.4

0.2231s7 + 14.85s6+ 247.7s5+ 1603s4+ 4017s3+ 5153s2+ 3235s+ 832.4
. (45)
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–The PIλ Dδ -PSO controller via Oustaloup’s approach:

C(s) = 59+
1

s0.165
+ 12.6794s0.387156, (46)

COus(s) =

288.4s10 + 2.566e004s9+ 7.358e005s8+ 7.561e006s7+ 3.156e007s6+ 5.131e007s5

+ 3.437e007s4+ 8.905e006s3+ 9.201e005s2+ 3.343e004s+ 376.3

2.138s10 + 231.3s9+ 7688s8+ 8.918e004s7+ 4.073e005s6+ 7.101e005s5

4.997e005s4+ 1.342e005s3+ 1.42e004s2+ 524.4s+ 5.947

, (47)

HPSO
Ous (s) =

550.8s10 + 4.901e004s9+ 1.405e006s8+ 1.444e007s7+ 6.028e007s6+ 9.8e007s5

+ 6.565e007s4+ 1.701e007s3+ 1.757e006s2+ 6.386e004s+ 718.7

2.138s13+ 276.2s12+ 1.259e004s11+ 2.558e005s10+ 2.483e006s9+ 1.245e007s8+ 3.8e007s7

+ 8.511e007s6+ 1.108e008s5+ 6.864e007s4+ 1.73e007s3+ 1.768e006s2+ 6.397e004s+ 718.7

. (48)

–The PIλ Dδ -PSO controller via the CFE approach:

C(s) = 48+
1

s0.177
+ 25.1508s0.166, (49)

CCFE(s) =

230.6s10+ 1.064e004s9+ 1.621e005s8+ 9.656e005s7+ 2.664e006s6+ 3.606e006s5

+ 2.453e006s4+ 8.146e005s3+ 1.238e005s2+ 7134s+ 132.8

2.254s10 + 116s9+ 1910s8+ 1.202e004s7+ 3.468e004s6+ 4.881e004s5

+ 3.441e004s4+ 1.183e004s3+ 1862s2+ 111.8s+ 2.142

, (50)

HPSO
CFE(s) =

440.5s10 + 2.031e004s9+ 3.097e005s8+ 1.844e006s7+ 5.088e006s6+ 6.888e006s5

+ 4.686e006s4+ 1.556e006s3+ 2.365e005s2+ 1.363e004s+ 253.6

2.254s13+ 163.3s12+ 4391s11+ 5.488e004s10+ 3.456e005s9+ 1.327e006s8+ 3.597e006s7

+ 6.799e006s6+ 7.826e006s5+ 4.962e006s4+ 1.596e006s3+ 2.388e005s2+ 1.367e004s+ 253.6

.

(51)

–The PIλ Dδ -BFO controller via 1st-order El-Khazali’s approach:

C(s) = 20.2744+
15.5467

s0.2245
+ 18.3304s0.4752, (52)

C{1st−Kh}(s) =
104.7s2+ 212.8s+ 115.7

1.434s2 + 4.28s+ 2.287
, (53)

HBFO
{1st−Kh}(s) =

200s2 + 406.5s+ 221

1.434s5+ 34.39s4+ 120.8s3+ 333.7s2+ 452.2s+ 221
. (54)

–The PIλ Dδ -BFO controller via 2nd-order El-Khazali’s approach:

C(s) = 21.1803+
16.0728

s0.9151
+ 17.0010s0.5781, (55)

C{2nd−Kh}(s) =
230.4s4 + 980.2s3+ 1386s2+ 792.7s+ 180.5

2.147s4 + 20.17s3+ 30.7s2+ 12.51s+ 0.2649
, (56)

HBFO
{2nd−Kh}

(s) =
440s4 + 1872s3+ 2647s2+ 1514s+ 344.7

2.147s7 + 65.26s6+ 497.2s5+ 1501s4+ 2749s3+ 2902s2+ 1519s+ 344.7
. (57)
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–The PIλ Dδ -BFO controller via Oustaloup’s approach:

C(s) = 5.9725+
19.2767

s0.1901
+ 7.3436s0.3402, (58)

COus(s) =

118.1s10 + 1.01e004s9+ 2.858e005s8+ 2.932e006s7+ 1.259e007s6+ 2.138e007s5

+ 1.54e007s4+ 4.323e006s3+ 4.955e005s2+ 1.996e004s+ 257.6

2.4s10 + 250.6s9+ 8058s8+ 9.036e004s7+ 3.995e005s6+ 6.734e005s5

+ 4.587e005s4+ 1.192e005s3+ 1.22e004s2+ 435.7s+ 4.791

, (59)

HBFO
Ous (s) =

225.5s10 + 1.93e004s9+ 5.459e005s8+ 5.599e006s7+ 2.405e007s6+ 4.083e007s5

+ 2.941e007s4+ 8.256e006s3+ 9.463e005s2+ 3.812e004s+ 492

2.4s13 + 301s12+ 1.337e004s11+ 2.648e005s10+ 2.477e006s9+ 1.142e007s8+ 2.819e007s7

+ 4.727e007s6+ 5.252e007s5+ 3.205e007s4+ 8.51e006s3+ 9.551e005s2+ 3.822e004s+ 492

. (60)

–The PIλ Dδ -BFO controller via the CFE approach:

C(s) = 20.8307+
15.1690

s0.8666
+ 20.5882s0.9161, (61)

CCFE(s) =

8.585e005s10+ 1.971e007s9+ 1.643e008s8+ 6.348e008s7+ 1.322e009s6+ 1.616e009s5

+ 1.203e009s4+ 5.336e008s3+ 1.302e008s2+ 1.502e007s+ 6.356e005

158.2s10 + 5.684e004s9+ 1.108e006s8+ 7.74e006s7+ 2.338e007s6+ 3.389e007s5

+ 2.403e007s4+ 8.195e006s3+ 1.216e006s2+ 6.533e004s+ 262.6

, (62)

HBFO
CFE (s) =

1.64e006s10+ 3.764e007s9+ 3.139e008s8+ 1.213e009s7+ 2.526e009s6+ 3.086e009s5

+ 2.298e009s4+ 1.019e009s3+ 2.487e008s2+ 2.868e007s+ 1.214e006

158.2s13+ 6.017e004s12+ 2.305e006s11+ 3.38e007s10+ 2.457e008s9+ 9.935e008s8+ 2.416e009s7

+ 3.717e009s6+ 3.74e009s5+ 2.488e009s4+ 1.045e009s3+ 2.5e008s2+ 2.868e007s+ 1.214e006

.

(63)

For more insight, Figure 6, Figure 7, and Table 2 highlight the similarities and dissimilarities aspects between all
previous design methods.
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Table 2: Step responses of (42), (45),(48), (51) & (54), (57),(60), (63)

Step Response HPSO
{1st−Kh}

HPSO

{2nd−Kh}
HPSO

CFE HPSO
Ous HBFO

{1st−Kh}
HBFO

{2nd−Kh}
HBFO

CFE HBFO
Ous

Rise Time 0.3160 0.3885 0.4279 0.4368 0.5067 0.5867 0.7086 0.7415

Settling Time 2.4807 3.4491 8.3970 7.3866 5.4051 4.3023 4.7133 10.0759

Settling Min. 0.9367 0.9044 0.6498 0.7000 0.8539 0.9033 0.9053 0.7949

Settling Max. 1.3333 1.0719 1.5909 1.5519 1.4290 1.3883 1.1942 1.4751

Overshoot 33.3316 7.1945 59.0943 55.1936 42.8986 38.8303 19.4189 47.5088

Peak 1.3333 1.0719 1.5909 1.5519 1.4290 1.3883 1.1942 1.4751

Peak Time 0.8599 1.5389 1.1751 1.2024 1.3631 1.6305 2.1162 1.9211

−200

−150

−100

−50

0

M
a

g
n

it
u

d
e

 (
d

B
)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−270

−225

−180

−135

−90

−45

0

P
h

a
s

e
 (

d
e

g
)

 

 

PSO−PI
λ
D

δ
 v.s BF−PI

λ
D

δ
 via Several Approaches

Frequency  (rad/s)

PSO via 1
st

−El−Khazali

BF via 1
st

−El−Khazali

PSO via 2
nd

−El−Khazali

BF via 2
nd

−El−Khazali

PSO via CFE

BF via CFE

PSO via Oustaloup

BF via Oustaloup

Fig. 7: Bode diagrams of (42), (45),(48), (51) & (54), (57),(60), (63).

In view of the above numerical results, another fiercely competition can be clearly observed between all the proposed
controllers. Here, the PSO algorithm via the four considered approaches mostly shows significant improvements in the step

response characteristics over that of BFO algorithm. More particulary, we find that when the PIλ Dδ -controller is designed
using the PSO algorithm via the 2nd-order El-Khazali’s approach, the minimum overshoot of the Servo DC motor system
has been occurred; whereas the fast rise time and fast settling time have been achieved, when such controller has been
designed using the PSO algorithm via the 1st-order El-Khazali’s approach.

6 Conclusion

Several feedback control methods have been designed for two industrial applications; the Brushless DC motor and the

Servo DC motor. The purpose of all these methods is to find an optimal PIλ Dδ -controller that provides the closed-loop
system with the best dynamic response. In order to achieve this goal, two algorithms, Particle Swarm Optimization (PSO)
and Bacteria Foraging Optimization (BFO), have been successfully carried out along with the use of four approaches of
the fractional-order integro-differential Laplacian operators s±α , where 0 < α < 1. Those approaches are: The Continued
Fractional Expansion (CFE), Oustaloup’s, the 1st - and the 2nd-order El-Khazali’s approach. It can be inferred, in the light
of the obtained numerical results, that all proposed controllers have fiercely competed in providing high performance
response specifications of all their corresponding closed-loop systems. In addition, the PSO algorithm along with all four
considered approaches, especially via Oustaloup’s as well as the 1st - and the 2nd-order El-Khazali’s approaches, have
shown mostly significant improvements in the characteristics of the step response over that of what the BFO algorithm
have shown.
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