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Abstract: The goal of this manuscript is to present a new contractive mapping, namely a Ćirić-type rational (α∗,η∗,Λ ,ϒ )-multi-

valued contraction mapping. In the framework of ordinary metric spaces, several fixed point results for semi α∗-admissible multi-

valued contraction mappings with respect to η are also given. In addition, we have an example to back up our research. Finally, several

fixed point results with a graph were discussed to improve the effectiveness of our contraction. In the same way, our findings expand,

generalize and unify a large number of solid articles in the same direction.
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1 Introduction

Fixed point (FP) theory acts a principle role in functional
analysis, which is divided into two major areas: first area
is the FP theory on contraction mappings on complete
metric spaces and the second is the FP theory on
continuous operators on compact and convex subsets of a
normed space [1,2,3,4,5,6,7] . Recently, FP results have
been proved under contractive mappings on a closed ball
instead of a whole space. For further clarification, we
advise the reader to read [8,9].

As another direction, Shoaib [9] discussed some new
FP results for α∗-ψ-contractive type multivalued
mappings in a closed ball of left (right) K-sequentially
complete dislocated quasi metric space. Shoaib et al. [10]
presented the concept of semi α∗-admissible mult-valued
mappings and established FP consequences for semi
α∗-admissible multivalued mappings satisfying a
contractive condition of Reich type for elements in a
sequence contained in a closed ball of a complete
dislocated metric space. Rasham et al. [11] achieved FP
theorems for a pair of semi α∗-dominated multivalued

mappings fulfilling a generalized locally Ćirić type
rational F-dominated multivalued contractive condition
on a closed ball of complete dislocated b−metric space.
Rasham and Shoaib [12] obtained common fixed point

results for two families of multivalued mappings fulfilling
generalized rational type A-dominated contractive
conditions on a closed ball in complete dislocated
b−metric spaces.

In 2008, Jachymski [13], proved a result on graphic
contraction mappings on a metric space. Let (℧,ρ) be a
metric space and ∆ denotes the diagonal of the Cartesian
product ℧×℧. Consider a directed graph G such that the
set V (G) of its vertices coincides with ℧, and the set E(G)
of its edges contains all loops, i.e., E(G)⊇ ∆ . Assume that
G has no parallel edges, so we can identify G with the pair
(V (G),E(G)). Moreover, we may treat G as a weighted
graph by assigning to each edge the distance between its
vertices. If λ and γ are vertices in a graph G, then a path in
G from λ to γ of length N(N ∈N) is a sequence {λi}

N
i=0 of

N + 1 vertices such that λ0 = λ , λN = γ and (λn−1,λn) ∈
E(G) for i = 1, ...,N. A graph G is connected if there is a
path between any two vertices. G is weakly connected if G̃

is connected, for more details, see for [13,14].

In 2012, the notions of α-ψ-contractive and
α-admissible mappings are presented by Samet et al.

[15]. They established under these concepts some FP
theorems via various contraction mappings in complete
metric spaces (CMSs). Over the years, altering distance
functions there have been involved in a number of studies,
for example, see, [16,17,18].
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Similar to previous works, in this manuscript, we

discuss some new common FP results for Ćirić-type
rational (α∗,η∗,Λ ,ϒ )-contraction multivalued mappings
for a sequence contained in a closed ball on a CMS.
Moreover, some new common FP theorems for ordered
metric spaces endowed with a graph are derived.

2 Basic facts

We give some definitions and preliminaries in this section
to aid understanding of our research.

Definition 1.[19] Let (℧,ρ) be a metric space.

(i)A sequence {λn} in (℧,ρ) is called a Cauchy sequence

if for all ε > 0, there is n0 ∈ N so that ρ(λm,λn) < ε
or lim

n,m→∞
ρ(λn,λm) = 0, ∀n,m ≥ n0.

(ii)A sequence {λn} converges to a point λ in ℧ if

lim
n→∞

ρ(λn,λ ) = 0. In this case λ is called a limit of

{λn}.
(iii)(℧,ρ) is complete if every Cauchy sequence in ℧

converges to a point λ ∈ ℧ such that ρ(λ ,λ ) = 0.

Note. For λ ∈ ℧ and ε > 0,

B(λ ,ε) = {γ ∈ ℧ : ρ(λ ,γ) ≤ ε} is called a closed ball in
the metric space (℧,ρ).

Definition 2.Let K be a non-empty subset of a metric

space ℧ and λ ∈ ℧. An element γ0 ∈ K is called a best

approximation to λ in K if

ρ(λ ,γ0) = ρ(λ ,K) = inf
γ∈K

ρ(λ ,γ).

If each λ ∈ ℧ has at least one best approximation in K,

then K is called a proximal set.

Here, Ξβ (℧) represents the set of all proximal subsets
of ℧.

Definition 3.[20] The function Hρ : Ξβ (℧)×Ξβ (℧)→℧

defined by

Hρ(A,B) = max

{

sup
a∈A

ρ(a,B),sup
b∈B

ρ(A,b)

}

,

is a metric on Ξβ (℧), which is called Hausdorff metric

induced by ρ . The pair (Ξβ (℧),Hρ) is known as

Hausdorff metric space.

Lemma 1.[21] Let A,B ∈ Ξβ (℧), then for any λ ∈ A,

D(λ ,B)≤ Hρ (A,B) .

where

D(λ ,B) = inf{d (λ ,γ) : γ ∈ B} .

In the context of a CMS, Nadler [22] presented that
every multivalued contraction mapping has a FP as
follows:

Definition 4.[23] Let Γ : ℧ → Ξβ (℧) be a multivalued

map. A point λ ∈ ℧ is called a FP of Γ if λ ∈ Γ λ .

Let Ψ be a family of nondecreasing functions

ϒ : [0,∞) −→ [0,∞) so that
∞

∑
n=1

ϒ n(t) < +∞, ∀t > 0,

where ϒ n symbolizes the n−th iterate of ϒ .

The results below are useful in the sequel.

Lemma 2. Let ϒ ∈ Ψ . Then the following postulates are

true.

(1)the sequence {ϒ n(t)}n∈N converges to 0 as n→∞, ∀t ∈
(0,∞);

(2)ϒ (t)< t, for each t > 0;

(3)ϒ (t) = 0 iff t = 0.

Definition 5.[23] Let Λ : (0,∞) −→ (0,∞) be a mapping

fulfilling

(Φ1)Λ is non-decreasing;
(Φ2)for each positive sequence {tn}, we have

lim
n→∞

Λ(tn) = 0 iff lim
n→∞

tn = 0;

(Φ3)Λ is continuous.

Consider Φ represents the set of all functions
Λ : (0,∞) −→ (0,∞) justifying the conditions
(Φ1)− (Φ3) .

Mudhesh et al. [24] modified the Definition 5 by
adding the following assumption:

(Φ4)for each Ai ∈ (0,∞) , i = 1,2, ....,n, we have

Λ

(

∞

∑
n=1

Ai

)

≤
∞

∑
n=1

Λ (Ai),

where Λ satisfies the conditions (Φ1)− (Φ4).

Example 1.[25] The functions listed below are belong to
Φ for all t ∈ (0,∞) ,

–Λ (t) = at, a > 0;
–Λ (t) = |t| .

The idea of semi α∗-admissible mapping on a set
initiated in the work of [25] as follows:

Definition 6.[25] Let ℑ : ℧ → Ξβ (℧) be a multivalued

mapping, α : ℧×℧→ [0,+∞) be a function and A be a

non-empty subset of ℧, we say that ℑ is semi

α∗-admissible on A, whenever α(λ ,γ) ≥ 1 implies that

α∗(ℑλ ,ℑγ)≥ 1, for all λ ,γ ∈ A, where

α∗(ℑλ ,ℑγ) = inf{α(a,b) : a ∈ ℑλ ,b ∈ ℑγ}.

It should be noted that if A = ℧, then we say that ℑ is
an α∗-admissible on ℧.

Definition 6 extended to two mappings as follows:
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Definition 7.Let ℑ,Γ : ℧ → Ξβ (℧) be two multivalued

mappings, α : ℧×℧→ [0,+∞) be a function and A ⊆ ℧.

We say that (ℑ,Γ ) is a pair of semi α∗-admissible on A,

whenever α(λ ,γ) ≥ 1 implies that α∗(ℑλ ,Γ γ) ≥ 1 and

α∗(Γ λ ,ℑγ)≥ 1, for all λ ,γ ∈ A, where

α∗(ℑλ ,Γ γ) = inf{α(a,b) : a ∈ ℑλ ,b ∈ Γ γ}.

Also, if A = ℧, then we say that a pair (ℑ,Γ ) is an
α∗-admissible on ℧.

For two admissible functions Definition 6 and 7 can be
written as:

Definition 8.Let ℑ : ℧ → Ξβ (℧) be multivalued

mappings, α,η : ℧×℧ → [0,+∞) and A ⊆ ℧. We say

that ℑ is semi α∗-admissible with respect to η on A,

whenever α(λ ,γ) ≥ η(λ ,γ) implies that

α∗(ℑλ ,ℑγ)≥ η∗(ℑλ ,ℑγ), for all λ ,γ ∈ A, where

α∗(ℑλ ,ℑγ) = inf{α(a,b) : a ∈ ℑλ ,b ∈ ℑγ},

and

η∗(ℑλ ,ℑγ) = sup{η(a,b) : a ∈ ℑλ ,b ∈ ℑγ}.

Moreover, ℑ is called α∗-admissible with respect to (wrt)

η , if A = ℧.

Definition 9.Let ℑ,Γ : ℧ → Ξβ (℧) be two multivalued

mappings, α,η :℧×℧→ [0,+∞) be functions and A⊆℧.

We say that a pair (ℑ,Γ ) is semi α∗-admissible wrt η on

A, whenever α(λ ,γ)≥ η(λ ,γ) implies that α∗(ℑλ ,Γ γ)≥
η∗(ℑλ ,Γ γ) and α∗(Γ λ ,ℑγ)≥ η∗(Γ λ ,ℑγ), for all λ ,γ ∈
A, where

α∗(ℑλ ,Γ γ) = inf{α(a,b) : a ∈ ℑλ ,b ∈ Γ γ}

and

η∗(ℑλ ,Γ γ) = sup{η(a,b) : a ∈ ℑλ ,b ∈ Γ γ}.

Again, if A = ℧, then the pair (ℑ,Γ ) is called an

α∗-admissible wrt η .

3 Main results

Let (℧,ρ) be a metric space, λ0 ∈ ℧ and
ℑ,Γ : ℧ → Ξβ (℧) be multivalued mappings on ℧. Then
there is λ1 ∈ ℑλ0 so that ρ(λ0,ℑλ0) = ρ(λ0,λ1). Let
λ2 ∈ Γ λ1 be such that ρ(λ1,Γ λ1) = ρ(λ1,λ2).
Continuing this process, we construct a sequence λn of
points in ℧ so that

λn+1 ∈ ℑλn ⇒ ρ(λn,ℑλn) = ρ(λn,λn+1)

and

λn+2 ∈ Γ λn+1 ⇒ ρ(λn+1,Γ λn+1) = ρ(λn+1,λn+2).

In this part, {Γ ℑ(λn)} is called a sequence in ℧ generated
by λ0.

Now, we present our results by starting with the
definition below.

Definition 10.Let (℧,ρ) be a metric space, α,η :℧×℧→
[0,+∞) be two functions and ℑ,Γ : ℧ → Ξβ (℧) be two

multivalued mappings. The pair (ℑ,Γ ) is called Ćirić-type

rational (α∗,η∗,Λ ,ϒ )-contraction, if there exists Λ ∈ Φ
and ϒ ∈Ψ such that Hρ(ℑλ ,Γ γ)> 0 implies

Λ
(

α∗ (ℑλ ,Γ γ)Hρ(ℑλ ,Γ γ)
)

≤ϒ
[

Λ
(

Mρ(λ ,γ)
)]

, (1)

for all λ ,γ ∈ {Γ ℑ(λn)}, where,

Mρ(λ ,γ)

= max

{

ρ(λ ,γ),D(λ ,ℑλ ),D(γ,Γ γ),
D(λ ,ℑλ ).D(γ,Γ γ)

1+ρ(λ ,γ)

}

.

Theorem 1.Let (℧,ρ) be a CMS, α,η : ℧×℧→ [0,+∞)
be given functions. Assume that ℑ,Γ : ℧→ Ξβ (℧) are a

pair of semi α∗-admissible multifunctions wrt η satisfying

(1) on a closed ball Bρ(λ0,r), for λ0 ∈Bρ(λ0,r) and r > 0.

Suppose that {Γ ℑ(λn)} is a sequence in ℧ generated by

λ0, then {Γ ℑ(λn)}→ z ∈ Bρ(λ0,r) and

Λ (ρ (λ0,λ1))≤
∞

∑
i=0

ϒ i [Λ (ρ(λ0,λ1))]≤ r where r > 0.

(2)

Moreover, if for all λ ,γ ∈
(

Bρ(λ0,r)∩{Γ ℑ(λn)}
)

∪{z} ,

the contractive condition (1) holds. Then ℑ and Γ have a

common FP in Bρ(λ0,r).

Proof.Since λ0 ∈ Bρ(λ0,r), and ℑ,Γ : ℧ → Ξβ (℧) are
two multi-valued mappings on ℧, then there is λ1 ∈ ℑλ0

so that D(λ0,ℑλ0) = ρ(λ0,λ1). If λ0 = λ1, then λ0 is a FP

in Bρ(λ0,r) of ℑ. Let λ0 6= λ1. From (2), we get

Λ (ρ (λ0,λ1))≤
∞

∑
i=0

ϒ i [Λ (ρ(λ0,λ1))]≤ r, r > 0.

It follows that λ1 ∈ Bρ(λ0,r). As α(λ0,λ1) ≥ η (λ0,λ1)
and (ℑ,Γ ) is a pair of semi α∗-admissible multi-function

with respect to η on Bρ(λ0,r), so
α∗(ℑλ0,Γ λ1) ≥ η∗ (ℑλ0,Γ λ1). As
α∗(ℑλ0,Γ λ1) ≥ η∗ (ℑλ0,Γ λ1) , λ1 ∈ ℑλ0 and λ2 ∈ Γ λ1,

so α(λ1,λ2) ≥ η(λ1,λ2). Let λ2, ...,λi ∈ Bρ(λ0,r) for
some i ∈ N. As (ℑ,Γ ) is a pair of semi α∗-admissible

multi-function on Bρ(λ0,r), thus, we have

α∗(T λ1,Sλ2)≥ η∗(T λ1,Sλ2).

This implies that α(λ2,λ3) ≥ η(λ2,λ3), which further
implies

α∗(ℑλ2,Γ λ3)≥ η∗(ℑλ2,Γ λ3).

Continuing this process and if i = 2 j + 1, j = 1,2, ... i−1
2

,
we have

α∗(ℑλ2 j,Γ λ2 j+1)≥ η∗(ℑλ2 j,Γ λ2 j+1),
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which this leads to

α(λ2 j+1,λ2 j+2)≥ η(λ2 j+1,λ2 j+2).

Now, we can write

Λ
(

ρ(λ2 j+1,λ2 j+2)
)

≤ Λ
(

Hρ(Sλ2 j,T λ2 j+1)
)

≤ Λ
(

α∗(Sλ2 j,T λ2 j+1)Hd(Sλ2 j,T λ2 j+1)
)

≤ ϒ
[

Λ
(

Mρ(λ2 j,λ2 j+1)
)]

= ϒ






Λ






max











ρ(λ2 j,λ2 j+1),D(λ2 j,ℑλ2 j),
D(λ2 j+1,Γ λ2 j+1),

D(λ2 j ,ℑλ2 j).D(λ2 j+1,Γ λ2 j+1)

1+ρ(λ2 j,λ2 j+1)























= ϒ






Λ






max











ρ(λ2 j,λ2 j+1),ρ(λ2 j,λ2 j+1),
ρ(λ2 j+1,λ2 j+2),

ρ(λ2 j ,λ2 j+1).ρ(λ2 j+1,λ2 j+2)

1+ρ(λ2 j,λ2 j+1)























= ϒ

[

Λ

(

max

{

ρ(λ2 j,λ2 j+1),ρ(λ2 j+1,λ2 j+2),
ρ(λ2 j ,λ2 j+1).ρ(λ2 j+1,λ2 j+2)

1+ρ(λ2 j ,λ2 j+1)

})]

.

If Mρ(λ2 j,λ2 j+1) = ρ(λ2 j+1,λ2 j+2), then

Λ
(

ρ(λ2 j+1,λ2 j+2)
)

≤ϒ
[

Λ
(

ρ(λ2 j+1,λ2 j+2)
)]

.

Using (Φ1) and properties of ψ , we get

ρ(λ2 j+1,λ2 j+2)< ρ(λ2 j+1,λ2 j+2),

which is a inconsistency as ρ(λ2 j+1,λ2 j+2)≥ 0. Similarly,
if

Mρ(λ2 j,λ2 j+1) =
ρ(λ2 j,λ2 j+1).ρ(λ2 j+1,λ2 j+2)

1+ρ(λ2 j,λ2 j+1)
,

we obtain a inconsistency,
Mρ(λ2 j,λ2 j+1) = ρ(λ2 j,λ2 j+1), which implies that

Λ
(

ρ(λ2 j+1,λ2 j+2)
)

≤ ϒ
[

Λ
(

ρ(λ2 j,λ2 j+1)
)]

≤ ϒ
[

Λ
(

α∗(Γ λ2 j−1,ℑλ2 j)Hρ (Γ λ2 j−1,ℑλ2 j)
)]

≤ ϒ 2
[

Λ
(

ρ(λ2 j−1,λ2 j)
)]

...

≤ ϒ 2 j+1 [Λ (ρ(λ0,λ1))] .

It follows that

Λ
(

ρ(λ2 j+1,λ2 j+2)
)

≤ϒ 2 j+1 [Λ (ρ(λ0,λ1))] . (3)

Now, utilizing (ρ3) , (Φ4) , (2) and (3), we obtain

Λ
(

ρ(λ0,λ2 j+1)
)

≤ Λ
(

ρ(λ0,λ1)+ · · ·+ρ(λ2 j,λ2 j+1)+ρ(λ2 j+1,λ2 j+2)
)

≤ Λ (ρ(λ0,λ1))+ · · ·

+Λ
(

ρ(λ2 j,λ2 j+1)
)

+Λ
(

ρ(λ2 j+1,λ2 j+2)
)

≤ Λ (ρ(λ0,λ1))+ · · ·

+ϒ 2 j [Λ (ρ(λ0,λ1))]+ϒ 2 j+1 [Λ (ρ(λ0,λ1))]

≤
2 j+1

∑
i=0

ϒ i [Λ (ρ(λ0,λ1))]≤ r.

Thus, λ2 j+1 ∈ Bρ(λ0,r). Therefore, by induction,

λn ∈ Bρ(λ0,r) and α(λn,λn+1) ≥ η(λn,λn+1) for all
n ∈ N. Since ℑ and Γ are semi α∗-admissible
multi-functions wrt η on Bρ(λ0,r), then
α∗(ℑλn,Γ λn+1)≥ η∗(ℑλn,Γ λn+1) for all n ∈ N∪{0}.

Now, inequality (3) can be written as

Λ (ρ(λn+1,λn+2))≤ϒ n+1 [Λ (ρ(λ0,λ1))] , for all n ∈ N.

(4)
Passing n → ∞ in (4), we get

0≤ lim
n→∞

Λ (ρ(λn+1,λn+2))≤ lim
n→∞

ϒ n+1 [Λ (ρ(λ0,λ1))] = 0,

hence
lim
n→∞

Λ (ρ(λn+1,λn+2)) = 0.

From (Φ2), we get

lim
n→∞

ρ(λn+1,λn+2) = 0. (5)

This proved that {λn} is a Cauchy sequence in

(Bρ(λ0,r),d). Let n,m ∈ N with m > n > p. Then, we
have

Λ (ρ(λn,λm))

≤ Λ (ρ(λn,λn+1)+ρ(λn+1,λn+2)+ ...+ρ(λm−1,λm))

≤ Λ (ρ(λn,λn+1))+Λ (ρ(λn+1,λn+2))+ ...

+Λ (ρ(λm−1,λm))

≤ ψn [Λ (ρ(λ0,λ1))]+ψn+1 [Λ (ρ(λ0,λ1))]+ ... (6)

+ψm−1 [Λ (ρ(λ0,λ1))] .

Letting n,m → ∞ in (6), one can write

lim
n,m→∞

Λ (ρ(λn,λm)) = 0.

Applying the condition (Φ2), we have

lim
n,m→∞

ρ(λn,λm) = 0. (7)

Since every closed ball in a CMS is also complete, so there

is λ ∗ ∈ Bρ(λ0,r) so that λn → λ ∗ and

lim
n→∞

ρ(λn,λ
∗) = 0. (8)

Hence {Γ ℑ(λn)} is a sequence in Bρ(λ0,r) generated by

λ0 and {Γ ℑ(λn)} → λ ∗ ∈ Bρ(λ0,r). So, for λn,λn+1 ∈
{Γ ℑ(λn)}, one can write

α(λn,λn+1)≥ η(λn,λn+1), ∀n ≥ 0.

Because

α∗(ℑλn,Γ λn+1)≥ η∗(ℑλn,Γ λn+1) ∀n ≥ 0,

then, we have

α(λn+1,λn+2)≥ η(λn+1,λn+2).
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From our assumption, we get

α(λn,λ
∗)≥ η(λn,λ

∗), ∀n ≥ 0.

Hence
α∗(ℑλn,Γ λ ∗)≥ η∗(ℑλn,Γ λ ∗).

Now, to claim that λ ∗ ∈Γ λ ∗, assume that d(λ ∗,Γ λ ∗)> 0,
then, we have

Λ (ρ(λ ∗
,Γ λ ∗))

≤ Λ (ρ(λ ∗
,λn+1)+ρ(λn+1,Γ λ ∗))

≤ Λ (ρ(λ ∗
,λn+1))+Λ (ρ(λn+1,Γ λ ∗))

≤ Λ (ρ(λ ∗
,λn+1))+Λ

(

α∗(ℑλn,Γ λ ∗)Hρ(ℑλn,Γ λ ∗)
)

≤ Λ (ρ(λ ∗
,λn+1))+ϒ

[

Λ
(

Mρ(λn,λ
∗)
)]

= Λ (ρ(λ ∗
,λn+1))

+ϒ



Λ



max







ρ(λn,λ
∗),D(λn,ℑλn),

D(λ ∗,Γ λ ∗),
D(λn,ℑλn).D(λ ∗

,Γ λ ∗)
1+d(λn,λ ∗)















= Λ (ρ(λ ∗
,λn+1))

+ϒ



Λ



max







ρ(λn,λ
∗),ρ(λn,λn+1),

D(λ ∗,Γ λ ∗),
ρ(λn,λn+1).D(λ ∗,Γ λ ∗)

1+ρ(λn,λ ∗)













 .

Taking n → ∞ in the above inequality, using (Φ2), by
properties of ϒ and (8), we obtain that

ρ(λ ∗
,Γ λ ∗)< ρ(λ ∗

,Γ λ ∗),

a contradiction. Therefore ρ(λ ∗,Γ λ ∗) = 0 and λ ∗ ∈ Γ λ ∗.

In the same scenario, one can write ρ(ℑλ ∗,λ ∗) = 0.
Hence λ ∗ ∈ ℑλ ∗. Therefore ℑ and Γ have a common FP
in Bρ(λ0,r).

The following theorem illustrates that our results are
valid in the context of partially ordered metric spaces
(POMSs, for short).

Via this space, let A,B ⊆ ℧. If for each a ∈ A there is
b ∈ B so that a � b and a �r b, then we say that A � B and
ℑA �r Γ B, respectively.

Theorem 2.Let (℧,�,ρ) be a POMS,

α,η : ℧ × ℧ → [0,∞) be two functions and

ℑ,Γ : ℧ → Ξβ (℧) be two non-decreasing semi

α∗-admissible multi-functions wrt η . Suppose also there

is Λ ∈ Φ and ϒ ∈Ψ so thatHρ(ℑλ ,Γ γ)> 0 implies

Λ
(

α∗ (ℑλ ,Γ γ)Hρ(ℑλ ,Γ γ)
)

≤ϒ
[

Λ
(

Mρ(λ ,γ)
)]

, (9)

for all λ ,γ ∈ Bρ(λ0,r)∩{Γ ℑ(λn)}, r > 0, where

Mρ (λ ,γ)

= max

{

ρ(λ ,γ),D(λ ,ℑλ ),D(γ ,Γ γ),
D(λ ,ℑλ ).D(γ ,Γ γ)

1+ρ(λ ,γ)

}

,

with λ � γ, ℑλ �r Γ γ and
n

∑
i=0

ϒ i [Λ (ρ(λ0,λ1))] ≤ r.

Then {Γ ℑ(λn)} is a sequence in Bρ(λ0,r), λn � λn+1

and {Γ ℑ(λn)}→ λ ∗ ∈ Bρ(λ0,r). Moreover, if λ ∗ � λn or

λn � λ ∗ and the inequality (9) holds for all

λ ,γ ∈
(

Bρ(λ0,r)∩{Γ ℑ(λn)}
)

∪ {λ ∗} , then λ ∗ is a

common FP of ℑ and Γ in Bρ(λ0,r).

Proof.Let λ0 ∈ Bρ(λ0,r) so that λ0 � ℑλ0. Define a
sequence {Γ ℑ(λn)}n∈N by letting λ1 ∈ ℑλ0 so that
λ0 � λ1 and λ2 ∈ Γ λ1 so that λ1 � λ2.

Since ℑandΓ are non-decreasing, we have λ3 ∈ ℑλ2

so that λ2 � λ3. Continuing in the same way, we obtain

a sequence {Γ ℑ(λn)}n∈N ⊆ Bρ(λ0,r) generated by λ0 so
that

λ2n+1 ∈ ℑλ2n and λ2n+2 ∈ Γ λ2n+1

implies λ2n � λ2n+1 and λ2n+1 � λ2n+2, ∀n ≥ 0.

It follows that

λ0 � λ1 � λ2 � ·· · � λn � λn+1 � ·· ·

Because the pair (ℑ,Γ ) is semi α∗-admissible
multi-functions with respect to η , we get

α(λn,λn+1)≥ η(λn,λn+1), ∀n ≥ 0.

Following the same technique used to prove Theorem 1,
we conclude that

lim
n→∞

ρ(λn,λ
∗) = 0. (10)

Hence {Γ ℑ(λn)} is a sequence in Bρ(λ0,r) generated by

λ0 and {Γ ℑ(λn)} → λ ∗ ∈ Bρ(λ0,r). Also, for λn,λn+1 ∈
{Γ ℑ(λn)} and for all n ≥ 0, we get

α(λn,λn+1)≥ η(λn,λn+1).

Since, for all n ≥ 0, α∗(ℑλn,Γ λn+1) ≥ η∗(ℑλn,Γ λn+1),
then we obtain

α(λn+1,λn+2)≥ η(λn+1,λn+2).

It follows from our assumption that

α(λn,λ
∗)≥ η(λn,λ

∗), ∀n ≥ 0.

Thus

α∗(ℑλn,Γ λ ∗)≥ η∗(ℑλn,Γ λ ∗).
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Now, to prove λ ∗ ∈ Γ λ ∗, let ρ(λ ∗,Γ λ ∗) > 0. Then, one
gets

Λ (ρ(λ ∗
,Γ λ ∗))

≤ Λ (ρ(λ ∗
,λn+1)+ρ(λn+1,Γ λ ∗))

≤ Λ (ρ(λ ∗
,λn+1))+Λ (ρ(λn+1,Γ λ ∗))

≤ Λ (ρ(λ ∗
,λn+1))+Λ

(

α∗(ℑλn,Γ λ ∗)Hρ(ℑλn,Γ λ ∗)
)

≤ Λ (ρ(λ ∗
,λn+1))+ϒ

[

Λ
(

Mρ(λn,λ
∗)
)]

= Λ (ρ(λ ∗
,λn+1))

+ϒ



Λ



max







ρ(λn,λ
∗),D(λn,ℑλn),

D(λ ∗,Γ λ ∗),
D(λn,ℑλn).D(λ ∗,Γ λ ∗)

1+ρ(λn,λ ∗)















= Λ (ρ(λ ∗
,λn+1))

+ϒ



Λ



max







ρ(λn,λ
∗),ρ(λn,λn+1),

D(λ ∗,Γ λ ∗),
ρ(λn,λn+1).D(λ ∗,Γ λ ∗)

1+ρ(λn,λ ∗)













 .

Passing n → ∞ in the above inequality, using (Φ2), by
properties of ϒ and (10), we have

ρ(λ ∗
,Γ λ ∗)< ρ(λ ∗

,Γ λ ∗),

a contradiction. Therefore ρ(λ ∗,Γ λ ∗) = 0 and λ ∗ ∈ Γ λ ∗.

Analogously, one can obtain that ρ(ℑλ ∗,λ ∗) = 0. Hence

λ ∗ ∈ ℑλ ∗
. So ℑ and Γ have a common FP in Bρ(λ0,r).

If we put ℑ =Γ in Theorem 2, we have a result below:

Corollary 1.Let (℧,�,ρ) be a POMS,

α,η : ℧ × ℧ → [0,∞) be two functions and

ℑ : ℧ → Ξβ (℧) be non-decreasing semi α∗-admissible

multi-functions wrt η . Also, suppose that there is Λ ∈ Θ
and ϒ ∈Ψ so that Hρ(ℑλ ,ℑγ)> 0 implies

Λ
(

α∗ (ℑλ ,ℑγ)Hρ(ℑλ ,ℑγ)
)

≤ϒ
[

Λ
(

Mρ(λ ,γ)
)]

, (11)

for all λ ,γ ∈ Bρ(λ0,r)∩{℧ℑ(λn)}, r > 0, where

Mρ(λ ,γ) = max

{

ρ(λ ,γ),D(λ ,ℑλ ),

D(γ,Γ γ), D(λ ,ℑλ ).D(γ,Γ γ)
1+ρ(λ ,γ)

}

,

with λ � γ, ℑλ �r Γ γ and
n

∑
i=0

ϒ i [Λ (ρ(λ0,λ1))] ≤ r.

Then {℧ℑ(λn)} is a sequence in Bρ(λ0,r), λn � λn+1 and

{℧ℑ(λn)} → λ ∗ ∈ Bρ(λ0,r). Moreover, if λ ∗ � λn or

λn � λ ∗ and the inequality (11) holds for all

λ ,γ ∈
(

Bρ(λ0,r)∩{Γ ℑ(λn)}
)

∪ {λ ∗} and n ≥ 0, then

λ ∗ is a FP of ℑ and Γ in Bρ(λ0,r).

Definition 11.Assume that f : ℧ −→ ℧ is a self-mapping

and α,η : ℧×℧ → [0,+∞) are given functions. We say

that f is semi α-admissible wrt η , if

α (λ ,γ) ≥ η (λ ,γ)

=⇒ α ( f λ , f γ) ≥ η ( f λ , f γ) ,

for some λ ,γ ∈ A ⊆ ℧.

It should be noted that if A = ℧, then f is called α-
admissible wrt η .

Based on the above definition, we state the following
result:

Corollary 2.Let (℧,ρ) be a CMS, ℑ : ℧→℧ and λ0 be an

arbitrary point in Bρ(λ0,r), for r > 0. Let {λn} be a Picard

sequence in ℧ with initial guess λ0 and α,η : ℧×℧ →

[0,+∞) be semi α-admissible mappings wrt η on Bd(λ0,r)
with α(λ0,λ1) ≥ η(λ0,λ1). Assume that there are Λ ∈ Φ

and ϒ ∈ Ψ so that ∀λ ,γ ∈ Bρ(λ0,r), α(λ ,γ) ≥ η(λ ,γ)
implies

Λ (ρ(ℑλ ,ℑγ))≤ϒ
[

Λ
(

Eρ(λ ,γ)
)]

, (12)

where

Eρ(λ ,γ)

= max

{

ρ(λ ,γ),ρ(λ ,ℑλ ),

ρ(γ,ℑγ), ρ(λ ,ℑλ ).ρ(γ,ℑγ)
1+ρ(λ ,γ)

}

,

and
n

∑
i=0

ϒ i (Λ (ρ(λ0,λ1)))≤ r. Then {λn} is a sequence in

Bρ(λ0,r), λn → λ ∗ ∈ Bρ(λ0,r) and

α(λn,λn+1)≥ η(λn,λn+1) for all n ≥ 0. Also, if

α(λn,λ
∗)≥ η(λn,λ

∗), ∀n ≥ 0,

and the inequality (12) holds for all

λ ,γ ∈
(

Bρ(λ0,r)∩{℧ℑ(λn)}
)

∪ {λ ∗}, then λ ∗ is a FP

of ℑ in Bρ(λ0,r).

Corollary 3.Let (℧,ρ) be a complete POMS and

ℑ : ℧ → ℧ be a nondecreasing mapping. Assume that λ0

is an arbitrary point in Bρ(λ0,r), {λn} is a Picard

sequence in ℧ with initial guess λ0 and λ0 � λ1. Presume

that there are Λ ∈ Φ and ϒ ∈Ψ so that

Λ (ρ(Sλ ,Sγ))≤ϒ
[

Λ
(

Mρ (λ ,γ)
)]

, (13)

where Mρ(λ ,γ) is defined as in Corollary 2 for all λ ,γ in

Bρ(λ0,r)∩{℧ℑ(λn)} with λ � γ and

n

∑
i=0

ϒ i (Λ (ρ(λ0,λ1)))≤ r, where r > 0.

Then {λn} is a sequence in Bρ(λ0,r), λn � λn+1 and

{λn} → λ ∗ ∈ Bρ(λ0,r). Moreover, if λ ∗ � λn or λn � λ ∗

and the inequality (13) holds for each

λ ,γ ∈
(

Bρ(λ0,r)∩{℧ℑ(λn)}
)

∪ {λ ∗}, then λ ∗ is a FP

of ℑ in Bρ(λ0,r).

To reinforce the theoretical results, we give the
example below.
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Example 2.Let ℧= [0,∞) with a metric ρ (λ ,γ) = |λ − γ|.
Then (℧,ρ) is a CMS. Define the multivalued mappings
ℑ,Γ : ℧→ Ξβ (℧) by

ℑλ =

{

[
3λ

e3
,

λ

e3
], if λ ∈ [0,1],

[1,λ + 4], if λ ∈ (1,∞).

and Γ λ =

{

[
3λ

e4
,

λ

e4
], if λ ∈ [0,1],

[0,λ + 5], if λ ∈ (1,∞).

Consider λ0 = 1, r = 10. Then, Bρ(λ0,r) = [0,11] and

ρ(λ0,ℑλ0) = ρ(1,ℑ1) = ρ(1,
1

e3
) = 1−

1

e3
.

Hence, we obtain a sequence

{Γ ℑ(λn)}=
{

1, 1
e3 ,

1
e7 ,

1
e10 ,

1
e14 , ...

}

in ℧ generated by λ0.

Let Λ (t) = 2t and ψ (t) = 2
e
t. Define the functions,

α(λ ,γ) =

{

2, if λ ,γ ∈ [0,1] ,
5

4
, otherwise.

and η (λ ,γ) =

{

1, if λ ,γ ∈ [0,1] ,
1

2
, otherwise.

Now,

Λ
(

α∗(ℑ4,Γ 6)Hρ(ℑ4,Γ 6)
)

=
5

4
× 10 >

2

e

(

2max

{

2,4,5,
20

3
,

20

9

})

=
80

3e
= 9.8.

Hence the condition (1) does not hold on ℧ for all λ ,γ ∈℧

and for all λ ,γ ∈ Bρ (λ0,r). Now, for all λ ,γ ∈ Bρ(λ0,r)∩
{Γ ℑ(λn)}, we get

α∗(ℑλ ,Γ γ)Hρ(ℑλ ,Γ γ)

= 2max

{

sup
a∈ℑλ

ρ(a,Γ γ), sup
b∈Γ γ

ρ(ℑλ ,b)

}

= 2max















sup
a∈ℑλ

ρ

(

a, [
3γ

e4
,

γ

e4
]

)

,

sup
b∈Γ γ

ρ

(

[
3λ

e3
,

λ

e3
],b

)















= 2max















ρ

(

3λ

e3
, [

3γ

e4
,

γ

e4
]

)

,

ρ

(

[
3λ

e3
,

λ

e3
],

3γ

e4

)















which yields that

α∗(ℑλ ,Γ γ)Hρ(ℑλ ,Γ γ)

= 2max

{

ρ

(

3λ

e3
,

γ

e4

)

,ρ

(

λ

e3
,

3γ

e4

)}

= 2max

{∣

∣

∣

∣

3λ

e3
−

γ

e4

∣

∣

∣

∣

,

∣

∣

∣

∣

λ

e3
−

3γ

e4

∣

∣

∣

∣

}

=
2

e
max

{∣

∣

∣

∣

3λ

e2
−

γ

e3

∣

∣

∣

∣

,

∣

∣

∣

∣

λ

e2
−

3γ

e3

∣

∣

∣

∣

}

≤
1

e
× 2max











|λ − γ| ,
∣

∣

∣λ − λ
e3

∣

∣

∣ ,

∣

∣

∣γ −
γ
e4

∣

∣

∣ ,

∣

∣

∣λ− λ
e3

∣

∣

∣

∣

∣

∣γ−
γ

e4

∣

∣

∣

1+|λ−γ|











.

It follows that

2α∗(ℑλ ,Γ γ)Hρ(ℑλ ,Γ γ)≤
2

e

[

2Mρ (λ ,γ)
]

,

which yields that

Λ
(

α∗(ℑλ ,Γ γ)Hρ (ℑλ ,Γ γ)
)

≤ ψ
[

Λ
(

Mρ (λ ,γ)
)]

.

Therefore the condition (1) holds on

Bρ(λ0,r)∩{Γ ℑ(λn)}. Also, for all n ≥ 0, we obtain

Λ (ρ (λ0,λ1)) ≤
n

∑
i=0

ϒ i [Λ (ρ(λ0,λ1))]

=
n

∑
i=0

ϒ i

[

Λ

(

1−
1

e3

)]

= 2

(

1−
1

e3

)

n

∑
i=0

(

2

e

)i

≤ 10 = r.

Hence, all requirements of Theorem 1 are fulfilled.

Moreover, {Γ ℑ(λn)} is a sequence in Bρ(λ0,r),
α(λn,λn+1) ≥ η(λn,λn+1) and

{Γ ℑ(λn)} −→ 0 ∈ Bρ(λ0,r). Also, α(λn,0) ≥ η(λn,0)
or α(0,λn)≥ η(0,λn) for all n ≥ 0. Further, the point 0 is
a unique common FP of ℑ and Γ .

4 Fixed point results for graphic contractions

In this portion, we apply Theorem 1 in graph theory as an
application.

Definition 12.[12] Let ℧ be a non-empty set and

G = (V (G),E(G)) be a graph so that V (G) = ℧ and let

Γ : ℧ → Ξβ (℧). Γ is called edge preserving if the

condition below hold:

–for ecah u ∈ Γ λ and v ∈ Γ γ, if (λ ,γ) ∈ E(G), then
(u,v) ∈ E(G).

Now, we introduce our main theorem in this part.
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Theorem 3.Let (℧,ρ) be a CMS endowed with a graph G,

λ0 ∈Bρ(λ0,r), r > 0, ℑ,Γ :℧→Ξβ (℧) be two mappings,

α,η : ℧×℧→ [0,∞) be two functions and {Γ ℑ(λn)} be

a sequence in ℧ generated by λ0 with (λ0,λ1) ∈ E(G).
Suppose that the postulates below hold:

(♥1)the pair (ℑ,Γ ) is edge preserving;

(♥2)for all λ ,γ ∈ Bρ(λ0,r)∩{Γ ℑ(λn)} and (λ ,γ)∈ E(G),
there are Λ ∈ Φ and ϒ ∈ Ψ so that Hρ(ℑλ ,Γ γ) >
0 implies

Λ
(

Hρ(ℑλ ,Γ γ)
)

≤ϒ
[

Λ
(

Mρ(λ ,γ)
)]

, (14)

where

Mρ(λ ,γ)

= max

{

ρ(λ ,γ),D(λ ,ℑλ ),

D(γ,Γ γ), D(λ ,ℑλ ).D(γ,Γ γ)
1+ρ(λ ,γ)

}

.

(♥3)there is λ0 ∈ Bρ(λ0,r) so that

Λ (ρ(λ0,ℑλ0))

≤
n

∑
i=0

ϒ i [Λ (ρ(λ0,λ1))]≤ r, for r > 0,

Then {Γ ℑ(λn)} is a sequence in Bρ(λ0,r),
(λn,λn+1) ∈ E(G) and {Γ ℑ(λn)} → λ ∗. Also, if

(λn,λ
∗) ∈ E(G) or (λ ∗,λn) ∈ E(G) for all n ≥ 0 and (14)

holds for all λ ,γ ∈
(

Bρ(λ0,r)∩{Γ ℑ(λn)}
)

∪{λ ∗}, then

λ ∗ is a common FP of ℑ and Γ in Bρ(λ0,r).

Proof.Define the functions α,η : ℧×℧→ [0,+∞) by

α(λ ,γ) = η(λ ,γ) =

{

1, if (λ ,γ) ∈ E(G)
0, otherwise.

Since {Γ ℑ(λn)} is a sequence in ℧ generated by λ0 with
(λ0,λ1) ∈ E(G), we have

α (λ0,λ1)≥ η (λ0,λ1)≥ 1.

Let α(λ ,γ) ≥ η(λ ,γ) = 1. Then (λ ,γ) ∈ E(G). From
(♥1), we obtain (u,v) ∈ E(G) for all u ∈ ℑλ and v ∈ Γ γ.
This implies that α(u,v) ≥ η(u,v) = 1 for all u ∈ ℑλ and
v ∈ Γ γ. It follows that

inf{α(u,v) : u ∈ ℑλ ,v ∈ Γ γ}

≥ sup{η(u,v) : u ∈ ℑλ ,v ∈ Γ γ}= 1.

Thus, (ℑ,Γ ) is a pair of semi α∗-admissible

multi-functions wrt η on Bρ(λ0,r). Moreover, if
(λ ,γ) ∈ E(G), we have α(λ ,γ) = η(λ ,γ) = 1 and hence

α∗(ℑλ ,Γ γ) = η∗(ℑλ ,Γ γ) = 1.

Now, condition (♥2) can be written as

Λ
(

α∗(ℑλ ,Γ γ)Hρ(ℑλ ,Γ γ)
)

= Λ
(

Hρ(ℑλ ,Γ γ)
)

≤ϒ
[

Λ
(

Mρ(λ ,γ)
)]

,

for all λ ,γ ∈ Bρ(λ0,r)∩{Γ ℑ(λn)}. Condition (♥3) leads
to that all assumptions of Theorem 1. Now, we have

{Γ ℑ(λn)} is a sequence in Bρ(λ0,r),
α(λn,λn+1)≥ η(λn,λn+1), that is, (λn,λn+1) ∈ E(G) and

{Γ ℑ(λn)} → λ ∗ ∈ Bρ(λ0,r). Further, if (λn,λ
∗) ∈ E(G)

or (λ ∗,λn) ∈ E(G) for all n ∈ ≥0 and inequality (14)

holds for all λ ,γ ∈
(

Bρ(λ0,r)∩{Γ ℑ(λn)}
)

∪ {λ ∗}, we

can write

α(λn,λ
∗) ≥ η(λn,λ

∗) or

α(λ ∗
,λn) ≥ η(λ ∗

,λn) ∀n ≥ 0.

Therefore, the existence of a FP λ ∗ in Bρ(λ0,r) of ℑ and
Γ follows immediately by Theorem 1. This finished the
proof.

Now, we preset some consequences that can be directly
proven from Theorem 3. If we put ℑ = Γ in Theorem 3,
we have the result below:

Corollary 4.Let (℧,ρ) be a CMS endowed with a graph

G, λ0 ∈ Bρ(λ0,r), r > 0, ℑ : ℧ → Ξβ (℧) be a given

mapping, α,η : ℧× ℧ → [0,∞) be two functions and

{℧ℑ(λn)} be a sequence in ℧ generated by λ0 with

(λ0,λ1) ∈ E(G). Suppose that the postulates below hold:

–the mapping ℑ is edge preserving;

–for all λ ,γ ∈ Bρ(λ0,r)∩{℧ℑ(λn)} and (λ ,γ)∈ E(G),
there are Λ ∈ Φ and ϒ ∈ Ψ so that Hρ(ℑλ ,ℑγ) > 0
implies

Λ
(

Hρ(ℑλ ,ℑγ)
)

≤ϒ
[

Λ
(

Mρ(λ ,γ)
)]

, (15)

where

Mρ(λ ,γ)

= max

{

ρ(λ ,γ),D(λ ,ℑλ ),

D(γ,ℑγ), D(λ ,ℑλ ).D(γ,ℑγ)
1+ρ(λ ,γ)

}

.

–there is λ0 ∈ Bρ(λ0,r) so that

Λ (ρ(λ0,ℑλ0))

≤
n

∑
i=0

ϒ i [Λ (ρ(λ0,λ1))]≤ r, for r > 0.

Then {℧ℑ(λn)} is a sequence in Bρ(λ0,r),
(λn,λn+1) ∈ E(G) and {Γ ℑ(λn)} → λ ∗. Also, if

(λn,λ
∗) ∈ E(G) or (λ ∗,λn) ∈ E(G) for all n ≥ 0 and (15)

holds for all λ ,γ ∈
(

Bρ(λ0,r)∩{Γ ℑ(λn)}
)

∪{λ ∗}, then

λ ∗ is a FP of ℑ in Bρ(λ0,r).

Corollary 5.Let (℧,ρ) be a CMS endowed with a graph

G, λ0 ∈ Bρ(λ0,r), r > 0, ℑ,Γ : ℧ → Ξβ (℧) be two

mappings, α,η : ℧×℧ → [0,∞) be two functions and

{Γ ℑ(λn)} be a sequence in ℧ generated by λ0 with

(λ0,λ1) ∈ E(G). Suppose that the postulates below hold:

–the pair (ℑ,Γ ) is edge preserving;
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–for all λ ,γ ∈ Bρ(λ0,r)∩{Γ ℑ(λn)} and (λ ,γ)∈ E(G),
there are Λ ∈ Φ and ϒ ∈ Ψ so that Hρ(ℑλ ,Γ γ) > 0
implies

Λ
(

Hρ(ℑλ ,Γ γ)
)

≤ϒ [Λ (ρ(λ ,γ))] , (16)

–there is λ0 ∈ Bρ(λ0,r) so that

Λ (ρ(λ0,ℑλ0))

≤
n

∑
i=0

ϒ i [Λ (ρ(λ0,λ1))]≤ r, for r > 0,

Then {Γ ℑ(λn)} is a sequence in Bρ(λ0,r),
(λn,λn+1) ∈ E(G) and {Γ ℑ(λn)} → λ ∗. Also, if

(λn,λ
∗) ∈ E(G) or (λ ∗,λn) ∈ E(G) for all n ≥ 0 and (16)

holds for all λ ,γ ∈
(

Bρ(λ0,r)∩{Γ ℑ(λn)}
)

∪{λ ∗}, then

λ ∗ is a common FP of ℑ and Γ in Bρ(λ0,r).

Proof.In Theorem 3, take Mρ(λ ,γ) = ρ(λ ,γ) to obtain a

common FP λ ∗ ∈ Bd(λ0,r) so that λ ∗ ∈ ℑλ ∗∩Γ λ ∗.
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