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Abstract: We propose three algorithms to the problem of solar energy prediction and Percentile Root Estimation (PRE) of three-

parameters distributions. The first algorithm named Algorithm of Change Rate Matrix (ACRM), Our approach is based on creating a

matrix of solar energy change rates for each month separately during successive years. ACRM is characterized by not relying on the

transition matrix or Markov model. The second algorithm named Algorithm of Converting Dataset to Markov model (ACDM) depends

on the transition states of the solar energy and Markov model for a month during successive years. The results were compared with

the actual values to validate the algorithms ACRM and ACDM. We demonstrate the ability of the mentioned algorithms to perform

on the other dataset in various applications. The third algorithm PRE applied on the distributions Lognormal, Fatigue lifetime, Erlang,

Fréchet and Pert which it was validated using Goodness-fit-tests, Anderson-Darling test. We analyzed the influence of PRE algorithm,

as a result it is more accurate and easier in coding than the maximum likelihood estimation method.

Keywords: Anderson-Darling test, Change rate matrix, Markov model, Percentile root

1 Introduction

Currently, the primary endeavour in the current age is to
achieve the optimal use of available resources to manage
both risk and opportunity and avoid the crisis. Analysis of
energy crisis provides energy security and present
solutions and renewable energy potential [1]. Eliminating
potential risks also ensures a stable climate, providing
enormous opportunities to support the civilization of the
energy age effectively. Over the next few decades, global
energy demand is expected to increase as shown [2,3,4,5,
6,7]. Therefore, climate research such as wind and solar
exposure have a great interest, especially in converting
them to electric energy [8,9] Solar power has been the
cornerstone for some groundbreaking research in the
forecasting field. Since incorporating solar power into the
national electricity grid proliferates, enhancing this highly
dynamic renewable resource’s forecast becomes
indispensable.

Since there has been a great deal of research in recent
years on improving solar panel power forecasts whether
short-term forecasts last a few hours or longer, such as
sub-seasonal climate predictions. Forecasts are primarily
used to plan future deployments, maximize plant
operations and effectiveness, and optimize load demand
and supply [10]. The decision and the interest time scale,
whether hourly, daily, or monthly, affect the forecasting
methodology as shown by [11]. However, it is critical to
create or apply simple methods to real-life model systems
for estimating and predicting solar exposure reaching the
earth’s atmosphere using observed datasets of other
weather conditions [12,13]. Although much research has
focused on statistical approaches to improve solar energy
forecasting, finite mixture distributions, mixture models,
and techniques have received little attention [14,15,16].

Markov models have been used for forecasting and
modelling the solar exposure for a long time. For several
things such as demand dynamics, wind power, and solar
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irradiates, Markov models have been used as a predictive
analytic tool [17]. Markov model of solar exposure is
proven to provide efficient modelling to obtain an
accurate prediction. The Markov-chain forecasting
models use various techniques to obtain accurate
probability models, ranging from approximating time
series for hidden Markov models combined with wavelet
coefficients and the Markov-chain mixture distribution
model [18,19].

Building a model reflecting global solar exposure is
imperative since this needs to be simple and precise to
predict the amount of solar exposure accurately. However,
the more complicated the model is, the perfect modelling
it gives with more accurate results. Most of the previous
studies are complicated and difficult to apply and to
understand. Therefore, in this study simpler methods
were suggested to obtain the acceptable prediction
algorithms. The study contributes to developing an
interactive algorithm for obtaining the prediction of solar
energy in next years with less standard error of the
estimation. Researchers have faced severe difficulties in
modelling, estimating, and obtaining the prediction
equation of meteorological data like the solar energy
amount and the corresponding maximum temperature.
Various methods for estimating global solar exposure
have been published using empirical correlations. The
appropriate model must be depending on the statistical
properties of global radiation with a variety of parameters
to obtain accurate estimations of solar radiation and meet
the growing demand for evaluation of solar energy system
optimization and efficiency [20]. For regions where no
real calculated values are, correlations estimate the values
of meteorological data for a region of investigation from
more widely accessible meteorological, climatologically,
and geographical parameters using different
meteorological and geographical variables [21].

Mathematical modelling and forecasting of energy
remain a significant issue to detect and reinforce power
management. Research papers keep track of potential risk
factors, analyze and research all possible scenarios,
especially for overcoming energy crises and managing
power availability costs to achieve long-term growth. The
existing probability forecasts have appropriate
performance and reliability to provide beneficial guidance
for energy decisions. Solar radiation can be accurately
measured for areas with and without observed
meteorological climate stations using various solar
radiation prediction models [22]. Improving the
economics of solar energy systems through the planned
method yields solar forecasting recommendations and a
broad perspective on improvements and their
consequences. Almost all the approaches used applied
forecasting parameters such as sunlight, position,
temperature, and moisture. Therefore, methods must

include more than two parameters to obtain reliable tests,
carrying more complex and higher computational error
risks. It has been found that the sampling approach
transforms into statistical inference methods by relying
on a broad capacity to make statistical decisions. Thus, it
needs to select the appropriate statistical inference
method for the significant studies terminal objective. The
significance of estimation methods and selecting suitable
models to match the data have been highlighted. The best
practice modelling requires different assumptions to be
verified and several factors to be taken into consideration
[23,24,25,26].

The development of pattern similarity in solar
radiation estimation in the clustering algorithm and its
implementation have been presented in various studies.
Bhardwaj et al. used the hidden Markov model to extract
shape-based clusters from the input meteorological
parameters, which is then processed by the generalized
distribution to estimate solar radiation accurately [27].
The patterns of the data vectors are used as the similarity
index for clustering instead of using distance function as
an index of similarity, which overcomes a few of the
disadvantages associated with distance-based clustering
approaches [28].

In modelling the daily global solar exposure dataset,
different techniques and procedures are used. Statistical
model combined with generalized extreme values
distribution is used by [29]. Non-linear regression and
multiple nonlinear regression were used to get the closest
probability distribution. Procedures such as the moment’s
method and the Kolmogorov test were performed to
validate the generalized extreme value distribution
parameters. (Quartiles-Moments) method was applied to
estimate the solar exposure distribution. The parameters
of the Exponentiated Gumbel Maximum Distribution
(EGMD) were proposed to estimate the solar energy. The
Australian Bureau of Meteorology’s updated numerical
climate prediction systems which developed a forecast
solar exposure region that has been validated on multiple
sites for 2012. ACCESS model, which was updated in
August of 2010, became usable for the Australian. The
transition matrix regulates the actions of Markov chains,
which used to characterize the changes of a structure over
time. The observed method is a strategy for determining
the maximum estimate of the probability matrix unusual
intervals. The methodology is with distinct advantages
compared to other optimization approaches for that type
of problem.

Transition states probabilities are usually obtained
through Bayesian theory. Bayesian statistics is a method
for analysing data and estimating parameters based on the
Bayes theorem by creating a joint probability distribution
that includes observed and unobserved parameters in a
statistical model. The aggregation of available
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information on a given parameter via a pre-determined
distribution is inserted in a statistical model. The
identification of the probability function using the
information on parameters of observation data, and the
combination of the previous distribution and likelihood
function with Bayesian theory are the three key concepts
in a typical Bayesian workflow. A solution to the
Markovian state jump systems’ estimation problem with a
transition probability matrix has been proposed by [30].
Four algorithms for Minimum Mean-Square Error
(MMSE) estimation of the transition probability matrix
has been derived based on state recursion.

Markov chain models have been applied to analyze and
predict data sequences in different time series. Welton and
Ades have shown how to fill the gap between transition
rates and probabilities in multi-states models using
probability data. Standard uniform properties, Bayesian
estimation, and transition rate uncertainty were used [31].
The initial and final states of completely observed and
partially observed data after a fixed time interval were
investigated. With an illustrative example for a 3-state
model, the Markov chain method in WinBUGS was used
to propose diagnostics for examining discrepancies
between evidence from different starting states.

In Markov chain models, there is a variety of methods
and techniques for estimating transformation
probabilities. Transition probabilities Matrix are extracted
to simulate and model the given data. It is often preferable
to use a technique to convert the original dataset into a
more compatible format that can be managed without
significant issues. Techniques differ from one approach to
another, depending on the nature of the dataset and the
considered issue. The study redefines well-known
modelling steps to predict solar energy amounts.
Converting the rates of change in solar energy into a
regression model to get the transition change rates. The
technique reduces the standard error in estimating process
by regenerate the regression equation for each new year
adopting a specific structure to arrive at the best
regression line. Also, the transition frequency with
Markov modelling steps is merged with the regression
polynomial equations to estimate the transition matrices
in flexible methods. Solving the issue of state estimation
matrices is a significant step in building an effective
Markov model.

2 Materials and Methods

The best practice modelling necessitates the verification
of various assumptions of some variables. Markov chains
are used to model and solve several practical issues as
they effectively represent the data sequences and data
shift during different periods. The state transition

probabilities can make optimal solutions to Markov
decision problems susceptible. In many practical
situations, the estimation of these probabilities is far from
accuracy.

A set of mutually exclusive states, transition
probabilities, and a valid cycle length are all required by
the Markov model. The transition matrix, also known as
the transition probabilities matrix, is the set of state
probability transitions over a given period. Models of
Markov chains explain how a system evolves. Transition
probabilities are determined by a series of events that are
more likely to occur at various periods. If the transition
probability matrix of the Markov chain is known,
predictions for each state can be produced.

The transfer probabilities between the various states can
be calculated using the dataset history, much like the
probabilities of each state. However, estimating the matrix
is more complicated due to the dynamic relationship
between transformation probabilities. A stochastic
process is a big concept that uses a mathematical model
that incorporates probabilities and matrices to analyze.
The statistical properties of the Markov chain are
investigated. Each month’s values are checked to see if
they are independent of one another. The assumptions of
the independence test are checked before doing the test.

Consider Xt is a stochastic process Xt , t = 1,2,3, ...,
where a Xt is a random variable with a discrete-time
stochastic, and n is the month in a year through 30 years.
Let Xt = ithe process is in a state or position i in time t.
The process undergoes transition matrix properties with
probability Pi, j since the process will be in position j at
time t + 1. Transition probability states Pi, j satisfies the
Markov property (known as forgetfulness property),
which was defined as follows:

P(Xt+1 = j|Xt = it ,Xt−1 = it−1, ...,X0 = i0)

= P(Xt+1 = j|X0 = i0) = Pi, j

(1)

P(Xt+1 = j|Xt = it ,Xt−1 = it−1, ...,X0 = i0) =

P(Xt+1 ∩X0 ∩X1 ∩ ...∩Xt−1 ∩Xt)

P(X0,X1, ...,Xt)
=

P(Xt+1|X0)P(Xt−1)P(Xt−2)...P(X1)P(X0)

P(X0P(X1)...P(Xt−1)
=

P(Xt+1|Xt) = P(Xt+1 = j|Xt = it = i) = Pi, j

(2)

Eq. (2) holds the conditional distribution that any future
state Xt+1 depends only on the current state Xt , knowing
all the history of states X0,X1, ...,Xt−1. Given the current
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state of the process, the Markov chain reveals the future
as independent of the past. The random process
Xt , t = 1,2,3,L is a continuous-time Markov chain, if for
all 0 ≤ s, 0 ≤ t, and non-negative integers i,j. Equation.(3)
simplifies Markov property where:

P[X(t + s) = j|X(s) = i,X(u) = u];0 ≤ u ≤ s,

P[X(t + s) = j|X(s) = i,X(u) = u]
(3)

The conditional probability satisfies the Markov
process. The transition matrix p displays all various
transition states. The probability of the Monthly Global
Solar Exposure Average (MGSEA) will be predicted
using the transition matrix p.

P =



















X(1,1) X(1,2) ... ... X(1,12)

X(2,1) X(2,2) ... ... X(2,12)

...
... ... ...

...

X(12,1) X(12,2) ... ... X(12,12)



















(4)

where
0 ≤ P(X = xi, j),∑

r
j=1 Pi j = 1 i, j = 1,2, ...,r

The probability of the states for each month will be
estimated over a twenty six year to place it in the
transition matrix p. The change rates of MGSEA between
two successive years for the same month was also
computed. Markov model of the MGSEA of January were
applied to obtain the matrix p. The transition matrix is
denoted by Pi j and their elements is represented by X(i,j).

Let X0,X1, ...,Xt−1 be a Markov chain with a random
variable Xt . The probability distribution of Xt represented
as a vector N ∗ 1, where N is the total number of states
and q0 is the probability distribution of X0

q0 =



















(P(X0 = 1)

P(X0 =)

...

P(X0 = N)



















=





















π1

π2

...

πN





















Since the probability vector π is every row of the
matrix, with twelve entries, the sum of each row equals
one.

N

∑
j=1

Pi j =
N

∑
j=1

P(Xi+1 = j|Xt = i)
N

∑
j=1

PXt=i(Xt+1 = j) = 1

(5)

X0 = πt

where

πt =
[

P(X0 = 1) = X1 P(X0 = 1) = X2 ... ... P(X0 = 1) = X12

]

P(X1 = j) =
N

∑
i=1

P(X1 = j|X0 = i)p(X0 = i) =

N

∑
j=1

Pi jπi =
(

π iP
)

j

(6)

Similarly,

P(X2 = j) =
N

∑
i=1

P(X2 = j|X0 = i)p(X0 = i) =

N

∑
j=1

P2
i jπi =

(

π tP2
)

j

(7)

Then,

X0 = π t

X1 = X0 p = π t p

X2 = X1 p1 = π t p2

...

XT = XT−1 pT−1 = π t pT

(8)

Let X0,X1,X2, · · · be a Markov chain with random
variable xt and transition matrix P N ∗N. If the probability
distribution of X0is given by 1 ∗ N row vector π t . The
probability distribution of Xt will be given by 1 ∗N row
vectorπ tPT .

XT = π t pT

XT+1 = π t pT+1
(9)

The probabilities of predicted values for the twelve
months of the next year are determined by multiplying the
probability vector of the year and the transition matrix (all
subsequent single-step probabilities), where Y represents
the transition probability for the following year.

Y =



















X(1,1) X(1,2) ... ... X(1,12)

X(2,1) X(2,2) ... ... X(2,12)

...
... ... ...

...

X(12,1) X(12,2) ... ... X(12,12)





































(P(x0 = x1) = X1

P(x0 = x2) = X2

...

P(x0 = x12) = X12



















(10)
The transition matrix and the initial vector (starting

probabilities) provide all the necessary backgrounds to
simulate the given data and obtain the desired
information. According to Markovian assumptions,
probabilities for Xt+1 are solely dependent on the value of
Xt for any given step.
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Time series data on solar exposure can be collected from
various sources, including IMD, NREL, Metronome,
NASA, the World Radiation Data Centre (WRDC), etc.
Some of these organizations’ data that are for free, while
others require payment. Solar exposure data could be
denoted as Xt , t = 1,2,3, · · ·, where Xt is the solar
exposure at discrete time t that could be the number of
hours, days, months, or years. Solar exposure
measurements are usually continuous values, but to fit for
a Markov chain application, Xt must have a finite number
of states.

The study area in Queensland, Australia (Terrey Hills)
was chosen as the study site. The annual solar exposure
map reveals that the southern coastal regions are more
exposed to the sun that central and northern Australia.
Inland Australian areas have a lower humidity in the air,
resulting in less cloud cover. Yearly Global Solar
Exposure Average (YGSEA) was one of the datasets used
in this analysis. Climate data from Queensland, Australia,
over the last 30 years were actual and reliable, as reported
by the Bureau of Meteorology in the Australian
government website: http://www.bom.gov.au. Figure 1,
indicates the Monthly average of global solar exposure
(GSEA) in 30 years successively.

Fig. 1: Yearly Global Solar Exposure Average in Queensland-

Australia

The values of daily global solar exposure are [1-35]
MJ/m2 (mega joules per square meter). Summer days with
clear skies have the highest values, while winter days with
heavy clouds have the lowest. As shown in Figure 2, for
Monthly Global Solar Exposure Average over a twenty-
six-years, while Figure 3, shown their percentages.

Processing missing data, there was a missing value in
the month December in 2005. The regression equation for
December values for the 30 years with the principle of
Markov that future value depends only on the current
value. Two points before and after the missing points are
used to estimate the approximating curve to predict the
missing point. Figure.4 depicts the best-fitting curve to
the data of December.

Consequently, the nonlinear regression equation
y = 0.4583x3− 22.536x2+ 367.43x− 1963.4 was

Fig. 2: Monthly Global Solar Exposure Average in Queensland-

Australia

Fig. 3: Monthly Global Solar Exposure Percentage over 30 years

in Queensland-Australia

Fig. 4: Fitting regression curve of Global Solar Exposure

Average in December, Queensland- Australia

obtained whereby R-Square almost 1, x is the rank of the
year in twenty-six years from 1990 to 2019, and y is the
global solar Exposure in Dec. Therefore, the missing
estimated value of y at x = 16 is equal to 23.8 for 2005.

Converting dataset to change rates using, Markov
transition matrix was developed to model and forecast the
percentages of monthly solar exposure averages ACRM is
used to determine the potential divisions of solar exposure
quantities for each month in 30 years. The change rates
matrix of solar exposure were calculated, then ACRM
was performed. Matrix of change rates reserve the main
idea of change rate principles. Calculate the change rates
of monthly solar exposure for two successive years in
matrix A during 1990 → 1991 which represented by

[

G(1,1) G(1,2) ... ... G(1,11) G(1,12)

]
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, the change rate matrix of 1991 → 1992 can be
[

G(2,1) G(2,2) ... ... G(2,11) G(2,12)

]

. Similarly, we obtained the change rates values over the
twenty-six years. Create the change rates matrix named
C1 , with dimension 25 ∗ 12, where the rows represent the
yearly change rates and columns are the monthly change
rates in solar exposure.

C1 =



























G(1,1) G(1,2) ... ... G(1,12)

G(2,1) G(2,2) ... ... G(2,12)

...
... ... ...

...

G(24,1) G(24,2) ... ... G(24,12)

G(25,1) G(25,2) ... ... G(25,12)



























Determine a non-linear regression polynomial equation for
each month for the solar exposure: ∑n

i=0 aix
i = a0+a1x1+

a2x2+ · · · . The prediction of the change rate values Ĝ have
order (m+ 1, j), where j : 1,2, · · · ,12,m : 1,2, · · · ,25

Ĝm+1,i =
Gm+1,i −Gm,i

Gm,i

Gm+1,i = Ĝm+1,iGm,i +Gm,i

(11)

Add the change rates as a new row in the change rates
matrix CN , where N is the total number of change rates.
Then the prediction of the solar radiation will be obtain at
(m+ n, j).

Cn =



















































G(1,1) G(1,2) ... ... G(1,12)

G(2,1) G(2,2) ... ... G(2,12)

...
... ... ...

...

G(24,1) G(24,2) ... ... G(24,12)

G(25,1) G(25,2) ... ... G(25,12)

...
... ... ...

...

G(m,1) G(m,2) ... ... G(m,12)

G(m+n,1) G(m+n,2) ... ... G(m+n,12)



















































Then the steps of the Algorithm 1 (ACRM) will be as
follows:

————————————————–
Algorithm 1 (ACRM)
————————————————–

Rem Create Change Rate Matrix CRM (m x j)

Step 1. Read m ”No. of Change rates=m where No. of
years is m+1”.

Step 2. For j=1 to 12 ”Month No.”
Step 3.For x=1 to m
Step 4.Compute change rates G(x, j) which represents the

elements of CRM, where Y represents Solar Energy
(SE) value:
G(x, j) = Y (x+ 1, j)−Y(x, j)/Y (x, j).

Step 5. Next x
Step 6. Next j Rem Compute the Prediction of CRM (m+

1x j) Rem Forecasting SE values for Y(m+r+1,j) where
r=1,. . . ,n

Step 7. Read n
Step 8. For j=1 to 12
Step 9. For r=1 to n
Step 10. Estimate the non-linear regression Ĝ(m+ r, j) =

a(m+ r, j)x2 + b(m+ r, j)x + c(m+ r, j) by the given
points (x,G(x,j)) where x = 1,2, · · · ,m+ r− 1 and j =
1,2, · · · ,12

Step 11. Compute the estimated SE for the month j at the
year No. m+r+1: (m+r+1,j) using the equation: Ĝ(m+
r, j) = Y (m+ r+ 1, j)−Y(m+ r, j)/Y (m+ r, j)

Step 11. Next r
Step 11. Next j

————————————————–

Converting dataset to Markov model using ACDM, the
algorithm 2 converts the dataset into three – states of
Markov model which classifies the change rates of solar
radiation to three states Low (L), Medium (M), and High
(H). The three – states of Markov model represent the
values of the solar exposure over successive years. Then,
the transition matrix was constructed for the given dataset
and predict the probability of the states L, M, and H for
the same month in next year.

————————————————–
Algorithm 2 (ACDM)
————————————————–

Step 1. Compute the frequencies of the transition states L,
M and H for the month:

X1: L → L → n.(LL) Y1: M → M → n.(MM) Z1: H → H → n.(HH)

X2: L → M → n.(LM) Y2: M → L → n.(ML) Z2: H → L → n.(HL)

X3: L → H → n.(LH) Y3: M → H → n.(MH) Z3: H → M → n.(HM)

Fi j =
∑n

i=1 Xi j

∑n
i=1 ∑n

j=1 Xi j

(12)
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Step 2. Compute the transition state probability:

P(X1)=
n.(LL)

n.(LL)+n.(LM)+n.(LH) P(Y1):
n.(MM)

n.(MM)+n.(ML)+n.(MH)

P(X2):
n.(LM)

n.(LL)+n.(LM)+n.(LH) P(Y2):
n.(ML)

n.(MM)+n.(ML)+n.(MH)

P(X3):
n.(LH)

n.(LL)+n.(LM)+n.(LH)
P(Y3):

n.(MH)
n.(MM)+n.(ML)+n.(MH)

P(Z1):
n.(HH)

n.(HH)+n.(HL)+n.(HM) P(Z2):
n.(HL)

n.(HH)+n.(HL)+n.(HM)

P(Z3):
n.(HM)

n.(HH)+n.(HL)+n.(HM)

The corresponding Markov transition state probability
diagram over each state showing all possible
transitions among all states with the possible
transition probabilities using equation 12, seems as
follow in Figure 5.

Fig. 5: Markov-Transition diagram.

Step 3. The state space of model depends on the number
of existing states used in predicting the next state. The
possible states used in the previous model are L, M,
H. The states can be classified into more states to
insure more reliability. The Markov model predicts
the next state using the last state known as the first
order Markov model is used in the study. More
complicated model computes the prediction using the
last two actions known as the second order Markov
model, and its states correspond to all possible pairs
that can be performed in sequence. Transition matrix
is formed easily with the possible probabilities of
states.

T =











P(X1) P(Y3) P(Z2)

P(X2) P(Y1) P(Z3)

P(X3) P(Y2) P(Z1)











=











P(XLL) P(YML) P(ZHL)

P(XLM) P(YMM) P(ZHM)

P(XLH) P(YMH) P(ZHH)











(13)

where

K = 0,1, · · · ,8 and XLL = 0,XLM = 1,XLH = 2,
YML = 3,YMM = 4,YMH = 5,
ZHL = 6,ZHM = 7,ZHH = 9

Step 4. Construct the regression polynomial models.

P(X) = ∑2
i=0 aix

i

P(Y ) = ∑5
i=3 aiy

i

P(Z) = ∑8
i=6 aiz

i

T =











a2X2
LL + a1X1

LL + a0 a5Y 2
LM + a4X1

LM + a3 a8Z2
HL + a7Z1

HL + a6

a2X2
LM + a1X1

LM + a0 a5Y 2
MM + a4X1

MM + a3 a8Z2
HM + a7Z1

HM + a6

a2X2
LH + a1X1

LH + a0 a5Y 2
MH + a4X1

MH + a3 a8Z2
HH + a7Z1

HH + a6











(14)
where

P(XLH) = 1− [P(XLL)+P(XLM)];

3

∑
i=1

Pi1(x) = 1

P(YMH) = 1− [P(YML)+P(YMM)];

3

∑
i=1

Pi2(Y ) = 1

P(ZHH) = 1− [P(ZHL)+P(ZHM)];

3

∑
i=1

Pi3(Z) = 1

Step 5. Then we obtain the coefficients by solving the
following equations:











X2
LL X1

LL 1

X2
LM X1

LM 1

X2
LH X1

LH 1





















a2

a1

a0











=











P(XLL)

P(XLM)

P(XLH)





















Y 2
ML Y 1

ML 1

Y 2
MM Y 1

MM 1

Y 2
MH Y 1

MH 1





















a5

a4

a3











=











P(YML)

P(YMM)

P(YMH)





















Z2
HL Z1

HL 1

Z2
HM Z1

HM 1

Z2
HH Z1

HH 1





















a8

a7

a6











=











P(ZHL)

P(ZHM)

P(ZHH)











Step 6. Solve the following equation to predict the
probability of the states L, M, and H for the same
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month in next year.

S1 = T ∗











PCU(L)

PCU(M)

PCU(H)











=











Pnext(L)

Pnext(M)

Pnext(H)











————————————————–

3 Results and Discussion

Since Markov chains can be modelled at the state level,
random walks are a great example of their mathematical
utility. Modelling the method of solar exposure and
forecasting the potential amount of solar exposure over
the year is done using the Markov Transition Matrix. The
previous procedures are used to estimate the predicted
quantities of MGSE in 2018 and 2019 by working on the
data to get the optimum structure to obtain the transition
matrix probabilities with correct prediction results for
next year.

Results of Algorithm 1: The procedures were applied
over the twelve months to obtain the average change rates
of the solar exposure by ACRM. The change rates of the
solar exposure were computed as shown in Table 1, then
the regression polynomial models for each month were
determined. Consequently, the estimated change rates for
each month in the next years can be obtained using the
previous regression polynomial models.

Table 1: Change Rates Matrix for each month over the twenty-

six years

Jan Feb · · · Nov Dec

1 0.160 0.160 · · · -0.139 -0.103

2 -0.037 -0.236 · · · -0.089 -0.012

3 -0.019 0.125 · · · 0.102 0.171

4 0.029 -0.051 · · · -0.017 -0.096

5 -0.024 0.033 · · · -0.209 0.019

...
...

...
...

...
...

24 0.032 0.121 · · · 0.241 0.133

25 0.021 0.136 · · · 0.2431 -0.041

The non-linear regression curve equation for January
change rates over the data set is shown in Figure 6, as y =
0.0005x4− 0.0088x3+ 0.0726x2− 0.2732x+ 0.3444.

Similarly, the regression equation for each month is
obtained with considering R2 approximately equal one, to

Fig. 6: Regression polynomial curve of the change rates for the

solar exposure in January.

ensure the best curve-fitting to the data. As shown in
Figure 7, there are two regressions curves representing
the data. The first regression curve equation is
y =−0.06x3 + 0.205x2− 0.0005x+ 0.0018 with R2 equal
0.4348. The second regression curve equation is
y = −0.09x5 − 0.8507x4 + 0.2205x3 − 0.0002x2 +
0.0008x + 0.0205 with R2 equal 0.8495. However, the
selected curve is the one with R2 equal to one.

Fig. 7: Regression polynomial curve of the change rates for the

solar exposure in February.

Using the regression equations, we estimate the change
rates among current months and future months. The
estimation of the change rates make it possible to predict
the amount of solar exposure for next month. For
Cm+1 = C26, we obtained January change rate
Ĉm=26 = 0.01. Substituting in Eq. 11, to obtain the
predicted value of January Gm+1,i = Ĝm+1,iGm,i +Gm,i =
0.01 ∗ 22.7+ 22.7= 22.927.

Similarly, the estimated change rates of the twelve
months are added as new row in change rate matrix
Cm+1 = 26 . The prediction values of Solar Exposure of
the twelve months over the years from 2018 – 2020 are
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Table 2: Solar exposure for each month in 2018, 2019 and 2020

2018 2019 2020

Jan 23.589 21.168 23.328

Feb 21.8283 24.882 21.6021

Mar 17.16 19.03 13.75

Apr 13.31 16.456 16.698

May 11.88 13.68 13.2

Jun 8.585 8.686 8.585

Jul 11 12 12.21

Aug 12.423 12.322 13.938

Sep 15.908 15.132 17.46

Oct 20.9 22.88 21.12

Nov 24.321 30.25 27.83

Dec 23.0437 21.9558 22.1536

shown in Table 2, using the algorithm of the change rates.

C26 =



























0.16 0.01 ... −0.139 −0.103

−0.37 −0.26 ... 0.08 −0.012

...
...

...
...

...

0.021 0.136 ... 0.23 −0.041

0.017 0.131 ... 0.21 −0.11



























The procedures of ACRM are pursued the track, until
the change rates matrix of the order m + n,Cm+N , is
obtained, in addition to the years of the order m+ n+ 1.

Results of Algorithm 2: Classify and convert the dataset
of each month to three states. The classification depends
on the length of daily solar exposure where the states will
be as: low (L) in [1 – 12], medium (M) in [12 – 24], and
high (H) in [24 – 35]. The probability transition matrix, T,
is obtained through the history of the twenty-six years of
monthly Solar Exposure. Current state for each month is
calculated as the initial vector S0 represent the current
state of the month. Using ACDM algorithm, the transition
matrix T was obtained by substituting K values in the
Eq.14, to the coefficients ai. Then, Markov property is
used to predict the next state for each month. That means
(The next state, S1) = (Transition matrix, T) * (current
state, S0); S1 = P∗ S0

S1 =











0.75 0.151 0

0.25 0.822 0.25

0 0.027 0.75





















PCU(L)

PCU(M)

PCU(H)











=











Pnext(L)

Pnext(M)

Pnext(H)











Where cu is symbol for current state. The possible
states used in the used model are L, M, H as shown. The
probabilities of each state are evaluated. The transition
probabilities of each state are computed, and the
transition probability matrix is shown in Figure 6. T
matrix indicates that no transition is possible between H
and L. changes in the amounts of solar exposure must be
gradually over time. Therefore, if it is high, to get low
amounts of SE, it must get medium amounts first, but the
opposite is correct; this means there are no sudden
changes of SE amounts.

Nevertheless, in real life, things are not constant,
especially in climate conditions. That means there may be
sudden changes among SE amounts in January. To obtain
a specific transition probability matrix of a specific
month, like January, the daily amount of SE of that month
through the twenty-six year are classified into the
three-state Markov chain. Markov transition diagram of
SE in January and February shown in Figure 8.

Fig. 8: Markov- Transition diagram of Solar Exposure of January

and February.

As a result of the prediction, the percentage of
MGSEA was acceptable with a low error of average and
dispersion. The estimated transition probability for solar
exposure data shown in Table 3. While, the results of the
two algorithms ACRM and ACDM are shown in Table 4.

The efficiency of the algorithms may be validated
using the Sum of Squared Residuals (SSR). The
difference between predicted and actual data is measured
to insure precision. MSE, Mean Square Error and
RRMSE, Relative Root Mean Square Error was defined
to be used to assess this methodology performance. The
accuracy of the SSR significantly depends on the models’
capacity to adapt to the relevant data conditions of the
various states.
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Table 3: States probability for each month in 2018

P(L) P(M) P(H)

Jan 0.23 0.33 0.44

Feb 0.24 0.33 0.43

Mar 0.40 0.41 0.19

Apr 0.38 0.43 0.18

May 0.54 0.35 0.10

Jun 0.75 0.25 0.00

Jul 0.59 0.33 0.08

Aug 0.40 0.43 0.18

Sep 0.30 0.48 0.32

Oct 0.17 0.40 0.44

Nov 0.13 0.33 0.53

Dec 0.12 0.37 0.51

Table 4: Estimated values of ACRM and ACDM in 2018 – 2019

2018 2019

Actual ACRM AcDM Actual ACRM AcDM

Jan 22.1 23.0859 20.77 22.3 21.168 19.45

Feb 20.5 21.8283 20.25 20.7 24.882 19.051

Mar 16.2 17.16 12.82 15.1 19.03 12.63

Apr 14.2 13.31 13.51 13.7 16.456 12.34

May 11.2 11.88 5.57 11.1 13.68 5.10

Jun 8.7 8.585 7.74 8.7 8.686 6.45

Jul 11.4 11 6.07 10.9 12 5.41

Aug 13.1 12.423 13.32 12.9 12.322 12.57

Sep 16.4 15.908 14.81 16.5 15.132 11.49

Oct 17.4 20.9 13.57 22.1 22.88 13.40

Nov 21.2 24.321 24.97 24.2 30.25 22.63

Dec 24 23.0437 23.79 24.3 21.956 22.19

Some of estimation errors such as R2, MSE, MPE,
RMSE, erMAX, and RRMSE were computed in Table 5
to validate the results.

The model is very accurate as there is a strong
correlation between the model’s predictions and the actual
results Figure 10. The remarkable aspect of the system is
that the prediction error exact value was established
before any prediction was made. The forecast is the best
possible outcome from global solar exposure data. The
technique of ACRM is better than ACDM, see the Tables
(4,5) and Figures (9,10). On the other hand, ACDM
algorithm can be improved by shortening the length of the

Fig. 9: Comparison between ACRM and ACDM with the actual

data of GSEA in 2018.

Fig. 10: Comparison between ACRM and ACDM with the actual

data of GSEA in 2019.

Table 5: Estimation errors of solar radition

ACRM ACDM

2018 2019 2018 2019

R2 0.83 0.93 0.83 0.74

MSE 0.86 0.64 0.86 1.17

MPE -0.53 0.50 -0.53 -1.27

RMSE 0.80 0.68 0.93 1.08

erMAX 0.18 0.15 1.01 1.18

RRMSE 0.01 0.01 0.02 0.02

interval. In other words, the results of ACDM will be
more accurate by classifying the dataset into six-states.

Percentile Root Estimation (PRE), the algorithm 3 based
on solving equations to get numerical approximated values
for the unknown parameters. Theoretically, the practical
steps to apply the Algorithm 3, on the three-parameters
distribution are indicated below.

————————————————–
Algorithm 3 (PRE)
————————————————–

Step 1. Determine the required probability distributions
for the dataset that will be checked.

Step 2. Evaluate the empirical properties as the mean and
standard deviation for the dataset.
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Step 3. Write the parameters in terms of one parameter,
R : α → f (θ ),β → g(θ )
Suppose that the scale parameter α shape parameter β
and location parameter θ with CDF F(X ;α,β ,θ ) . A
relation R, mathematical elicitation, is figured out
among the parameters using theoretical properties of
the under-study distribution and the empirical values
of the data to obtain the scale parameter α as a
function F of location parameter θ , and to obtain the
shape parameter β as function g of location parameter
θ . Where R : α → f (θ ),β → g(θ )

Step 4. Substitute parameters in CDF equation to obtain
F [X ; f (θ ),g(θ ),θ ] = F(X ;θ ) =Ui.

Step 5. Solve the CDF equation to get the value of the
parameter θ = F−1(X ;θ ).

Step 6. Obtain the value of other parameters.
Step 7. Check the validation of parameters through

theoretical mean, variance, and

0 < F(Xi;α,β ,θ )< 1;

F(X1)< F(X2)< · · ·< F(XN)
Step 8. If step 7 is valid; repeat the steps 5,6, and 7 for N

times to obtain α,β ,θ .
Step 9. If step 7 is not valid, repeat step 3 with different

relations:R2 : α → l(θ ),β → w(θ ) , then continue the
steps 4-7, and check again.

Step 10. The estimated parameter value is the median of
all obtained values.

————————————————–

The percentiles equations of the Cumulative
Distribution Function (CDF) will be solved for all values
of the variable X. Moreover, the algorithm PRE will
check the percentile roots with the actual statistics
measures of the given dataset. To demonstrate the impact
of PRE, the method was applied on five different
three-parameter distributions: Lognormal distribution,
Fatigue lifetime distribution, Fréchet distribution, Erlang
distribution, and Pert distribution.

Suppose the random variable Xi : x1,x2, · · · ,xN follows
the exponential distribution with probability density

function f (x;λ ) = λ e−λ x, and cumulative function

F(x;λ ) = 1− e−λ x. There is only one parameter, shape
parameter λ . Then, the steps of the algorithm PRE will be
as follows: determine the dataset and no need to evaluate
empirical properties from the data to exploit. Therefore,
compute the numerical estimation for the parameter as
follows: θ = F−1(X ;θ )

Ui =
i
N
, i = 1,2, · · · ,N

λ = −ln(1−Ui)
xi

All possible values for the parameter λ are obtained
through substituting the values of variable Xi and
percentile Ui in the above equation. Then, checking the
validation of estimated parameters through theoretical
properties of the distribution, such as theoretical mean
and variance is a priority. Ensuring whether the estimated
values imply the following basics:

0 < F(Xi;λ )< 1;

F(X1)< F(X2)< · · ·< F(XN)

All the possible values for the rate parameter λ were
obtained. There are extra steps for two parameters and
more, including finding relations among parameters to
obtain parameters in terms of one parameter.

Suppose a random variable X = x1,x2, · · · ,x364,x365 of
the daily global solar exposure in Queensland, Australia
over 2018. Whereby, X = Xi : ln(xi − γ), i = 1, · · · ,365
follows the three-parameters Lognormal distribution. The
three parameters were defined as location parameter (γ),
scale parameter (µ), and shape parameter (σ ). Then

f (x : µ ,σ ,γ) = 1

(x−γ)σ
√

2π
exp

[

−(ln(x−γ)−µ)2

2σ2

]

(15)
−∞ < µ < ∞,γ < x < ∞

F(x : µ ,σ ,γ) = Φ

[

(ln(x− γ)− µ)

σ

]

(16)

Mean:

E(x) = γ + exp

[

µ +
σ2

2

]

(17)

Median:
Med = γ + exp [µ ] (18)

µ = ln(Med − γ) (19)

σ =

√

1

2
ln

[

E(x)− γ

Med− γ

]

(20)

Finally, the location parameter γ could be calculated by
applying PRE with percentile equation CDF for the given
dataset. Then, the values of the location parameter will be
substituted in Eq.19 and Eq.20 to obtain the parameters µ
and σ .

F(x : γ) = Φ









(ln(x− γ)− [ln(Med− γ)])
√

1
2
ln
[

E(x)−γ
Med−γ

]









(21)

Equation.21 contains one unknown parameter, the
location parameter (γ) is now easy to solve knowing the
values of variable Xi and the percentile values.
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Substituting the value of the estimated location parameter
to obtain the values of parameters µ and σ . The process is
repeated several times N; i = 1,2,3, · · · ,N. Since N
represents the size of the dataset. The mathematical
calculations can be done manually or with Software
programs. Mathematica program version 11.1.1 is used to
solve the equations using the code FindRoot.

Fatigue lifetime distribution, often known as the
distribution of Birnbaum–Saunders, is a widely used
probability distribution to estimate breakdown times in
reliability applications. Let X be a random variable with a
shape parameter α > 0, a scale parameterβ > 0, and a
location parameter γ > 0. The probability density
function of X follows Fatigue distribution is

f (x : α,β ,γ) = φ

[

1

α

√

x− γ

β
+

√

β

x− γ

]

∗
√

x−γ
β +

√

β
x−γ

2α(x− γ)

(22)

F(x : α,β ,γ) = Φ

[

1

α

√

x− γ

β
+

√

β

x− γ

]

(23)

Mean:

E(x) = γ +β

[

1+
α2

2

]

(24)

Skewness:

Sk =
4α(11α2 + 6)

(5α2 + 4)
3
2

(25)

Variance:

var(x) = (αβ )2

[

1+
5α2

4

]

(26)

The scale parameter (β ), and location parameter (γ)
were described in terms of the shape parameter (α) in Eq.
27 and 28. Otherwise, the skewness in Eq. 25 can be used
to obtain the shape parameter (α), then Eq. 26 is used to
get the scale parameter (β ). The percentiles values with
variable Xi, location parameter, and scale parameter
values are substituted in Eq. 23 to obtain the values of
shape parameter (α).

β =

√

√

√

√

var(x)

(α)2
[

1+ 5α2

4

] (27)

γ = E(x)−
[

1+
α2

2

]

√

√

√

√

var(x)

(α)2
[

1+ 5α2

4

] (28)

F(x : α) = Φ















1
α

√

√

√

√

√

√

√

√

x−






E(x)−

[

1+ α2

2

]
√

var(x)

(α)2
[

1+ 5α2

4

]







√

var(x)

(α)2
[

1+ 5α2

4

]















+
√

√

√

√

√

√

√

√

√

var(x)

(α)2
[

1+ 5α2

4

]

x−
[

E(x)−
[

1+ α2

2

]
√

var(x)

(α)2
[

1+ 5α2

4

]

] (29)

The Erlang distribution, known as the Erlang-k
distribution is a specific case of the Gamma distribution,
where the shape parameter is an integer number. Erlang
distribution was developed for application in the queuing
theory, stochastic processes, and mathematical biology. In
the study of queuing systems, Erlang distribution
represents the time between the arrivals and time for
services of a unit. As a result of multi-steps models, the
Erlang distribution was suggested as a good approach to
the distribution of cell cycle times, and inter-purchase
intervals in business economics. In the case of the
two-parameter Erlang distribution, the location parameter
equals zero.

f (x : m,β ,γ) = e

[

x−γ
β

]

(x− γ)m−1

β mΓ (m)
(30)

where m is a positive integer, β > 0, and γ < x < ∞

F(x : m,β ,γ) =
Γx−γ

β
(m)

Γ (m)
(31)

where Γ (.) is the gamma function and Γ − z(.) is the
incomplete gamma function.

Mean:

E(x) = γ +mβ (32)

Variance:

var(x) = mβ 2 (33)

γ = E(x)− var(x)

β
(34)

m =
var(x)

β 2
(35)

F(x : β ) =

Γ
x−

[

E(x)− var(x)
β

]

β
(

[

var(x)

β2

]

)

Γ ( var(x)
β 2 )

(36)
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In the case of the two-parameter Erlang distribution, we
used the mean in Eq. 34 to obtain the shape parameter in
terms of the scale parameter as in Eq. 37.

m =
E(x)

β
(37)

F(x : β ) =

Γx
β
(
[

E(x)
β

]

)

Γ (E(x)
β )

(38)

Fréchet distribution, known as the Extreme Value
Distribution (EVD) Type II, is used to represent the
maximum values for a given data. The distribution is used
to simulate a large range of phenomena such as flood
evaluation, horse racing, human life cycles, extreme
weather, and hydrological discharges.

f (x : α,β ,γ) =
α

β

[

β

x− γ

]α+1

exp

[

−
[

β

x− γ

]α]

(39)

where α > 0,β > 0, and γ < x < ∞

F(x : α,β ,γ) = exp

[

−
[

β

x− γ

]α]

(40)

Median:

Med = γ +
β

α
√

log(2)
(41)

Mode:

M = γ +β

[

α

1+α

] 1
α

(42)

β =
Med −m

[log(2)]
−1
α −

[

α
1+α

] 1
α

(43)

γ = Med −





Med −m

[log(2)]
−1
α −

[

α
1+α

]
1
α



 [log(2)]
−1
α (44)

Pert distribution is the most common form of risk
distribution performed at the risk-based estimation
method. It is defined by three extremely well-defined
points; (a) the minimum parameter, (b) the maximum
parameter, and (m) the most likely parameter. Pert
distribution is a special case of the Beta distribution
specified by the parameters α1 and α2. α1 = 4m+b−5a

b−a
,

α2 =
5b−a4m

b−a

f (x : a,m,b) =
1

B(α1,α2)

[x− a]α1−1 [b− x]α2−1

[b− a]α1+α2−1
(45)

where a < x < b

f (x : a,m,b) = Iz(α1,α2) (46)

where z = x−a
b−a

, B(α1,α2) is the Beta function, Iz(α1,α2)
is the Regularized Incomplete Beta function. Where

Iz(α1,α2) =
Bx(α1,α2)
B(α1,α2)

.

Mode : mode = m (47)

Variance : var(x) =
(b− a)2

36
(48)

b = 6
√

var(x)+ a (49)

The most likely parameter is easily obtained by the
mode of the given dataset, leaving the boundary
parameters of the distribution to be found. Using the
variance Eq. 48, the maximum parameter is described in
terms of the minimum parameter as in Eq.49. The
estimated parameters by the proposed algorithm PRE
were obtained through substituting the pre-defined
parameters in the percentiles of CDF equations. The
pre-defined parameters are mathematical elicitation from
the theoretical properties of the probability distribution in
the form of relation between the parameters and the actual
properties of the dataset. Through solving the illustrated
percentile equations, the parameters are estimated in
sequence as shown for each probability distribution. The
estimated parameters of the distributions: Lognormal
distribution, Fatigue life, two-parameter Erlang,
three-parameter Erlang, Fréchet, and Pert were obtained
in Tables 6− 10.

The results of PRE algorithm was compared with
MLE method. The goodness of fit tests determines
whether a sample is compatible with a theoretical
distribution or not. They are the essential measures of
accuracy to any estimator. In other words, the tests
illustrate how well the chosen distribution matches the
given data. A popular test to evaluate the compatibility of
observed data set to a probability distribution function is
the Anderson-Darling test. The validity of PRE results is
measured using Anderson-Darling test (AD). AD is
considered effective fitting statistical test.

AD =−n− 1
n ∑n

i=1(2i− 1) [ln(F(Xi))+ ln(1−F(Xn−i+1))]
(50)

AD test statistic value of PRE is obtained by applying
Eq.50 and compared to the AD test value of MLE for the
chosen distributions for the given dataset of global Solar
Exposure. The estimated parameters and AD test statistic
value of three-parameter lognormal distribution obtained
by PRE and MLE are shown in Table 11. AD test statistic
value of PRE is less than the AD test statistic value of
MLE. The histogram-pdf plot for the probability
distribution was used to indicate how well the distribution
fits the data. The fitting of the three-parameters
Lognormal distribution were estimated by PRE and MLE
to the dataset of global solar exposure whereby are shown
in Figure 11. The results of PRE were compared with the
results of MLE and found that the estimated parameters
are more accurate in PRE than MLE.
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Table 6: Estimated parameters of Lognormal distribution using

PRE

N x F(x) γ µ σ

1 1.2 0.00274 -1.8204 2.80064 0.41945

2 1.5 0.005479 -1.7525 2.79886 0.41972

3 2.1 0.008219 -1.29935 2.78681 0.42158

4 3.6 0.010959 7-1.324 2.787473 0.421482

5 3.6 0.013699 -1.7942 2.799956 0.419551

6 3.8 0.016438 -1.9946 2.80517 0.418752

...
...

...
...

...
...

...
...

...
...

...
...

360 31.9 0.986301 -1.50611 2.79235 0.420724

361 31.9 0.989041 -1.53734 2.801084 0.419378

362 32 0.991781 -1.8076 2.800307 0.419497

363 32 0.994521 -1.82413 2.800739 0.419431

364 32.1 0.99726 1.93254 2.689493 0.437491

365 32.1 0.99999 -1.81076 2.80039 0.419485

Median -0.046977 2.791381 0.420874

Fig. 11: Estimated three-parameter Lognormal distribution

The estimated parameters and AD test statistic value
of Fatigue lifetime distribution were obtained by PRE and
MLE in Table 12.

The Fatigue distribution fitting data was estimated by
PRE and MLE as shown in Figure 12. Although the
histogram-fit line shown the similarity of the estimated
values between the PRE and MLE, we found that the PRE
covers the boundaries of the dataset better than MLE.

The estimated parameters of the three-parameters and
two-parameters for Erlang distribution were obtained by

Table 7: Estimated parameters of Fatigue life distribution using

PRE

N x F(x) α β γ

1 1.2 0.00274 0.238002 27.04502 -13.8693

2 1.5 0.005479 0.247711 27.83011 -13.4229

3 2.1 0.008219 0.23603 27.30368 -13.5397

4 3.6 0.010959 0.23602 27.305 -13.2564

5 3.6 0.013699 0.237303 27.13622 -13.4267

6 3.8 0.016438 0.249899 27.56902 -13.8099

...
...

...
...

...
...

...
...

...
...

...
...

360 31.9 0.986301 0.24803 27.79176 -13.5797

361 31.9 0.989041 0.2392 27.88991 -13.5608

362 32 0.9917817 0.24989 27.57009 -13.9989

363 32 0.994521 0.24797 27.79897 -13.0203

364 32.1 0.99726 0.24787 27.81098 -13.6213

365 32.1 0.99999 0.23031 27.07839 -13.6697

Median 0.24764 27.79969 -13.5397

Table 8: Estimated parameters of Erlang distribution using PRE

N x F(x) β γ m β m

1 1.2 0.00274 3.153719 0.319938 5.144813 3.099318 5.33762

2 1.5 0.005479 3.183447 0.383226 5.049174 3.05469 5.40159

3 2.1 0.008219 3.17813 0.308738 5.06608 3.05469 5.417495

4 3.6 0.010959 3.187107 0.318689 5.037581 3.067985 5.34213

5 3.6 0.013699 3.306602 0.309882 4.680063 3.21901 5.13914

6 3.8 0.016438 3.183126 0.30961 5.050189 3.057331 5.41092

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

360 31.9 0.986301 3.167075 0.300813 5.101511 3.089141 5.35535

361 31.9 0.989041 3.176646 0.306882 5.070814 3.058131 5.40805

362 32 0.991781 3.186465 0.309845 5.039614 3.081029 5.35183

363 32 0.994521 3.179449 0.316301 5.06188 3.092131 5.34821

364 32.1 0.99726 3.184379 0.308793 5.046216 3.076118 5.37711

365 32.1 0.99999 3.17827 0.305705 5.065634 3.067708 5.40485

Median 3.187537 0.30934 5.04502 3.088082 5.357047

PRE and MLE in Table 13. Moreover, the AD test statistic
value and the standard errors of the estimated parameters
were obtained.

The Erlang distribution three-parameters and
two-parameters were estimated by PRE and MLE as
shown in Figure 13. The histogram data-fit illustrates the
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Table 9: Estimated parameters α , β , γ of Fréchet distribution

using PRE

N x F(x) α β γ

1 1.2 0.00274 1.8661632 11.77603 1.623546

2 1.5 0.005479 1.8625325 11.76241 1.6603329

3 2.1 0.008219 1.8615641 11.75703 1.603355

4 3.6 0.010959 1.8615641 11.76513 1.588823

5 3.6 0.013699 1.8629139 11.76042 1.656818

6 3.8 0.016438 1.8661632 11.76311 1.623546

..

.
..
.

..

.
..
.

..

.
..
.

...
...

...
...

...
...

360 31.9 0.986301 1.8629139 11.76042 1.668179

361 31.9 0.989041 1.8685159 11.7847 1.647330

362 32 0.9917817 1.8691487 11.7579 1.627343

363 32 0.994521 1.8698151 11.7794 1.608132

364 32.1 0.99726 1.8632417 11.67512 1.663724

365 32.1 0.99999 1.8625325 11.76701 1.670331

Median 1.86769 11.766 1.66996

Fig. 12: Estimated Three-parameter Fatigue lifetime distribution

efficient of PRE method to cover the boundaries of the
data. The plot gives the comparison between PRE and
MLE method with the best-fit parameters for the given
dataset.

The values of the estimated parameters of
three-parameter Fréchet distribution by PRE and MLE,
with the AD test statistic value are shown in Table 14.

Table 10: Estimated parameters (a) and (b) of Pert distribution

using PRE

N x F(x) a b

1 1.2 0.00274 0.76317 36.353

2 1.5 0.005479 0.76038 36.3528

3 2.1 0.008219 0.76647 36.3537

4 3.6 0.010959 0.76088 36.3578

5 3.6 0.013699 0.7621 36.352

6 3.8 0.016438 0.7681 36.358

...
...

...
...

...

...
...

...
...

...

360 31.9 0.986301 0.76657 36.35647

361 31.9 0.989041 0.761056 36.3556

362 32 0.9917817 0.76307 36.35607

363 32 0.994521 0.765892 36.3592

364 32.1 0.99726 0.762784 36.3584

365 32.1 0.99999 0.76186 36.3085

Median 0.76631 36.3601

Table 11: Estimated parameters and AD test value of lognormal

distribution using PRE and MLE.

Distribution Parameter PRE Std.Error MLE Std.Error

µ 2.7955 0. 003464 3.3395 0.19198

LogNormal σ 0.4183 0.021548 0.2451 0.0479

γ -1.46977 0. 744878 -12.705 5.24189

AD 1.5127 1.6

The standard error of the estimated parameter for each
method PRE and MLE were derived.

The fitting of Fréchet distribution was estimated by
PRE and MLE are shown in Figure 14 The estimated
distribution by PRE method seems more fitting to the
dataset that estimated by MLE method. The estimated
distribution by PRE covers the boundaries of the data set
better.
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Table 12: Results of estimated parameters and AD test of Fatigue

distribution using PRE and MLE.

Distribution Parameter PRE Std.Error MLE Std.Error

α 0.248 0.012962 0.24808 0.012985

Fatigue β 27.7888 1.455102 28.08 1.469774

γ -13.54 0.57087 -12.587 0.658834

AD 2.328 4.4119

Table 13: Estimated parameters of Erlang distribution by PRE

and MLE with AD test

Distribution Parameter PRE Std.Error MLE Std.Error

m 5 1.475409 8 2.51038

Erlang (3p) β 3.18 0.496094 2.5189 0.44963

γ 0.3093 2.058859 -4.2532 2.81509

AD 1.867 2.2176

m 5 0.52758 5 0.33916

Erlang(2P) β 3.088 0.71205 3.2895 0.25981

AD 2.939 3.5062

Fig. 13: Estimated Three-parameter Erlang distribution

The estimation of the parameters of Pert distribution
shown in Table 15. AD test statistic values for PRE and
MLE methods with the standard errors were also obtained
and compared. The estimated results appear much similar
from both PRE and MLE methods. The data are fitting
plots of Pert distribution of estimated parameters by PRE

Table 14: Results of estimated parameters and AD test of Fatigue

distribution using PRE and MLE.

Distribution Parameter PRE Std.Error MLE Std.Error

α 1.868 0.025725 2.0868 0.709228

Fréchet β 11.766 0.34963 9.7662 0.511186

γ 1.6794 0.30103 1.0794 0.356498

AD 5.38 27.892

and MLE method shown in Figure 15. Thus the
estimation of Pert distribution by PRE is more fitting than
MLE method.

Fig. 14: Estimated Three-parameter the Fréchet distribution

Table 15: Estimated parameters and AD test values of the Pert

distribution by PRE and MLE.

Distribution Parameter PRE Std.Error MLE Std.Error

a 0.766 0.040047 0.55186 0.027145

Pert m 14.8 0.774667 14.863 0.777965

b 36.36 1.902907 38.69 2.025127

AD 3.689 3.856

Consequently, PRE algorithm is more accurate than
MLE method as shown in Table 16 whereby AD is lower
in the case of PRE algorithm than MLE method. Thus
PRE algorithm given more accurate estimations with the
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Fig. 15: Estimated Three-parameter Pert distribution

least estimation error for the three-parameters
distributions as in the above-mentioned results. On the
other hand, many researchers always found a complexity
to obtain an accurate estimated three-parameters
distributions using the traditional estimation methods like
as: MLE, moments and Bayesian inference.

Significant statement: In this paper, three algorithms
were suggested providing accurate results of the
prediction of the daily global solar radiation. The point
that is highly beneficial to the applications of environment
and energy sciences. It also helps uncover the critical
areas of the prediction and estimation methods. Now,
researchers can work out a new statistical method of
sustainable energy sources and possibly of other new
distributions. Moreover, the results of this study enable us
to better understand the causes of high temperatures in the
atmosphere.

4 Conclusion

In this study, the forecasting approaches were
implemented to predict the states of solar energy with the
least estimation error using three proposed algorithms
ACRM, ACDM and PRE. The first algorithm ACRM,
basically recasts to control the prediction error by
computing the change rates of solar energy during
successive years. The ACRM algorithm converts the
change rates to the regression polynomial models to
predict the change rates of solar energy in the next years.
The second algorithm ACDM reduces the standard error
in estimating process by regenerate the regression
polynomial equations for each month. The performance
of the prediction algorithm could achieve interesting
improvement in diagnostic and decision making
processes. Converting the dataset to six-states, Markov

Table 16: Comparison AD values of estimated distributions

using PRE and MLE.

Distribution Parameter PRE MLE

µ 2.7955 0. 3.3395

LogNormal σ 0.4183 0.2451

γ -1.46977 -12.705

AD 1.5127 1.6

α 0.248 0.24808

Fatigue β 27.7888 28.08

γ -13.54 -12.587

AD 2.328 4.4119

m 5 8

Erlang (3p) β 3.18 2.5189

γ 0.3093 -4.2532

AD 1.867 2.2176

m 5 5

Erlang(2P) β 3.088 3.2895

AD 2.939 3.5062

α 1.868 2.0868

Fréchet β 11.766 9.7662

γ 1.6794 1.0794

AD 5.38 27.892

a 0.766 0.55186

Pert m 14.8 14.863

b 36.36 38.69

AD 3.689 3.856

model will be provided more accuracy results. Moreover,
this study concluded that PRE algorithm is less
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complicated than MLE method in coding and it also gives
more accurate estimations. Availability of data and
materials The data used to support the finding of this
study are from Bureau of Meteorology,
http://www.bom.gov.au/climate/data.
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