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Abstract: Here we examine some connections between the notions of generalized arithmetic means, geodesics, Lagrange-Hamilton

dynamics and Bregman divergences. The key ingredient for the relationship is the case in which a Riemannian metric has a square root

that is the Jacobian of a diffeomorphism. In such case the geodesics of the of the Riemannian metric turn out be the pullback of straight

lines by the diffeomorphism. This is interesting when the Riemann metric is the Hessian of a convex function because in this case we

obtain comparison results between the Bregman divergence determined by the convex function and the geodesic distance determined

by its square root.
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1 Introduction and Preliminaries

In this paper we establish a relationship between concepts
arising in different fields. We shall see that the concept of
generalized arithmetic can be given a geometric and a
variational interpretation as well as a multidimensional
extension. The geometric interpretation will be as normal
coordinates in a Riemannian metric that can be factored
as the square of the Jacobian of a diffeomorphism. The
variational interpretation relates the generalized
arithmetic mean to the best predictor in a geodesic
distance given by the aforementioned metric.

Generalized arithmetic mean is a natural extension of
the concept of certain equivalent introduced by Bernoulli
to deal with the Saint Petersburg paradox in the XVIII-th
century. It can be traced back to the work of Bonferroni
[1] and de Finnetti [2]. Historically speaking, generalized
arithmetic means were introduced by Bernoulli under the
name of certainty equivalent. They capture the price of a
random cash flow (the payoff of a bet) for an investor with
utility function u. The first variational characterization of
generalized arithmetic mean seems to be due to Berger and
Casella, [3], and is worth recalling because it is the germ
of the ideas in this work.

Consider a strictly monotone function u : I → R,
where I ⊂ R is an open interval. If {x1, ...,xn} is a
collection of points in I , their generalized arithmetic

mean is defined by:

c = u−1
(1

n

n

∑
i=1

u(xi)
)

. (1)

That is, c is the point at which the distance
(

∑(u(xi) − u(c))2
)1/2

is minimal. This is what we

extend to a many dimensional setup, and we provide a
geometrical interpretation to the change of variables and
to the distance as a geodesic distance.

1.1 Organization of the paper

In Section 2 we consider the manifold M =I n and verify
that the distance given by

d2
u(xxx,yyy) =

(

∑(u(xi)− u(yi))
2
)1/2

(2)

is actually a geodesic distance between xxx and yyy in cM.
This simple case is nice because it leads to a diagonal
Riemannian metric in M and the determination of the
geodesic distance in that metric is trivial. In Section 3 we
replace u by a general diffeomorphism UUU defined on M
and use it to define a Riemannian metric on M . The
geodesic distance in this metric is a multidimensional
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version of the generalized arithmetic mean. It is here and
Section 5 where the main results are contained.

In Section 4 we consider the changes of variables and
the integration of the geodesic equations within the
framework of Hamilton-Lagrange formalism just to
provide a point of contact with classical mechanics. The
idea is to regard the integration of the equations of the
geodesics from another point of view.

In Section 5 we relate the results in Sections 2 and 3 to
the work of [4]. The relationship goes in two directions. On
the one hand, for every xxx ∈ M we can reinterpret UUU(yyy)−
UUU(xxx) as normal coordinates in a neighborhood of xxx. On the
other hand, we show that the arithmetic means introduced
in Sections 2 and 3 coincides with the notion of intrinsic
mean in [4].

It is in Section 6 where we establish conditions for a
two way connection between Hessian matrices of convex
functions and diffeomorphisms in R

n, while in Section 7
we compare the geodesic distance to the Bregman
divergence defined by the convex function. In Section 8
we collect some examples and address some collateral
themes, and in the Final remarks section we say a few
words on how this work intersects an older line of work
on Hessian structures on R

n.

A word about notations.

In the remainder of this paper we use M = (I )n, where
as said, I is an interval (bounded or unbounded). We use
this setup because in many cases we want to consider
convex functions of the type ∑u(xi) with u(x) convex. As
the manifold that we are considering is a simple subset of
R

n naturally provided with a global chart, the standard
constructs of differential geometry in this case are very
simple. For example, the tangent bundle and the
cotangent bundles are trivially identifiable with M ×R

n.
We use the standard 〈vvv1,vvv2〉 to denote the usual Euclidean
scalar product between the vectors vvv1,vvv2. And to finish,
we use the standard h′(x) to define the derivative of the
function h(x) : I → R, and ẋ and ẍ to define the first two
derivatives of x(t) : (a,b) → R where t is thought of as
“time.”

2 Geodesics and one-dimensional changes of

scale

Let u : I → R. be a twice continuously differentiable,
strictly increasing function and u′(x) its derivative. At
each xxx ∈ I define the Riemannian metric (on the tangent
space to M at xxx) by

gi, j(xxx) = g(xi)δi, j = u′(xi)
2δi, j. (3)

That is, not only is the coordinate system orthogonal (that
is, the metric is diagonal), but it is separable as well, that
is, gi,i is a function of xi only. The equation of the geodesic
that minimizes the distance between two points xxx,yyy ∈ M

is obtained minimizing

∫ 1

0

(

∑
i, j

gi, j(xxx)ẋiẋ j)
)1/2

dt (4)

over the class of continuous functions xxx : [0,1] → M ,
twice continuously differentiable on (0,1). It is a standard
result, that in this case, the equations of the geodesics are
(see [5], for example):

d

dt

( ∂

∂ ẋk

1

2
∑
i, j

gi, j(xxx)ẋiẋ j

)

=
∂

∂xk

(1

2
∑
i, j

gi, j(xxx)ẋiẋ j

)

, k = 1, ...,n.

(5)

In this special diagonal metric, if we put g′(x) = dg(x)/dx,
the equations of the geodesic are

g(x)ẍk +
1

2
g′(xi)(ẋk)

2, k = 1, ...,n.

Substituting g(xk) = (u′(xk) we obtain

u′(xk)ẍk + u′′(xk)ẋ = 0, k = 1, ...,n

This can be simply integrated. At the first step, note that we
obtain that u′(xk(t))ẋk = Ck, where Ck is some unknown
constant. This equation can be trivially integrated to obtain
u(xk(t)) = u(xk(0))+tCk. To determineCk make use of the
fact that xk(0) = xk and xk(1) = yk to obtain Ck = u(yk)−
u(xk). To close the circle, note that the geodesic distance
between xxx and yyy is, according to (4)

∫ 1

0

(

∑
i, j

gi, j(xxx)ẋiẋ j)
)1/2

dt

=

∫ 1

0

(

∑
i

C2
i

)1/2

dt =
(

∑
i

(u(yk)− u(xk))
2
)1/2

which equals du(xxx,yyy).

3 Geodesics induced by a diffeomorphism

Here we extend the setup of the previous section. Let
UUU : M → R

n be a twice continuously differentiable
diffeomorphism between M and UUU(M ). On the tangent
bundle UUU(M )×R

n we consider the Euclidean metric. Its
pullback to M ×R

n at xxx ∈ M is given by

gi, j(xxx) =
n

∑
k=1

Uk
i Uk

j , f or 1 ≤ i, j ≤ n. (6)

Here, Uk(xxx) denotes the k−th component of UUU and Uk
i

denotes ∂Uk/∂x j, that is, the Jacobian of UUU . We denote

by V k
j the inverse of Uk

j , that is, the Jacobian of the
inverse of UUU . Again, the geodesics minimize the distance
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given by (4) with gi, j given by (6). If t → xxx(t) is a
geodesic from xxx(0) = xxx to xxx(1) = yyy, then it must satisfy
equation (5).

If in (5) we substitute (6), after some simple but boring
arithmetics we obtain

n

∑
i=1

U i
k

( n

∑
n=1

U i
nẍn +∑

k,l

U i
n,l ẋnẋl

)

= 0, k = 1, ...,n.

Now, multiply both sides by V k
j and sum over k = 1, ...,n

to obtain

n

∑
n=1

U j
n ẍn +∑

k,l

U
j

n,l ẋnẋl = 0, j = 1, ...,n.

This can be written as

d

dt

( n

∑
n=1

U j
n ẋn

)

= 0, j = 1, ...,n.

Which implies that

d

dt
U j(xxx(t)) =

n

∑
n=1

U j(xxx(t))ẋ j(t) =C j , j = 1, ...,n

for some constants C j , j = 1, ...,n. Again, this implies that

U j(xxx(t)) = U j(xxx(0))+ tC j and that C j = U j(yyy)−U j(xxx)
for j = 1, ...,n. As above, inserting this into the definition
of geodesic distance between xxx and yyy we obtain

∫ 1

0

(

∑
i, j

gi, j(xxx)ẋiẋ j)
)1/2

dt =
∫ 1

0

(

∑
i

C2
i

)1/2

dt

=
(

∑
i

(Uk(yyy)−Uk(xxx))2
)1/2

= dU(xxx,yyy).

(7)

Notice that dU(xxx,yyy) is positive, symmetric, satisfies the
triangle inequality, and since UUU is a diffeomorphism,
dU(xxx,yyy) = 0 ⇔ xxx = yyy, thus the notation is consistent. The
comparison with the first case is clear: There
Uk(xxx) = u(xk) for k = 1, ...,n.

4 A detour into classical mechanics

Here we address the issue of integrating the geodesic
equations from the point of view of classical mechanics.
This is to explain the trivial integration of the geodesic
equations within the context of an elegant framework. We
refer the reader to [6] for the essential notions. Cutting
some edges, the general approach to Newton’s equations,
consists of specifying some manifold (M in our case), on
whose tangent bundle M × R

n a Lagrangian function
L(xxx, ẋxx) is defined. A trajectory of the system between
points xxx(1) and xxx(2) at times t1, t2 respectively, is the
curve that minimizes the (action) integral:

∫ t2

t1

L(xxx(t), ẋxx(t), t)dt

over the class of all (twice continuously) differentiable
curves joining the said points at the given times. It can be
shown, see [6], that such trajectory satisfies (the
Euler-Lagrange) extension of the Newton’s equation of
motion:

d

dt

( ∂

∂ ẋk

L(xxx(t), ẋxx(t), t)
)

=
∂

∂xk

L(xxx(t), ẋxx(t), t). (8)

If we put

L(xxx(t), ẋxx(t)) =
1

2
∑
i, j

gi, j(xxx)ẋiẋ j,

We recognize the equations of the geodesics as the
Euler-Lagrange equations of some dynamical system.
Notice that if we consider the curves yyy(t) = UUU(xxx(t)) in
UUU(M ), then the Lagrangian in these coordinates becomes

L(yyy, ẏyy, t) =
1

2

n

∑
k=1

(ẏk)
2

and the Euler-Lagrange (Newton) equations become
ÿk = 0, namely the equations of straight lines. We already
saw that in Section 3, hidden in the notation. Another way
of understanding that change of variables is to begin with
the Hamiltonian associated with the Lagrangian. This is
defined by introducing the momentum variables pk by

pk =
∂

∂ ẋk

L(xxx(t), ẋxx(t), t) =
n

∑
j=1

g j,k(xxx)ẋ j.

Under the assumption of invertibility of the Jacobian U i
j,

solving for ẋxx and substituting in the expression for L we
obtain:

H(xxx, ppp) =
1

2
∑
k, j

gk, j(xxx)pi p j.

where we use the conventional gk, j to denote the inverse
of gk, j. The analogue of the Euler-Lagrange equations are
the Hamilton equations for (xxx, ppp) is:

ẋk =
∂H

∂ pk

ṗk =− ∂H

∂xk

. (9)

To complete explaining the change of variables we
need to show that there exists a mapping (xxx, ppp) → (yyy,πππ)
from M × R

n to UUU(M ) × R
n, under which the

Hamiltonian becomes

H̃ =
1

2

n

∑
k=1

(πk)
2,

and that the change of variables preserves the form of the
Hamiltonian equations of motion (9). The mapping is:

yi =U i(xxx) and πi = ∑
k=1

p jV
j

i ; i = 1, ...,n
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The condition for this mapping to preserve the form of the
equations is that the following holds for the given Poisson
“brackets”

[yi,y j] = [πi,π j] = 0, and [yi,π j] = δi, j, i, j = 1, ...n

which, for any pair of continuously differentiable
functions f ,g on M ×R

n is given by:

[ f ,g] =
n

∑
k=1

∂ f

∂xk

∂g

∂ pk

− ∂ f

∂ pk

∂g

∂xk

.

As we said, we were to cut a lot of corners. See [6] for full
details. That the system is trivially integrable, means that
(9), in the new coordinates becomes

ẏi =
∂ H̃

∂πi

= πi and π̇i =−∂ H̃

∂yi
= 0,

which imply that πi = constant = Ci and yi = yi(0)+ tCi.
That is, the constants of integration that determine the
solutions to the equations of the geodesics are the
constant values of the momenta. For trajectories go from
a point xxx to a point yyy in a unit of time, the momenta are
related to the distance between the two points by
yi(1)− yi(0) =Ci.

5 Hessians of convex functions and

diffeomorphisms in R
n

In the two (sub)sections that come up next, we do two
things. First we extend the results in [7] that were
summed up in Section 2, to a more general convex
function, after that we examine in which case a
diffeomorphism UUU determines a convex function whose
Hessian coincides with the Riemann metric given by (6).

5.1 From a convex function to diffeomorphisms

Let us begin by stating some necessary properties of the
convex function.

Assumptions 51Let us now consider an open, convex

subset M of R
n and a strictly convex function

Φ : M →R
n satisfying

1 Φ is at least twice continuously differentiable in all

variables.

Denote its Hessian matrix by Φ ′′, that is,

(Φ ′′)i, j = ∂Φ/∂xi∂x j. The strict convexity of Φ implies

that the Hessian Φ ′′ is positive definite. Let us denote by

k(xxx) its smallest eigenvalue and let us suppose that:

2 There exists a > 0 such that a ≤ k(x) for all xxx ∈ M , or

equivalently

0 < a〈ξξξ ,ξξξ 〉 ≤ k(xxx)〈ξξξ ,ξξξ 〉 ≤ 〈ξξξ ,Φ ′′ξξξ 〉, ∀ ξξξ ∈ R
n. (10)

And we now have:

Theorem 1.With the notations introduced above, let us

suppose that there exists a continuously differentiable

square root S of Φ ′′, that is, Φ ′′ = StS such that:

a S(xxx) is invertible at each xxx ∈ M .
b For every i = 1, ...,n we have ∂Si, j/∂xk = ∂Si,k/∂x j,
for all 1 ≤ j,k ≤ n.
Fix some xxx0 ∈ M and define

U i(xxx) =
∫

Si, j(γ(s))γ̇(s)ds

where γ denotes any continuously differentiable trajectory

between xxx0 and xxx. Then, the mapping UUU : M → R
n with

components U i(xxx) is well defined (up to a constant), and it

is a global diffeomorphism satisfying

Φ
′′
i, j =

n

∑
m=1

∂Um

∂xi

∂Um

∂x j

Before proving the theorem we need the following result.

Lemma 1.With the notations introduced above, let T

denote the inverse S−1 of S. Then ‖T‖ ≤ 1/a.

Proof.In item (2) of Assumption 51 replace ξξξ by VVVξξξ to
obtain

a〈VVVξξξ ,VVVξξξ 〉 ≤ k(xxx)〈VVV ξξξ ,VVVξξξ 〉 ≤ 〈VVVξξξ ,Φ ′′VVVξξξ 〉

= 〈ξξξ ,VVV tΦ ′′VVVξξξ 〉= 〈ξξξ ,VVV tU tUVVVξξξ 〉= 〈ξξξ ,ξξξ 〉.

In other words

‖VVV tVVV‖ ≤ 1/k(x)≤ 1/a ⇒ ‖VVV‖< K = (
√

a−1)

since ‖VVV‖ is given by the square root of the largest
eigenvalue of VVV tVVV .

Let us now complete the proof of Theorem 1.

Proof.

Since M is convex, it is simply connected and
assumption (b) in the statement implies (via Stokes
theorem) that UUU is a well defined mapping on M , and
that its Jacobian S is non vanishing (by assumption), and
thus UUU is a local diffeomorphism. Invoking the previous
lemma and Hadamard’s theorem, see, for example
Theorem 2 in [8], we conclude that UUU is a
diffeomorphism satisfying

Φ
′′
i, j =

n

∑
m=1

∂Um

∂xi

∂Um

∂x j

which concludes the proof.
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5.2 From diffeomorphisms to convex functions

A convex function has a positive definite Hessian. The next
result imposes a condition on the diffeomorphism UUU so
that the metric that it defines, as explained in Section 3,
can be the Hessian of a convex function. The result that
we obtain is a variation on the theme of Section 2 of [9].

Theorem 2.Let M be an open convex subset of Rn and

UUU : M → R
n. be a diffeomorphism satisfying

n

∑
m=1

∂ 2Um

∂xk∂xi

∂Um

∂x j

=
n

∑
m=1

∂ 2Um

∂xi∂x j

∂Um

∂xk

(11)

Then there exists a strictly convex function Φ : M → R
n

such that
∂ 2Φ

∂xi∂x j

=
n

∑
m=1

∂Um

∂xi

∂Um

∂x j

Proof.As before, gi, j = ∑n
m=1

∂Um

∂xi

∂Um

∂x j
Fix an 1 ≤ i ≤ n

and an xxx(0) ∈M and consider the following curve joining
xxx(0) to xxx defined piecewise by increasing one coordinate at
a time: At the k−th step, move along the k−th coordinate
axis from xk(0) to xk, that is, along the line:

(x1,x2, ...,xk−1,ξk,xk+1(0), ...,xn(0)) with xk(0)≤ ξk ≤ xk.

Call this trajectory γ. The import of condition(11) is to
make the integral defined below to be independent of the
trajectory.

Ai(xxx) = Ai(xxx0)+ ∑
k=1

∫ xk

xk(0)
gi,k(γ)dξk.

where Ai(xxx0) are constants of integration. Now, since
∂Ai/∂x j = gi, j = g j,i = ∂A j/∂xi, then the following line
integral is also independent of the trajectory. Thus
integrating along the same piecewise trajectory we put:

Φ(xxx) = Φ(xxx(0)+ ∑
k=1

∫ xk

xk(0)
Ak(γ)dξk.

We choose the special trajectory so that the verification
that the Hessian of Φ is g is trivial. Thus we prove the
claim.

6 Generalized means, intrinsic means and

exponential barycenters

Throughout this section we suppose that UUU : M → R
n is

as in Section 3, namely a twice continuously
differentiable diffeomorphism between M and its image
UUU(M ). As said above, here we relate the generalized
arithmetic means to the notion of intrinsic mean and
barycentric mean presented in [4].

As M is a rather simple manifold with tangent at every
point xxx denoted by Mxxx. We might think of it as the set

of all displacements starting at xxx. On Mx we consider the
metric given by (6) If xxx(t) : (a,b)→ M is a continuously
differentiable curve (a,b) is some open interval containing
[0,1]), its length between xxx(0) = xxx0 and xxx(1) = xxx1 is given
by

L[xxx0,xxx1] =
∫ 1

0

√

〈dUUU(xxx(t))

dt
,

dUUU(xxx(t))

dt
〉dt. (12)

In Section3 we showed that the geodesic between xxx0 and
xxx1 is given by

xxx(t) =UUU−1

(

UUU(xxx0)+ tξξξ

)

, where ξξξ =UUU(xxx1)−UUU(xxx0).

(13)
If we want to fix the initial point, call it xxx now, and think
of ξ as a possible initial velocity we have to be careful.
The problem shows up if M is bounded. In this case if
we want to let ξ vary, it will have to be in a ball about 0
such that UUU(xxx) + ξ ∈ UUU(M ). Such an ball is easy to

determine in our setup because both UUU and UUU−1 are
diffeomorphisms. So, given xxx let B(r) be a ball about 0 in
Mxxx such that UUU(xxx) + ξξξ ∈ UUU(M ) for ξξξ ∈ B(r). In this
case, the exponential mapping expxxx : B(0)⊂ Mxxx → M is
given by

expx(ξ ) =UUU−1

(

UUU(x)+ ξξξ

)

. (14)

Note that given yyy in UUU(M ), it comes from
ξξξ = exp−1

xxx (yyy) = UUU(yyy)−UUU(xxx). And the characterization
of mmm ∈ M as intrinsic mean value of a M valued random
variable XXX given in [4] or of mmm as barycenter of XXX is as
follows.

Definition 1.The point mmm ∈ M is the (intrinsic) mean

value of XXX if there is a normal neighborhood W of mmm such

that P(XXX ∈W ) = 1 and

EP[exp−1
mmm (XXX)] = EP[UUU(XXX)−UUU(mmm)] = 0.

Clearly, ξξξ = UUU(XXX)−UUU(mmm) is the initial velocity of a
trajectory that takes mmm to XXX along the geodesic (13) in a
unit of time.

7 A comparison result: Divergence versus

geodesic distance

Bregman divergences are a common measure of
discrepancy. They are used to compare how different are
two objects that can be described by points in a convex
subset of some many-dimensional space. The definition
goes as follows:

Definition 2.Let M ⊂R
n. be an open convex set Φ : M →

R be a strictly convex, continuously differentiable function

and put

δ 2
Φ(xxx,yyy) = Φ(xxx)−Φ(yyy)−〈(xxx− yyy),∇Φ(yyy)〉. (15)
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Comment: Since the right hand is non-negative, and
vanishes if and only if yyy = xxx, the notation chosen for the
left hand side is consistent, even though in general, it is
not a true distance. This is why it is called a
discrimination function between xxx and yyy.

This notion was introduced in [10], and has been used
in a variety of applications. For a short list, consult with
[7]. Actually, the function Φ considered there is rather
simple:

Φ(xxx) =
n

∑
i=1

φ(xi)

with φ : I → R being a convex function defined on the
interval I and M = I n. This is a typical example in
many applications. The thrust in [7] was to compute the
geodesic distance defined by the Riemannian metric
defined by the Hessian of Φ, and to compare it to the
pseudo distance δΦ defined in (15).

In this section we generalize a comparison result
previously obtained in [7] for the separable case. Before
we state the result, we shall introduce some notations to
declutter the typography and carry out a few elementary
calculations that form the basis of the proof of the result.

We shall use ∂i ∂ 2
i, j to denote partial (and repeated

partial) derivatives with respect to xi (respectively xi and
x j). We shall use Einstein summation convention
whenever it does not lead to confusion. That is, for
example ∂iU

m∂ jU
m stands for ∑n

m=1 ∂iU
m∂ jU

m. Next we
present three instances of the same computation: Once for
functions, once for vector fields and once for matrix
valued functions. Just to refer to them when the time
comes up.

Again let M ⊂ R
n be an open, convex, connected set

and Φ : M → R be a twice continuously differentiable
function. Let γ : [0,1] → M be a continuously
differentiable curve. We shall denote by γk the k−th
component of γ. Let yyy,xxx ∈ R

n and suppose that γ(0) = xxx

and γ(1) = yyy. Below, anytime that γ(t) appears as the
argument, say of a function defined on M , we shorten it
to t.

Starting from

Φ(yyy) = Φ(xxx)+

∫ 1

0
∂iΦ(s)γ̇i(t)dt.

As above γ̇ stands for the time derivative of γ. Apply this
same computation to the function ∂iΦ(xxx) that appears
under the integral sign to obtain.

Φ(yyy) =Φ(xxx)+

∫ 1

0

(

∂iΦ(0)+

∫ t

0
∂ 2

k,iΦ(s)γ̇k(s)dt
)

γ̇i(t)dt.

Now integrate the first term to obtain (yyy− xxx)i∂iΦ(xxx). To
complete, exchange the integration over t with that over s,
notice that the integral over t becomes (yyy− γ(s))i and the
whole identity becomes

Φ(yyy) = Φ(xxx)

+ (yyy− xxx)i∂iΦ(xxx)+

∫ 1

0

(

yyy− γ(s)
)

i
∂ 2

k,iΦ(s)γ̇k(s)ds.
(16)

A similar identity holds componentwise for vector valued
functions AAA : M → R

n. In this case the analogue of (16)
becomes

Am(yyy) = Am(xxx)+ (yyy− xxx)i∂iAm(xxx)

+
∫ 1

0

(

yyy− γ(u)
)

i
∂ 2

k,iAm(u)γ̇k(u)du.
(17)

Let us now rewrite (16) as

δ 2
Φ(yyy,xxx) = Φ(yyy)−Φ(xxx)+ (yyy− xxx)i∂iΦ(xxx)

=
∫ 1

0

(

yyy− γ(s)
)

i
∂ 2

k,iΦ(s)γ̇k(s)ds
(18)

and proceed with the right hand side as follows. Suppose
that as in Section 3 that there exists a diffeomorphism UUU

such that ∂ 2
i,kΦ = ∂iU

m∂kU
m. Now, for a fixed m consider

only (yyy − γ(s)
)

i
∂iU

m. According to (17) in which xxx is

replaced by γ(s), this can be rewritten as

(Um(yyy)−Um(s))−
∫ 1

s
(yyy− γ(u)

)

i
∂ 2

i, jU
m(u)γ̇ j(u)du.

and reinserted back in (19) to obtain

δ 2
Φ(yyy,xxx) =

∫ 1

0

(

(Um(yyy)−Um(s))

−
∫ 1

s
(yyy− γ(u)

)

i
∂ 2

i, jU
m(u)γ̇ j(u)du

)

∂kU
mγ̇k(s)ds.

Therefore, the first term under the outer integral
becomes

∫ 1

0

(

Um(yyy)− γ(s)
)

∂kU
mγ̇k(s)ds

=
1

2
‖U(yyy)−U(xxx)‖2 =

1

2
d2

U(xxx,yyy)

(19)

To rewrite the second term, notice that
∂kU

mγ̇k(s)ds = dUm(γ(s)). Now, we shall consider a
specific trajectory: γ(t) = xxx + t(yyy− xxx). With this choice
we have

(yyy− γ(u)
)

i
∂ 2

i, jU
m(u)γ̇ j(u) = (1−u)(yyy−xxx)iU

m
i, j(u)(yyy−xxx) j

and therefore, the second integral becomes

∫ 1

0

(

∫ 1

s
(1− u)

(

(yyy− xxx)i∂
2
i, jU

m(u)(yyy− xxx) j

)

du
)

dUm.

(20)
We now gather these results in the main result of this
section.

Theorem 3.With the notations introduced above, suppose

that the convex function Φ : M → R is at least three

times continuously differentiable, that its Hessian can be

factored as ∂ 2
i,kΦ = ∂iU

m∂kU
m, and that the

diffeomorphism UUU is at least twice continuously
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differentiable and such that the sign of

K(ξξξ )≡ ∂ 2
i, jU

m(ξξξ )∂kU
m(ξξξ ) is constant over ξξξ ∈ M , then

δ 2
Φ(yyy,xxx)≤ 1

2
d2

U(xxx,yyy) whenever K(ξξξ )≥ 0, (21)

δ 2
Φ (yyy,xxx)≥ 1

2
d2

U(xxx,yyy) whenever K(ξξξ )≤ 0. (22)

The proof is contained in the computations carried out
above. The conclusion is obtained after substituting (19)
and (20) into (16).

In the most common case in applications, when
Φ(xxx) = ∑n

k=1 φ(xi), that is in the separable case, then

φ ′′(x) = (u′(x))2 > 0, then u′(x) > 0 and the condition
upon the sign of u′′(x) is equivalent to a condition upon
the sign of φ ′′′(x). In this case, the result of Theorem 3
was obtained in [7].

8 Examples

8.1 Extended generalized arithmetic means

Here is a direct extension of the notion of generalized
arithmetic mean.

Theorem 4.Let M be a convex open subset of R
d and

UUU : M → R
d be a diffeomorphism such that UUU(M ) is a

convex open subset of Rd . Consider a set {xxx(1), ...,xxx(M)}
of points in cM. There is a unique point ccc in M which

minimizes the dU distance to the set {xxx(1), ...,xxx(M)}. It is

given by

ccc =UUU−1
( 1

M

M

∑
m=1

UUU(xxx(m)))
)

. (23)

The proof is easy and follows the pattern of the simple
one-dimensional case: To find ξξξ ∈ UUU(M ) such that
minimizes ∑M

m=1 ‖UUU(xxx(m))− ξξξ‖2 is easy. It is given by

ξξξ = 1
M ∑M

m=1 UUU(xxx(m)). Since ξξξ ∈ UUU(M ), let ccc = UUU(ξξξ )
and we are through.

8.2 Means defined by a flow

With the notations of Section 3 and the previous example
in mind, let UUU(t,xxx) be the flow associated to the geodesics
determined by the diffeomorphism UUU , and the solution to
the geodesic equation such that xxx(0) = xxx and ẋxx(0) = ξξξ .
That is

UUU(t,xxx) =UUU−1
(

UUU(xxx)+ tξξξ
)

. (24)

To verify that for any real t,s UUU(t + s,xxx) =UUU(s,UUU(t,xxx)) is
routine -as long as the solution to the geodesic equations is
defined for all times. With the aid of (24) one can construct
a family of transition kernels {Pt(xxx,A) : t ≥ 0,A∈B(Rn)},
where B(Rn) denotes the Borel-subsets of Rn, as follows:

Pt(xxx,A) = IA(UUU(t,xxx)) (25)

where IA stands for the usual indicator function of the set
A. To verify that {Pt} is indeed a (semi)group is trivial
using (24). Skipping a considerable amount of detail, it
is intuitive that this semi group defines a Markov process
{XXX t : t ≥ 0} havingRn as state space, and {Pt} as transition
semigroup. Furthermore, this process is such that for any
Borel, measurable function f : Rn →R, we have

E[ f
(

XXX t+s

)

|XXX t ] = f
(

UUU(s,XXX t)
)

.

In particular, if Xi(t) denotes de i−th coordinate of XXX t for
i= 1, ...,n we have E[Xi(t+s)|XXX t ] =Ui(s,XXX t), or in vector
notation:

E[XXX(t + s)|XXX t ] =UUU(s,XXX t),

that is, the current position is the best predictor of the
future values of the position.

8.3 Harmonic means in R
n

As second example, consider the inversion with respect to
the unit sphere in D = R

n \ {0} The mapping
UUU(xxx) = xxx/‖xxx‖2 is an involution of D . Let M ⊂ D such
that UUU(cM) is convex. If {xxx(1), ...,xxx(M)} is a finite set of
points in M , then

ccc =UUU

( 1

M

M

∑
m=1

xxx(m)

‖xxx(m)‖2

)

is the point closest to {xxx(1), ...,xxx(M)} is the dU distance.
Thus we have a variational interpretation of the
n−dimensional extension of the notion of harmonic
mean. The metric defined by UUU is:

gi, j(xxx) =
( 1

‖xxx‖4

)(

δi, j + 4ni(xxx)n j(xxx)
)

, ni(xxx) = xi/‖xxx‖.

The geodesic that starts at xxx0 ∈ D with initial speed ξξξ is
xxx(t) =UUU

(

UUU(xxx0)+ tξξξ
)

. It is defined for all t if UUU(xxx0)+ tξξξ
never passes through 0.

8.4 A metric defined by a Jacobian

Consider M = (0,∞)2 and UUU : M → (0,1)2 defined by

U1(x1,x2) =
x1

1+ x1+ x2

,

U2(x1,x2) =
x2

1+ x1+ x2

.

The inverse VVV =: (0,1)2 → (0,∞)2 of that mapping is

V 1(y1,y2) =
y1

1− (y1 + y2)
,

V 2(y1,y2) =
y2

1− (y1 + y2)
.
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The Jacobian of the mapping UUU is given by

U i
j(xxx) =

1

(1+ x1 + x2)2

[

x1 + x2 −x2

−x1 x1 + x2

]

.

As proposed in Section 3, this leads to a metric given by

gi, j(xxx) =
1

(1+ x1 + x2)4

[

(x1 + x2)
2 + x2

1 −(x1 + x2)
2

−(x1 + x2)
2 (x1 + x2)

2 + x2
2

]

.

To determine the geodesics in this metric might be quite
laborious. But knowing the connection established in
Section 3, we know that the geodesic through a point xxx(0)
with initial speed ξξξ is given by

xxx(t) =VVV

(

UUU
(

xxx(0)
)

+ tξξξ

)

.

8.5 An example of a convex function whose

Hessian is a product of Jacobians

For this example, let M ⊂ R
d = ∏d

k=1 J be a product of
open intervals and let φk : Jk → R be twice continuously
differentiable, strictly monotone convex functions, and let
uk be strictly increasing and such that (u′k)

2 = φ ′′
k as in

Section 2. LetAAA be a d × d invertible matrix and think of
its rows as the transpose of the d−vectors aaak.

Thus the mapping UUU : M → R
d whose k−th

component is uk(〈aaak,xxx〉), is a diffeomorphism. To check
its invertibility, note that for yyy in its range, the solution of

yyy = UUU(xxx) is given by xxxi = AAA−1
i, j u−1

j (y j). The Jacobian

matrix of UUU is

∂Uk(xxx)

∂xi

= u′k(〈aaak,xxx〉)ak
j.

From the above and φ ′′
k = (u′k)

2) it is also clear that

∂ 2Φ

∂xi∂x j

=
d

∑
k=1

ak
ja

k
i

∂ 2φk

∂xi∂x j

(〈aaak,xxx〉) =
d

∑
k=1

∂Uk(xxx)

∂xi

∂Uk(xxx)

∂x j

.

8.6 Multidimensional best predictors

Here we extend the situation considered in the second
example. Let (Ω ,F ,P) be a probability space, that is, a
set Ω , a σ−algebra of subsets of Ω , and a probability P.
By the customary EP we shall denote expectation with
respect to P. All the random variables XXX in this section
will take values in UUU(M ) and be such that
EP[UUU(XXX)2] < ∞. Let G ⊂ F be a sub-σ−algebra. We
have

Theorem 5.Define the UUU distance between any two

random variables XXX ,YYY by

δU(XXX ,YYY ) =
(

EP[dU(XXX ,YYY )2]
)1/2

.

Then, there is a unique, G−measurable, square integrable

random variable XXXG which satisfies

XXXG = argmin{δU(XXX ,YYY )|YYY measurable with respect to G }.

It is given by

XXXG =UUU−1
(

EP[UUU(X)|G ]
)

.

A particular case of this result is contained in the following
result.

Theorem 6.Let G = { /0,Ω} be the trivial sigma algebra,

and Let XXX be a random variable taking finitely many

values {xxx1, ...,xxxM} with probabilities P(XXX = xxxi) = pi,
i = 1, ...,M. The rest of the notations are as before. The

best predictor of X given no information is given by the

generalized arithmetic mean. As noted at the outset, it

happens to coincide with the notion of certainty

equivalent.

〈XXX〉=UUU−1
(

EP[UUU(X)]
)

=UUU−1
( M

∑
k=1

UUU(xxxi)Pi

)

. (26)

8.7 Generalized arithmetic means and convex

functions defined by the gradient of a convex

function

A particular case of the results in sections 3 and 5 is
provided by strictly convex (or concave) functions, that is
functions whose Hessian is strictly positive (or negative).
Suppose Ψ(xxx) is a strictly positive function on R

n, then
∇Ψ is locally invertible. Let us suppose that its inverse is
global. If we consider the metric introduced in (6), that is,

gi, j(xxx) =Ψi,k(xxx)Ψj,k(xxx)

using Einstein’s summation convention, then the
generalized mean of the set {xxx1, ...xxxM} that it defines is
given by

(

∇Ψ
)−1

( 1

M

M

∑
k=1

∇Ψ(xxxk)
)

.

If the condition mentioned in Section 5.2 hold, namely:

For each fixed i = 1, ...,n Ψi,m,kΨj,k =Ψi, j,kΨm,k

then there exists a convex function Φ(xxx) on R
n such that

Φi, j(xxx) =Ψi,k(xxx)Ψj,k(xxx)

to which the comparison results established in Section 6
apply, whenever the condition mentioned in Theorem 27
holds, namely: The sign of Ψi, j,m(xxx)Ψk,m(xxx) is constant
over Rn independently of i, j,k.

A pending question related to the topic of this section
is the following: Is there any relationship between the
gradient flow determined by Ψ (that is, the solution to

ξ̇ξξ =±∇(ξξξ )) and the geodesic flow of Φi j?
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8.8 Geodesics and distances determined by the

Fenchel-Legendre conjugate

Consider the simplest possible case in which Φ : Rn → R

has a strictly positive Hessian and that ∇Φ : Rn →R
n is a

diffeomorphism whose range is Rn. Recall that:

Definition 3.The Fenchel-Lagrange dual Φ∗ is defined by

Φ∗(ξξξ ) = sup{〈ξξξ ,xxx〉−Φ(xxx)|xxx ∈ R
n}.

The basic properties of this definition can be seen, for
example, in [11]. To begin with, we have:

Lemma 2.With the assumptions made at the outset of the

section, a simple computation shows that:

Φ(ξξξ ) = 〈ξξξ ,
(

∇Φ
)−1

(ξξξ )〉−Φ
((

∇Φ
)−1

(ξξξ )
)

.

And more importantly

∇Φ∗(ξξξ ) =
(

∇Φ
)−1

(ξξξ ). (27)

And also (using Einstein’s summation convention):

∂ 2
i,kφ∗(ξξξ )∂ 2

k, jΦ
((

∇Φ
)−1

(ξξξ )
)

= δi, j. (28)

The following result is known. See [12] for example. Its
proof drops out of a computation.

Theorem 7.With the notations introduced above, let

{xxx(t) : 0 ≤ t ≤ 1} be a geodesic in R
n between the points

xxx1 = xxx(0) and xxx2 = xxx(1) with respect to the metric given

by the Hessian matrix of Φ. Let us put

ξξξ (t) =
(

∇Φ
)

(xxx(t)) with ξξξ 1 =
(

∇Φ
)

(xxx1) and

ξξξ 2 =
(

∇Φ
)

(xxx2). Then ξξξ (t) is a geodesic between xxx1 and

ξξξ 2 in the metric given by the Hessian of Φ∗.

Proof.To verify the assertion it suffices invoke (27) and
(28) to verify that

∂ 2
i, jφ

∗(ξξξ )ξ̇ξξ i(t)ξ̇ξξ j(t) = ∂ 2
i, jφ(xxx)ẋxxi(t)ẋxx j(t).

This is left for the reader to carry out.

Let us now verify that if the Hessian of Φ can be
factored as in Section 3, then the Hessian of Φ∗ can be
factored as well.

Theorem 8.Let Φ and Φ∗ be as above. Suppose that

there is a diffeomorphism UUU of R
n such that

∂ 2
i jΦ(xxx) = ∂iUk(xxx)∂ jUk(xxx).

Then UUU∗(ξξξ ) = UUU(
(

∇Φ
)−1

(ξξξ )) is a factorization of the

Hessian of Φ∗.

Proof.Observe that invoking (28) we obtain:

∂ jU
∗
k (ξξξ ) = ∂lUk

((

∇Φ
)−1

(ξξξ )
)

∂ 2
n iΦ ∗ (ξξξ).

From this and (28) it follows that

∂iU
∗
k (ξξξ )∂ jU

∗
k (ξξξ ) = ∂i, jΦ

∗(ξξξ ).

Thus concludes the proof.

To finish, let us verify that the distances along the
geodesics in the Hessians of Φ∗ and Φ coincide.

Corollary 1.With the notations introduced above, let ξξξ (t)
and xxx(t)) be geodesics described in Theorem 27. Then

δΦ∗(ξξξ 1,ξξξ 2) = δΦ(xxx1,xxx2).

Proof.We saw in Section 3 that
δ 2

Φ∗(ξξξ 1,ξξξ 2) = ‖UUU∗(ξξξ 1)−UUU∗(ξξξ 2)‖2. From the definition
of UUU∗ and since ξξξ (t) = ∇Φ(xxx) we obtain

δ 2
Φ∗(ξξξ 1,ξξξ 2) = ‖UUU∗(ξξξ 1)−UUU∗(ξξξ 2)‖2

= ‖UUU(xxx1)−UUU(xxx2)‖2 = δ 2
Φ(xxx1,xxx2).

And thus the assertion is verified.

9 Final remarks

We should mention that Hessian structures on Euclidean
spaces is a well studied subject. See for example [9] and
[13]. In that line of work, the focus is on the geometry on
R

d resulting from a Hessian metric, that is, a metric of the
type g = HessΦ,or more explicitly,
gi, j(zzz) = ∂ 2Φ(xxx)/∂xi∂x j, when Φ(xxx) is a twice
continuously differentiable convex function defined on an
open convex subset of Rn.

The relationship of that line of work to the work
presented here, is that here we are interested in the
geometry on R

n for a metric given by g = Jt
UUU JUUU where JUUU

is the Jacobian of a diffeomorphism UUU . This is related to
that of a Hessian metric when HessΦ can be factored as
HessΦ = Jt

UUU JUUU , which is the subject of Section 5. But as
the example in section 8.4 suggests, an open question
remains. Given that a Riemannian metric g is given by a
positive matrix, does it admit a square root Σ such that Σ
is the Jacobian of a diffeomorphism?
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