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Abstract: In this work, we use and unify time scale calculus and discrete fractional calculus to develop a new approach to modeling
intermittent androgen deprivation therapy, a standard prostate cancer treatment. The novel time scale model previously developed
assumes a constant length of time for on- and off-treatment intervals. By creating a time scale that more accurately represents time data,
we explore the use of fractional calculus to model treatment. Current fractional calculus theory only allows for strictly continuous or
discrete domains. We create a strictly discrete time scale and construct a dynamic equation on this time scale. We then develop theory
that allows us to calculate the fractional difference of this dynamic equation. Finally, we model intermittent androgen deprivation
therapy using this fractional difference and find that an improved fit is achieved for most of the patients tested.
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1 Introduction

Prostate cancer is a common cancer among males in the United States [18]. The progression of prostate cancer is measured
using prostate-specific antigen (PSA) levels, which are known to track relative changes in tumor volume well [12]. A
PSA level over 4.0 µg/L may indicate cancerous cells in the prostate [13,17]. A frequent treatment for patients with
metastatic prostate cancer is intermittent androgen deprivation (IAD) [14]. Androgen is any type of male sex hormone, like
androstenedione or testosterone, which is required for prostate health. During IAD, a patient alternates between periods
of off-treatment and on-treatment [7]. When a patient is on-treatment, surgical or chemical castration is performed. IAD
is generally performed prior to radiation to shrink tumors to make treatment more effective, or when surgery or radiation
are not an option.

The main goal of our original work [10] was to develop a new approach to modeling intermittent cancer treatment
therapy using time scales. Motivated by the work of [5] and [15], we model the dynamics of prostate cancer treatment
using the theory of time scales. A time scale is an arbitrary, nonempty, closed subset of the real numbers. Time scales
combine continuous and discrete time and had not been used to model IAD therapy prior to our original work. Time scales
allow us to make a distinction between when a patient is on and off treatment with respect to time, which is generally
not done in IAD models. In our initial work, we chose a time scale that assumes constant length of time for on- and off-
treatment intervals as it is an efficient way to illustrate the union of disjoint intervals. These disjoint intervals represent the
collection of all off-treatment intervals. In this paper, we modify the assumption that the length of time a patient is on- and
off-treatment remains constant. Additionally, we introduce new fractional difference theory and explore its application to
IAD therapy.

This article is organized as follows. In Section 2, we give the necessary fundamentals of time scales. Section 3 follows
with a comparison of the novel model [10] and a newly constructed refined model. Section 4, provides an introduction to
existing fractional difference calculus. Using this theory as a basis, in Section 5, we introduce new fractional difference
theory as a means to improve the refined model. With the new theory in hand, we construct and analyze a fractional
difference model and provide a comparison to the refined model. We conclude with Section 6 summarizing our results
and discussing future work.
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2 Elements of Time Scale Calculus

We provide some foundational concepts regarding time scales. The material presented here can be found in Bohner and
Peterson [3].

A time scale T is an arbitrary nonempty closed subset (under the relative topology inherited from the usual Euclidean
topology on R) of the real numbers. While N, the Cantor set, and [0,1]∪ [2,3] are examples of time scales, the open
interval (a,b), the complex numbers, and the irrational numbers are not.

Definition 1. Let T be a time scale. For t ∈ T we define the forward jump operator σ : T→ T by

σ(t) := inf{s ∈ T : s > t}

while we define the backward jump operator ρ : T→ T as

ρ(t) := sup{s ∈ T : s < t}.

Note that σ(t) ≥ t and ρ(t) ≤ t for all t ∈ T. We think of σ(t) as the successor and ρ(t) as the predecessor. On R,
σ(t) = ρ(t) = t for every t. For the discrete time scale Z, σ(t) = t +1 and ρ(t) = t −1 for every t. On T=

{n
2

: n ∈ N0

}
,

σ(t) = t +
1
2

for all t ∈ T and

ρ(t) =

t − 1
2

if t =
n
2
, n ∈ N,

0 if t = 0.

Definition 2. Let T be a time scale. Then for each t ∈ T, the graininess function µ : T→ [0,∞] is defined by

µ(t) := σ(t)− t.

The nonnegative function µ(t) is thought of as the space between a point and its successor. On R, µ(t) = 0 for every

t, while on Z, µ(t) = 1 for every t. When T=
{n

2
: n ∈ N0

}
, µ(t) =

1
2

.
The forward jump operator and graininess function are critical in differentiation.

Definition 3. We say a function f : T → R is delta differentiable at t ∈ Tκ provided there exists an α such that for all
ε > 0 there is a neighborhood U of t such that∣∣[ f (σ(t))− f (s)]−α(σ(t)− s)

∣∣≤ ε|σ(t)− s| for all s ∈U,

where

Tκ =

{
T\ (ρ(supT), supT] if supT< ∞

T if supT= ∞.

If α exists, we denote it by f ∆ (t) and call f ∆ (t) the delta derivative of f at t ∈ Tκ .

Note that set Tκ is needed to ensure the derivative of a function f is only taken at points t that have a successor σ(t).
If T= R, then the delta derivative concurs with the classical derivative.

Theorem 1. Assume f :T→R is a function and let t ∈Tκ . If f is delta differentiable at t, then f (σ(t)) = f (t)+µ(t) f ∆ (t).

This result gives a relationship between σ and µ . Note, that when T= Z, µ(t) = 1, and so f ∆ (t) = f (t +1)− f (t) for all
t.

To describe delta integrable functions, we first need regulation and right-dense continuity.

Definition 4. A function f : T → R is called regulated provided its right-sided limits exist (are finite) at all right-dense
points in T and its left-sided limits exist (are finite) at all left-dense points in T.

Definition 5. We say that a function f : T→ R is rd-continuous provided it is continuous at right-dense points in T and
its left-sided limit exists at left-dense points in T.

Any continuous real-valued function defined on a time scale T is rd-continuous. Furthermore, a rd-continuous function
is also regulated. So although the forward jump operator σ is not continuous, it is right dense-continuous (rd-continuous)
and regulated. We can now integrate on T.
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Definition 6. Assume f : T→R is regulated. Then a function F : T→R is called an antiderivative of f provided F∆ (t) =
f (t) for all t ∈ Tκ . In this case, we define the (Cauchy) integral by∫ t

s
f (τ)∆τ = F(t)−F(s) for s, t ∈ T.

An antiderivative of 0 is 1 and an antiderivative of 1 is t. Furthermore, on a completely discrete time scale with a < b,
we have ∫ b

a
f (t)∆ t = ∑

t∈[a,ρ(b)]
µ(t) f (t)

for any rd-continuous function f . We use the delta integral to define the generalized exponential function.

Definition 7. Suppose p : T → T is rd-continuous and such that 1+ µ(t)p(t) ̸= 0 for all t ∈ Tκ . Then the generalized
exponential function is given by

ep(t,s) = exp
(∫ t

s
ξµ(τ)(p(τ))∆τ

)
for s, t ∈ T,

where the cylinder transform ξh(z) : Ch → Zh (h ≥ 0) is given by

ξh(z) =


1
h

Log(1+ zh) if h > 0

z if h = 0.

When h > 0, we have Ch =

{
z ∈ C : z ̸= 1

h

}
and Zh =

{
z ∈ C : −π

h
< Im(z)<

π

h

}
. For h = 0, Ch = C= Zh.

On Z with p(t) = 1, ep(t,0) = 2t because ξh(z) = Log(2) and z = 1. It can be shown that ep(t, t0) = (1+ p)t−t0 when
T=Z and p(t) = p∈R. Unlike the exponential function on R, the general exponential function can attain negative values.
To learn more about the generalized exponential function, refer to Chapter 2 of [3].

3 Foundational Models

3.1 The Novel Model

The work presented in this section is an overview of our original work. For further details on the construction of the
novel model, refer to [10]. Initially, we made three key assumptions. The first is that the length of both on-treatment and
off-treatment intervals do not change over time (and are not necessarily equal to one another). To reflect this, we built our
model on the time scale

Pa,b =
∞⋃

k=0

[k(a+b),k(a+b)+a],

where a, b > 0. Here Pa,b represents the union of a patients’ off-treatment intervals, where a is the number of months a
patient is off treatment and b is the number of months a patient is on treatment. Parameter k is the number of treatment
cycles a patient undergoes. We chose this time scale because it is an efficient way to illustrate the union of disjoint
intervals. The time scale can be drawn as

a b a b a

Fig. 1: Visual Representation of Pa,b

The second key assumption is while a patient is off-treatment, prostate-specific antigen (PSA) levels grow
exponentially. We estimate the PSA level of a patient at time t using the function N(t). For γ > 1, we have N(t) = γ t for
t ∈ Pa,b. The final key assumption (also known as the β assumption) is the PSA level depreciates by some proportion β
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between 0 and 1 whenever a patient is on treatment. This accounts for the depletion of cancer cells due to treatment, as
well as any cells that may die due to natural apoptosis (cell death). It is important to note that the value of N(t) at the end
of an on-treatment interval is equal to β times the value of N(t) at the beginning of that on-treatment interval.
Mathematically, this is expressed as

N((k+1)(a+b)) = βN(k(a+b)+a)

for k ∈ N0, when the patient is on treatment.
Using the three key assumptions, we solved a first order dynamic equation on Pa,b to obtain the following general

form:
N(t) = α(βγ

a)k
γ

t−(a+b)k

on the (k+1)th off-treatment interval [k(a+b),k(a+b)+a] where k ∈N0, a,b> 0, and α is a scaling factor. A description
of all model parameters is summarized in Table 1.

We found that the length of both on-treatment and off-treatment intervals rarely remains constant over time in clinical
data [4]. For all but one of the patients whose treatment interval lengths best matched our the assumptions of Pa,b, the
model fit the data quite well. For the final patient, the time scale and the actual off-treatment intervals aligned poorly.
This lead to a poor fit because the scale α and base γ are found using the data fitting function fmincon in MATLAB
R2018b. The difference for fmincon is only calculated when t ∈ Pa,b corresponds to actual off-treatment data points; the
fewer such t, the worse the fit. The assumption that the length of on- and off-treatment intervals remain constant over
time prevented us from considering the remaining patients from the clinical data [4]. This assumption was necessary for
the construction and application of this new time scales approach to intermittent androgen deprivation therapy but may
now be altered.

3.2 Construction and Analysis of Our Refined Model

In this section, we explore a time scale which allows us to modify the assumption that the length of treatment intervals
remains consistent over time. We constructed a time scale with a varying length for off-treatment intervals and varying
length for on-treatment intervals. This is written as

Pak,bk =
∞⋃

k=0

[
k−1

∑
n=0

(an +bn),
k−1

∑
n=0

(an +bn)+ak

]
,

where ak, bk > 0. An illustration of Pak,bk is

a0 b0 a1 b1 a2

Fig. 2: Visual Representation of Pak,bk

Adjusting the β assumption of the novel model to allow a unique scale for each on-treatment interval, we introduce the
βk assumption

N

(
k

∑
n=0

(an +bn)

)
= βkN

(
k−1

∑
n=0

(an +bn)+ak

)
.

Using a similar construction to [10], on the (k+1)th off-treatment interval, the PSA level is given by

N(t) = α

[
k−1

∏
n=0

(βnγ
an)

]
γ

t−∑
k−1
n=0(an+bn)

for some scale α > 0.
We now discuss our methods for data cleaning, parameterization, and model comparison. We then provide a brief

comparison of the the novel model and the model constructed on Pak,bk based on analysis performed across 12 patients
from the clinical data [4].
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Parameter value Description
k Number of treatment cycles
α Scaling factor
γ Base for exponential growth of PSA during off-treatment
a Length of off-treatment interval (months)
b Length of on-treatment interval (months)
β Proportion reduction in PSA during treatment
ak Length of kth off-treatment interval (months)
bk Length of kth on-treatment interval (months)
βk Proportion reduction in PSA during kth treatment

Table 1: Model Parameters

3.2.1 Computational Analysis

The computational analysis in this paper varies from that of [10]. As our time scale only estimates PSA levels during off-
treatment intervals, t = 0 must be the start of the first off-treatment interval. In light of this, we have disregarded any data
prior to a patient’s first recorded off-treatment interval. Biologically, it is expected that PSA levels will drop drastically
when treatment begins. There were instances when a patient’s PSA level increased during their first month on treatment.
It is not unreasonable to assume that a PSA level would have been measured during the initial doctor’s visit prior to the
actual treatment taking place. Considering this, if a patient’s PSA level increased during the first month on treatment, we
relabeled this measurement as an off-treatment data point.

When a patient did not return for several months between visits, we assumed the patient was on- or off-treatment
according to the last available data point and did not consider PSA levels for these months. If a patient had two visits
within ten days, usually only one of these visits had an associated PSA level, we used the data from this particular visit.
Lastly, in the rare instance that both visits had a recorded PSA level, we used the average of the two measurements as the
PSA level for the associated month.

During our analysis, the variables k,a,b,β ,ak,bk, and βk are inserted from the data. Specifically, the variables a,b,
and β are input from the patients’ first off- and on-treatment intervals while the variables ak,bk, and βk are input from
the patients’ kth off- and on-treatment intervals. Note that a = a0,b = b0, and β = β0. The parameters α and γ and are
found using the data fitting function fmincon in MATLAB R2018b. Our cost in fmincon is the sum of the least squares
between our model and the data. We only calculate the difference when the value t in our time scale corresponds to actual
off-treatment data points. The function fmincon finds the lowest cost for differing α and γ values, keeping the pair of
values that produces the local minimum cost.

3.2.2 Tools for Mathematical Comparison of the Models

To assess model fit, we use two information-based criteria that are common in the statistical comparison of models: the
corrected Akaike’s Information Criteria (AICc) and the Bayesian Information Criteria (BIC). These criterion take into
account both the accuracy and simplicity of a model. The more parameters a model has and the higher the sum of squared
error (SSE) for the model is, the larger the AICc and BIC become. Thus, the smaller the AICc and BIC, the better.

We calculate the SSE using all values of t in the time scale that align with data points, regardless if they are on- or
off-treatment data points. If the time scale overshoots the available data, we calculate the SSE for the remaining t values in
our time scale using the terminating PSA level of the final off-treatment interval of the data. If the time scale undershoots
the available data, we calculate the SSE for the remaining data points using the value of N(t) given by the terminating
value of t in our time scale.

According to John’s Macintosh Project [16], AICc and BIC are defined as follows:

AICc = n ln
(

SSE
n

)
+2p+

2p(p+1)
(n−1− p)

+n ln(2π)+n,

BIC = n ln
(

SSE
n

)
+ p ln(n)+n ln(2π)+n,

where p is the number of estimated parameters in the model and n is the number of observations used in the model. Lower
values for p, n, and the SSE result in lower AICc and BIC values, which is desired. For each of the models, α and γ are
parameterized; the remaining required parameters are read from the data, determining p. The value n, however, is highly
patient specific and calculated based on the number of observations used for each patient.
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3.2.3 A Comparison of Pa,b and Pak,bk

The 6 patients analyzed in [10] were chosen because their treatment intervals best reflect Pa,b. While the novel time scale
model accounts for continuous and discrete time simultaneously, it does not accurately represent all potential time-data.
The goal of the model constructed on Pak,bk is to improve the novel model by better representing the time-data. We again
analyze the 6 patients selected for analysis in [10], as well as an additional 6 patients randomly selected from the subset
of patients who have data for two or more treatment intervals. For each patients, the AICc and BIC values have been
calculated for each of the models. We provide the average of these values over the 12 patients analyzed in Table 2.

Table 2: Average Value of AICc and BIC for Pa,b and Pak,bk Models

Time Scale Average AICc Average BIC
Pa,b 220.18 225.12
Pak ,bk 180.41 179.76

The time scale Pak,bk leads to a clear improvement of model fit. Motivated by the success of Atici et al. [1] modeling
tumor volumes in mice by applying fractional calculus to Gompertz equations, in the next two sections, we introduce
established fractional difference calculus, makes adjustments to Pak,bk so the existing theory may be used, and introduce
a new definition that unifies fractional difference calculus on two types of time scales. We use this new definition to
construct a fractional difference model, then analyze and discuss this model.

4 Fractional Difference Calculus

In this section, we provide foundational definitions and theorems regarding discrete fractional sums and differences. The
definitions and theorems presented in this section may be found in [8,11].

The functions typically considered are defined on sets of the form

Nr = N0 +{r}= {r,r+1,r+2, ...}, r ∈ R,

and
Nh

r = hN0 +{r}= {r,r+h,r+2h, ...}, r ∈ R,h > 0 fixed.

Note, these sets are equivalent when h = 1.

Definition 8. The gamma function is defined by

Γ (z) :=
∫

∞

0
e−ttz−1dt

for any z ∈ C for which the real part of z is positive.

Definition 9. The generalized falling function is defined by

tν :=
Γ (t +1)

Γ (t −ν +1)

for any t,ν ∈ R for which the right-hand side is well-defined (that is, where t +1 and t −ν +1 are not negative integers).

We now have the tools required to introduce the fractional sum and fractional difference.

Definition 10. Let f : Nr → R and ν > 0. Then the ν-th fractional sum of f is defined by

∆
−ν
r f (t) :=

1
Γ (ν)

t−ν

∑
s=r

(t −σ(s))ν−1 f (s) for t ∈ Nr+ν .

Definition 11. Let f : Nr → R and ν > 0 be given. Choose n ∈ N such that n− 1 < ν ≤ n. Then the ν-th fractional
difference of f is defined by

∆
ν
r f (t) := ∆

n(
∆
−(n−ν)
r

)
f (t) for t ∈ Nr+n−ν .
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As shown in Higgins and Berger [9], for any real number r, the half-derivative of t on Z is

∆
1/2
r t =

2√
π

[
1
2

r(t − r)−1/2 +(t − r)−1/2
]
.

The following theorem provides a very useful formula for ∆ ν
r f (t) and is called the alternate definition of the ν-th fractional

difference. This theorem allows one to calculate the fractional difference of a function without first having to calculate the
fractional sum.

Theorem 2. Let f : Nr → R, ν > 0 be given. Choose n ∈ N such that n−1 < ν ≤ n. Then

∆
ν
r f (t) =


1

Γ (−ν)

t+ν

∑
s=r

(t −σ(s))−ν−1 f (s) for n−1 < ν < n

∆ n f (t) for ν = n.

The next definitions for the ν-th fractional sum and difference, respectively, are equivalent to the prior two definitions
when h = 1.

Definition 12. Let f : Nh
r → R and ν > 0. Then the ν-th fractional sum of f is defined by

h∆
−ν
r f (t) :=

hν

Γ (ν)

t−νh

∑
s=r
by h

(
t −σ(s)

h

)ν−1

f (s) for t ∈ Nh
r+νh,

where the “by h” condition under the summation indicates that the sum occurs in increments of h, that is, for s = r,r+
h,r+2h, and so on.

Definition 13. Let f : Nh
r → R, ν > 0, n ∈ N and n−1 < ν ≤ n. The ν-th fractional difference of f is defined by

h∆
ν
r f (t) := ∆

n(
h∆

−(n−ν)
r

)
f (t) for t ∈ Nh

r+(n−ν)h.

5 The Discrete Fractional Model

With the work of [1] as motivation, we construct a discrete fractional time scale and its associated model.

5.1 Discretizing the Model Associated with Pak,bk

Existing fractional difference theory requires the time scale to be strictly discrete. We transition from a combination of
continuous and discrete time with Pak,bk to the new discrete time scale Nak,bk,rk .

Definition 14. Let ak, bk > 0, rk ∈ R, and k ∈ N0. We define the time scale Nak,bk,rk corresponding to the discrete analog
of Pak,bk by

Nak,bk,rk :=
∞⋃

k=0

{k−1

∑
n=0

(an +bn)+ rk,

k−1

∑
n=0

(an +bn)+1+ rk, ...,

k−1

∑
n=0

(an +bn)+ak + rk

}
.

We note that for each k ∈ N0 the value of rk differs and that Nak,bk,rk is a subset of
∞⋃

k=0
Nrk . Visually, a portion of this

time scale is represented in Figure 3, noting that a0,a1,a2,b0, and b1 can be any positive integer and that the value of rk
determines a shift to the left or right for each collection of points.

a0 b0 a1 b1 a2

Fig. 3: Visual Representation of Nak,bk,rk
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Each set of points in Figure 3 represents the collection of months during an off-treatment cycle. Let k ∈N0 and rk ∈R.
We define

Fk :=
{k−1

∑
n=0

(an +bn)+ rk,

k−1

∑
n=0

(an +bn)+1+ rk, ...,

k−1

∑
n=0

(an +bn)+ak + rk −1
}

and

fk :=
{k−1

∑
n=0

(an +bn)+ak + rk

}
.

Fk is the collection points in the (k+1)th off-treatment cycle such that σ(t) = t+1 and fk is the “endpoint” of the (k+1)th
off-treatment cycle, where σ(t) = t + µk and µk is the graininess of t ∈ fk. Moving forward, we use the convention for

t ∈ Fk, tk
0 =

k−1

∑
n=0

(an+bn)+rk, and for t ∈ fk, tk
0 =

k−1

∑
n=0

(an+bn)+ak+rk, performing the appropriate shifts where necessary.

For the models discussed earlier, we made three key assumptions. Here, we maintain two of them. We assume that
while a patient is off-treatment, PSA levels grow exponentially. This requires us to reconsider the exponential needed to
build N(t) on our new time scale Nak,bk,rk . For t ∈ Fk, where σ(t) = t +1, by Definition 7, we have

eg(t)(t, t
k
0) = exp

(∫ t

tk
0

ξ1 (g(τ))∆τ

)
= exp

(∫ t

tk
0

Log(1+g(τ))∆τ

)
= exp

(
(t − tk

0)Log(1+g)
)

letting g(t) = g ∈ R

= (1+g)(t−tk
0). (1)

We also maintain the βk assumption that PSA levels decrease by a scale βk while a patient is on-treatment. With this
assumption, we may establish the delata difference for t ∈ fk.

Theorem 3. For t =
k−1

∑
n=0

(an +bn)+ak + r in Nak,bk,r, suppose the βk assumption

N

( k

∑
n=0

(an +bn)+ r

)
= βkN

(k−1

∑
n=0

(an +bn)+ak + r

)
holds. Then

N∆

(k−1

∑
n=0

(an +bn)+ak + r

)
=

(βk −1)
µk

N

(k−1

∑
n=0

(an +bn)+ak + r

)
.

Proof. Suppose t =
k−1

∑
n=0

(an +bn)+ak + r in Nak,bk,r and

N

( k

∑
n=0

(an +bn)+ r

)
= βkN

(k−1

∑
n=0

(an +bn)+ak + r

)
.

It follows that

N

( k

∑
n=0

(an +bn)+ r

)
−N

(k−1

∑
n=0

(an +bn)+ak + r

)
= (βk −1)N

(k−1

∑
n=0

(an +bn)+ak + r

)

N

(
k

∑
n=0

(an +bn)+ r

)
−N

(
k−1

∑
n=0

(an +bn)+ak + r

)
µk

=

(βk −1)N

(
k−1

∑
n=0

(an +bn)+ak + r

)
µk

N∆

(k−1

∑
n=0

(an +bn)+ak + r

)
=

(βk −1)
µk

N

(k−1

∑
n=0

(an +bn)+ak + r

)
.
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where we have used Theorem 1.

With this result, we can now describe the delta derivative of N(t) for t ∈ fk, that is,

N∆ (t) =
(βk −1)

µk
N(t) for t ∈ fk. (2)

Combining (1) on Fk and the solution of (2) on fk, we have

N(t) =

{
eg(t, tk

0)N
k
0 for t ∈ Fk

e βk−1
µk

(t, tk
0)N

k
0 for t ∈ fk,

which is equivalent to

N(t) =

(1+g)(t−tk
0)Nk

0 for t ∈ Fk

β

1
µk

(t−tk
0)

k Nk
0 for t ∈ fk,

(3)

where Nk
0 = N(tk

0).
Note that this model is similar to the model associated with Pak,bk . The primary differences are that the exponential

base is now 1+g as opposed to γ and the time scale is now discrete and shifted by r.

5.2 The Fractional Sum and Difference

Applications of discrete fractional calculus have been made on time scales such as Nr and Nh
r [1,2,6]. However, to our

knowledge, this application is the first to unify these sets. When modeling discrete sets, the results for any given value of
t should inform the results for σ(t). Hence, we introduce the following definition.

Definition 15. Let r ∈R, n ∈N, and ν > 0 be such that n−1 < ν < n. Let f be a function whose domain is the time scale
H⊆ Nr such that r is the smallest element of H, µ(t) = 1 for all t ∈H except the largest two elements, and µ(t) = h for
the second largest element of H. For t ∈Hκ , the unified ν-th fractional difference of f is defined by

∆
ν
r f (t) =

{
∆ n
(
∆
−(n−ν)
r

)
f (t) for h = µ(t) = 1

∆ ν
r f (ρ(t))+∆ n

(
h∆

−(n−ν)
r+t

)
f (t) for h = µ(t) ̸= 1.

In our application, Hκ represents all months in a particular off-treatment interval. If we allow Hκ
k to represent the (k+1)th

off-treatment interval, then Hκ
k = Fk ∪ fk.

We now calculate the fractional sum and difference of N(t) as defined in (3). For t ∈ Fk we have that N : Ntk
0
→ R,

N(t) = (1+ g)(t−tk
0)Nk

0 , and σ(s) = s+ 1. Let the (k+ 1)th domain Ntk
0

be bounded above by the number t =
k−1

∑
n=0

(an +

bn)+ak −1.
Using Definition 10, for ν > 0 the fractional sum is given by

∆
−ν
rk

N(t) =
1

Γ (ν)

t−ν

∑
s=rk

(t −σ(s))ν−1N(s)

=
1

Γ (ν)

t−ν

∑
s=tk

0

(t − (s+1))ν−1
[
(1+g)(s−tk

0)Nk
0

]

=
1

Γ (ν)

t−ν

∑
s=tk

0

[
Γ (t − s)

Γ (t − s−ν +1)

][
(1+g)(s−tk

0)Nk
0

]

for t ∈
{k−1

∑
n=0

(an +bn)+ rk +ν ,
k−1

∑
n=0

(an +bn)+1+ rk +ν , ...,
k−1

∑
n=0

(an +bn)+ak + rk +ν −1
}

.
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Now, choose n ∈ N such that n−1 < ν < n. By Theorem 2, the fractional difference is given by

∆
ν
rk

N(t) =
1

Γ (−ν)

t+ν

∑
s=rk

(t −σ(s))−ν−1N(s)

=
1

Γ (−ν)

t+ν

∑
s=tk

0

(t − (s+1))−ν−1
[
(1+g)(s−tk

0)Nk
0

]

=
1

Γ (−ν)

t+ν

∑
s=tk

0

[
Γ (t − s)

Γ (t − s+ν +1)

][
(1+g)(s−tk

0)Nk
0

]

for t ∈
{k−1

∑
n=0

(an +bn)+ rk +n−ν ,
k−1

∑
n=0

(an +bn)+1+ rk +n−ν , ...,
k−1

∑
n=0

(an +bn)+ak + rk −ν −1
}

.

We now consider the “endpoints.” For t ∈ fk, we have N : Nµk
tk
0
→ R given by N(t) = β

1
µk

(t−tk
0)

k Nk
0 and σ(s) = s+ µk.

Let the (k+1)th domain Nµk
tk
0

be bounded above by the number t =
k

∑
n=0

(an +bn).

Using Definition 12, for ν > 0 the fractional sum is given by

hk
∆
−ν
rk

N(t) =
hν

k
Γ (ν)

t−νhk

∑
s=rk
by hk

(
t −σ(s)

hk

)ν−1

N(s)

=
hν

k
Γ (ν)

t−νhk

∑
s=rk
by µk

(
t − (s+µk)

µk

)ν−1[
β

1
µk

(s−tk
0)

k Nk
0

]

=
hν

k
Γ (ν)

t−νhk

∑
s=rk
by µk

[
Γ
( t−s−µk

µk
+1
)

Γ
( t−s−µk

µk
−ν +2

)][β

1
µk

(s−tk
0)

k Nk
0

]

for t ∈
{k−1

∑
n=0

(an +bn)+ak + rk +νhk

}
.

Finally, let n ∈ N and n−1 < ν < n and r̃k =
k−1

∑
n=0

(an +bn)+ rk. Using Definition 12 and Definition 15, the fractional

difference is given by

hk
∆

ν
rk

N(t) = ∆
ν
r̃k

f (ρ(t))+∆
n

[
hk

∆
−(n−ν)
rk N(t)

]

= ∆
ν
r̃k

f (ρ(t))+∆
n

[
h(n−ν)

k
Γ (n−ν)

t−(n−ν)hk

∑
s=rk
by hk

(
t −σ(s)

hk

)n−ν−1

N(s)

]

= ∆
ν
r̃k

f (ρ(t))+∆
n

[
µ
(n−ν)
k

Γ (n−ν)

t−(n−ν)hk

∑
s=rk
by µk

(
t − (s+µk)

µk

)n−ν−1[
β

1
µk

(s−tk
0)

k Nk
0

]]

= ∆
ν
r̃k

f (ρ(t))+∆
n

[
µ
(n−ν)
k

Γ (n−ν)

t−(n−ν)hk

∑
s=rk
by µk

[
Γ
( t−s−µk

µk
+1
)

Γ
( t−s−µk

µk
−n+ν +2)

][
β

1
µk

(s−tk
0)

k Nk
0

]]

for t ∈
{k−1

∑
n=0

(an +bn)+ak + rk +(n−ν)hk

}
.
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We now prove two theorems that allow us to shift the limits of summation of our fractional differences. This is needed
to perform the model analysis because the time-data consists of positive integer values, each representing one month of
treatment. The proof of the following theorem was motivated by a portion of the proof of Theorem 2.45, the Fractional
Binomial Formulas, of [8].

Theorem 4. Let f : Nr → R and 0 < ν ≤ n be given. Choose m ∈ N0 such that t = r+ n−ν +m for some t ∈ Nr+n−v.
Then

∆
ν
r f (t) =

1
Γ (−ν)

n+m

∑
s=0

Γ (n−ν +m− s)
Γ (n+m− s+1)

f (s+ r).

Proof. Let N : Nr → R, 0 < ν ≤ n, and fix t ∈ Nr+n−v. Then t = r+n−ν +m for some m ∈ N0. It follows that

∆
ν
r f (t) =

1
Γ (−ν)

t+ν

∑
s=r

(t −σ(s))−ν−1 f (s)

=
1

Γ (−ν)

t+ν

∑
s=r

Γ (t − s)
Γ (t − s+ν +1)

f (s)

=
1

Γ (−ν)

r+n+m

∑
s=r

Γ (r+n−ν +m− s)
Γ (r+n+m− s+1)

f (s)

=
1

Γ (−ν)

n+m

∑
s=0

Γ (n−ν +m− s)
Γ (n+m− s+1)

f (s+ r).

The following theorem is equivalent to Theorem 4 when h = 1.

Theorem 5. Let f : Nh
r →R and 0 < ν ≤ n be given. Choose m ∈N0 such that t = r+(n−ν)h+m for some t ∈Nr+(n−v)h.

Then

h∆
ν
r f (t) = ∆

n h(n−ν)

Γ (n−ν)

m

∑
s=0
by h

[
Γ
( (n−ν)h+m−s−h

h +1
)

Γ
( (n−ν)h+m−s−h

h −n+ν +2)

]
f (s+ r).

Proof. Let N : Nh
r → R, 0 < ν ≤ n, and fix t ∈ Nr+(n−v)h. Then t = r+(n−ν)h+m for some m ∈ N0. It follows that

h∆
ν
r f (t) = ∆

n(
h∆

−(n−ν)
r

)
f (t)

= ∆
n h(n−ν)

Γ (n−ν)

t−(n−ν)h

∑
s=r
by h

(
t −σ(s)

h

)n−ν−1

f (s)

= ∆
n h(n−ν)

Γ (n−ν)

t−(n−ν)h

∑
s=r
by h

(
t − (s+h)

h

)n−ν−1

f (s)

= ∆
n h(n−ν)

Γ (n−ν)

t−(n−ν)h

∑
s=r
by h

[
Γ
( t−s−h

h +1
)

Γ
( t−s−h

h −n+ν +2)

]
f (s) (4)

= ∆
n h(n−ν)

Γ (n−ν)

r+(n−ν)h+
m−(n−ν)h

∑
s=r
by h

[
Γ
( r+(n−ν)h+m−s−h

h +1
)

Γ
( r+(n−ν)h+m−s−h

h −n+ν +2)

]
f (s)

= ∆
n h(n−ν)

Γ (n−ν)

m

∑
s=0
by h

[
Γ
( (n−ν)h+m−s−h

h +1
)

Γ
( (n−ν)h+m−s−h

h −n+ν +2)

]
f (s+ r).

We are now ready to calculate and analyze the models of the fractional difference of N(t) on Nak,bk,rk for values of
ν ∈ [0,1).
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5.3 Analysis of the Discrete Model and the Fractional Difference

In this section we compare the models of the fractional difference of N(t) for values of ν ∈ [0,1). Table 3 shows the time
scale Nak,bk,rk . These time scales represent the collection of all off-treatment months for each patient. Recall that the data
has been cleaned to ensure t = 0 is the start of a patients first off-treatment interval; an explanation of all refinements made
to the data can be found in Section 3.2.2.

Table 3: Nak,bk,rk for Each Patient

Patient Nak ,bk ,rk

Patient 100 {0,1, ...7,18,19, ...,26,37,38, ...,51}
Patient 91 {0,1, ...,10,21,22, ...,28,39,40, ...,45}
Patient 77 {0,1, ...,6,16,17, ...,23,35,36, ...,39}
Patient 75 {0,1, ...,7,23,24, ...,29,44,45, ...,48,59,60, ...,63}
Patient 63 {0,1, ...,9,19,20, ...,28,40,41, ...,55}
Patient 60 {0,1, ...,8,22,21, ...,30,43,44, ...,52,63,64, ...,72}
Patient 58 {0,1, ...,14,25,26, ...,33,45,46, ...,55}
Patient 55 {0,1, ...,10,21,22, ...,27,39,40, ...,45,59,60, ...,66}
Patient 39 {0,1, ...,6,18,18, ...,24,35,36, ...44,57,58, ...,74}
Patient 37 {0,1, ...,11,21,22, ...,31,43,44, ...,53,61,62, ...,65}
Patient 28 {0,1, ...,13,24,25, ...,37,49,50, ...,64}
Patient 1 {0,1, ...,5,15,16, ...,21,32,33, ...,40,52,53, ...,59,71,72,73}

5.3.1 Applications to the New Theory

We first consider N(t) as defined on the time scale Nak,bk,rk (ν = 0). Recall that

N(t) =

(1+g)(t−tk
0)Nk

0 for t ∈ Fk

β

1
µk

(t−tk
0)

k Nk
0 for t ∈ fk,

and for random ak, bk, and βk on the (k+1)th off-treatment interval, we have the general form

N(t) = α

[
k−1

∏
n=0

βn(1+g)an

]
(1+g)t−∑

k−1
n=0(an+bn)

where α > 0 is the initial condition.
When we wrote the code for the model on Pa,b, we set the spacing between each point considered to be one. This

convention was continued in the coding for the model on Pak,bk , making the model computationally discrete. Consequently,
the results for N(t) on the time scale Nak,bk,rk are identical to the results for N(t) as defined on the time scale Pak,bk . In
particular, g = γ −1.

Next we consider the fractional difference of N(t) for ν ∈ (0,1). For t ∈ Fk +{1−ν} and hk = 1, by Theorem 4 we
have

hk
∆

ν
rk

N(t) =
1

Γ (−ν)

t+ν

∑
s=rk

[
Γ (t − s)

Γ (t − s+ν +1)

]
N(s)

=
1

Γ (−ν)

m+1

∑
s=0

[
Γ (1−ν +m− s)
Γ (1+m− s+1)

]
N(s+ rk).
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For ν ∈ (0,1), t ∈ fk +{(1−ν)hk}, and hk = µk, by Theorem 5 we have

hk
∆

ν
rk

N(t) = ∆
ν
r̃k

f (ρ(t))+∆
1
[

h(1−ν)
k

Γ (1−ν)

t−(1−ν)hk

∑
s=rk
by hk

[
Γ
( t−s−hk

hk
+1
)

Γ
( t−s−hk

hk
−1+ν +2)

]
N(s)

]

= ∆
ν
r̃k

f (ρ(t))+∆
1
[

h(1−ν)
k

Γ (1−ν)

m

∑
s=0
by hk

[
Γ
(m−νhk−s

hk
+1
)

Γ
(m−νhk−s

hk
+ν +1)

]
N(s+ rk)

]

= ∆
ν
r̃k

f (ρ(t))+∆
1
[

µ
(1−ν)
k

Γ (1−ν)

m

∑
s=0

by µk

[
Γ
(m−νµk−s

µk
+1
)

Γ
(m−νµk−s

µk
+ν +1)

]
N(s+ rk)

]

= ∆
ν
r̃k

f (ρ(t))+
1
µk

µ
(1−ν)
k

Γ (1−ν)

m+µk

∑
s=0

by µk

[
Γ
(m+µk−νµk−s

µk
+1
)

Γ
(m+µk−νµk−s

µk
+ν +1)

]
N(s+ rk) (5)

− 1
µk

µ
(1−ν)
k

Γ (1−ν)

m

∑
s=0

by µk

[
Γ
(m−νµk−s

µk
+1
)

Γ
(m−νµk−s

µk
+ν +1)

]
N(s+ rk)

= ∆
ν
r̃k

f (ρ(t))+
µ
−ν

k
Γ (1−ν)

m+µk

∑
s=0

by µk

[
Γ
(m+(1−ν)µk−s

µk
+1
)

Γ
(m+(1−ν)µk−s

µk
+ν +1)

]
N(s+ rk)

−
µ
−ν

k
Γ (1−ν)

m

∑
s=0

by µk

[
Γ
(m−νµk−s

µk
+1
)

Γ
(m−νµk−s

µk
+ν +1)

]
N(s+ rk). (6)

In (5) we have applied Theorem 1, where σ(t) = t +µk, and we have repeated calculation (4), replacing t with t +µk
and performing an identical shift. Since PSA levels can never be negative, we take the absolute value in each case. For this
application rk = 0 for all k ∈ N0. We are now ready to analyze the fractional difference of N(t) for values of ν ∈ [0,1).

5.3.2 Results

We examine the fractional difference of N(t) for ν = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 for each of the 12 patients.
Table 4 shows the average AICc and BIC across the 12 patients for the various values of ν . In terms of the average AICc,
the fractional difference of N(t) for ν = 0.7, 0.8, 0.9 provides an improved fit from N(t) (ν = 0) on Nak,bk,rk . Similarly,
with respect to the average BIC, the fit is improved for ν = 0.6, 0.7, 0.8, 0.9.

Table 4: Average Value of AICc and BIC for Various Values of ν

Value of ν Average AICc Average BIC

0 180.406 179.763
0.1 222.885 222.242
0.2 207.661 207.018
0.3 196.573 195.930
0.4 187.153 186.510
0.5 182.053 181.410
0.6 180.077 179.434
0.7 179.558 178.915
0.8 179.638 178.995
0.9 179.911 179.268
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We see very little change in the PSA level between the final off-treatment month of the first off-treatment cycle and
the month prior for the majority patients. This is less prevalent for smaller values of ν . In general, the smaller ν is, the

larger the change in PSA levels between these two months. This is because
1

Γ (1−ν)
is much smaller for larger values

of ν since lim
ν→1

Γ (1− ν) = ∞; so Definition 15 yields a small shift in
hk

∆ ν
rk

N(t) between the final off-treatment month

of the first off-treatment cycle and the month prior. This is less prevalent as the treatment cycles progress because the

summations in (6) increase faster than
1

Γ (1−ν)
decreases.

The following tables provide the SSE, AICc, and BIC for the four best choices of ν for three selected patients. We
include the SSE, AICc, and BIC for N(t), that is, the ν = 0 case, for comparison. For Patients 100 and 91, the ν-th
fractional difference for ν = 0.6, 0.7, 0.8, 0.9 provides a better fit than N(t), and N(t) provides a better fit than the ν-th
fractional difference for ν = 0.1, 0.2, 0.3, 0.4, 0.5. For both of these patients, the 0.9-th fractional difference provides
the best fit. For Patient 58, the 0.3-th fractional difference provides the best fit. The fractional difference outperforms N(t)
for all values of ν tested excluding ν = 0.1.

Table 5: Patient 100

ν SSE AICc BIC

0 89.169 144.816 148.427
0.6 86.812 144.013 147.624
0.7 80.917 141.903 145.514
0.8 79.069 141.210 144.821
0.9 78.718 141.076 144.687

Table 6: Patient 91

ν SSE AICc BIC

0 73.984 125.985 123.731
0.6 52.202 117.616 115.361
0.7 43.735 113.369 111.114
0.8 40.637 111.605 109.351
0.9 39.491 110.919 108.664

Table 7: Patient 58

ν SSE AICc BIC

0 201.733 175.913 180.922
0.2 169.010 170.249 175.259
0.3 158.090 168.112 173.122
0.4 171.399 170.698 175.708
0.5 182.273 172.666 177.676

Plots of the three best fitting solutions are provided following the conclusion section.

6 Conclusion

In this paper, we refine the novel time scale approach to modeling intermittent androgen deprivation (IAD) therapy
introduced in [10] by developing further time scale and discrete fractional calculus theory. In section 3.2, we adjust the
assumption made in the novel model construction that the length of both on-treatment and off-treatment intervals do not
change over time by constructing a time scale, Pak,bk . This time scale allows the length of on-treatment and off-treatment
intervals to vary and is thus able to accurately represent intermittent time-data. Additionally, we slightly adjust the β

assumption of the novel model that PSA levels decrease by some scale while a patient is on-treatment. For the novel
model, the value for β remained constant. For the refined model, the βk assumption is introduced and allows a unique
scale to be used for each k. With these altered assumptions, we construct a model on Pak,bk and provide a brief
comparison of the models using two information based criterion, the corrected Akaike’s Information Criteria (AICc) and
the Bayesian Information Criteria (BIC). The refined model provides a marked improvement in fit.

In section 5, we explore fractional difference calculus as a means of further improving the model. We discretize the
time scale Pak,bk and construct a model on the new discrete time scale Nak,bk,rk . To the authors’ knowledge, at the time
of this work, fractional difference theory existed for two sets, Nr and Nh

r [11], however, unifying these sets had not been
attempted. The goal of Definition 15 and the theorems proven thereafter is to establish this theory. Using this theory,
we derive the ν-th fractional difference of N(t). We again use AICc and BIC to compare the models. Overall, in terms
of AICc, the fractional difference of N(t) for some value of ν ∈ (0,1) provides an improved fit from N(t) (ν = 0) on
Nak,bk,rk for 10 of the 12 patients analyzed. With respect to BIC, the fractional difference provides an improved fit for
9 of the 12 patients analyzed. In particular, averaging the values for AICc and BIC across the 12 patients, the fractional
difference of N(t) outperforms N(t) (ν = 0) on Nak,bk,rk for ν = 0.7, 0.8, 0.9 (in terms of the average AICc) and for
ν = 0.6, 0.7, 0.8, 0.9 (in terms of average BIC).

The concepts discussed in this work have potential applications outside of intermittent oncological treatments; these
ideas may be applied to any system that involves exponential growth with intermittent changes due to some variable. One
example is a fish-harvest model that predicts maximum sustainable yield, which is used to determine when to harvest fish.
Fish population grows exponentially and the β assumption could be replaced with some catch limit. Another example is
an algae bio-fuel model, where algae is grown and then harvested to be used for fuel. The algae grows exponentially and
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the harvest limit would replace the β assumption. In this work, we have used time scale calculus and discrete fractional
calculus to develop a new approach to modeling intermittent androgen deprivation therapy. In this process, we unified time
scales and discrete fractional calculus in a new and interesting way. We are excited to see not only how this model can
potentially improve the modeling of IAD therapy, but also how it can potentially impact the fields of time scale calculus
and discrete fractional calculus.

(a) ν = 0.6 (b) ν = 0.7

(c) ν = 0.8 (d) ν = 0.9

Fig. 4: Plots of the data and fractional differences for Patient 100
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(a) ν = 0.6 (b) ν = 0.7

(c) ν = 0.8 (d) ν = 0.9

Fig. 5: Plots of the data and fractional differences for Patient 91
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(a) ν = 0.2 (b) ν = 0.3

(c) ν = 0.4 (d) ν = 0.5

Fig. 6: Plots of the data and fractional differences for Patient 58
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