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Abstract: In this work, we evaluate a system of partial differential equations utilizing the Caputo fractional operator by employing

the fractional natural decomposition analysis (FNDM). The approximate analytical solutions are derived by utilizing the FNDM

technique, which is a form of the fractional Adomian decomposition with the natural transform. This novel algorithm’s high accuracy

and rapid convergence are demonstrated with illustrative cases. The obtained findings demonstrate that the proposed method is a

viable tool for solving systems of nonlinear fractional differential equations. Additionally, we demonstrate that FNDM can handle a

broad class of nonlinear systems using the Caputo fractional operator more efficiently, clearly, and correctly, making it extensively

useful in physics and engineering.
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1 Introduction

Fractional partial fractional equations (FPDEs) naturally occur in a variety of fields, including physics, biology,
economics, and engineering applications such as electrostatics, fluid mechanics, astronomy, and relaxation processes.
Many professionals use such models extensively to simply explain its intricate structures, simplify the regulating design
without sacrificing hereditary behaviors, and produce natural concerns that are closely understood for these
occurrences[1,2,3,4,5].

The most approximate and observational methods and techniques, such as fractional variational iteration technique,
methodology of fractional differential transformation, technique for expanding fractional series, Iteration technique
based on fractional Sumudu variation, Laplace transform with a fraction, The fractional homotopy perturbation
approach, Decomposition technique using fractions of Sumudu, technique utilizing fractional Fourier series, In the
meaning of Caputo, ordinary and partial differential equations, the fractional reduced differential transform procedure,
fractional Adomian decomposition method, and other methods [6,7,8,9,10,11,12]have successfully been applied.

The FNDM, a coupling strategy of the FADM and NT, is what we’re trying to introduce, and to use it to resolve
nonlinear fractional PDEs. The following sections make up the remaining portion of this work: Some definitions for
fractional calculus are provided in Section 2. Section 3 discusses some fundamental definitions and features of natural
transforms. The FNDM with CFO analysis is carried out in section 4. Section 5 demonstrates FNDM applications. The
study’s conclusion can be found in Section 6.

2 Preliminaries

This part covers certain fractional calculus concepts and symbols that will be useful in this investigation [1,2,3,4,5].
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Definition 1.Suppose ψ(τ),ψ(τ) ∈ R, τ > 0, which is in the space Cm,m ∈ R if there exists

{ρ ,(ρ > m),s.t.ψ(τ) = τρ ψ1(τ), where ψ1(τ) ∈C[0,∞)}

and ψ(τ) is known as in the space Cn
m when ψ(n) ∈Cm,n ∈ N.

Definition 2.The fractional integral operator of order α ≥ 0 for Riemann Liouville of ψ(τ) ∈Cm,m ≥−1 is given by the

form

Iαψ(τ) =











1

Γ (α)

∫ τ
0 (τ − ξ )α−1ψ(ξ )dξ , α > 0,τ > 0

I0ψ(τ) = ψ(τ), α = 0

(1)

where Γ (·) is the well-known Gamma function.

The following are the characteristics of the operator Iα : For ψ ∈Cm,m ≥−1,α,β ≥ 0, then

1.Iα Iβ ψ(τ) = Iα+β ψ(τ)

2.Iα Iβ ψ(τ) = Iβ Iα ψ(τ)

3.Iα τn =
Γ (n+ 1)

Γ (α + n+ 1)
τα+n

Definition 3.In the understanding of Caputo, ψ(τ)’s fractional derivative is as follows:

Dα ψ(τ) = In−αDnψ(τ) =
1

Γ (n−α)

∫ τ

0
(τ − ξ )n−α−1ψ(n)(ξ )dξ , (2)

for n− 1 < α ≤ n,n ∈ N,τ > 0 and ψ ∈Cn
−1.

The following are the essential features of the operator Dα :

1.Dα Iα ψ(τ) = ψ(τ)

2.Dα Iα ψ(τ) = ψ(τ)−∑n−1
k=0 ψ(k)(0)

τk

k!

Definition 4.The following formula gives the Mittag-Leffler function Eα if it satisfies the following:

For each α > 0, then:

Eα(z) =
∞

∑
n=0

zα

Γ (nα + 1)
(3)

3 Natural Transform Definitions and Properties

We present some context for the natural transform approach [9] in this section.

Definition 5.The function ψ(τ) for τ ∈ R has a natural transform defined by

N[ψ(τ)] = R(ω ,µ) =
∫ ∞

−∞
e−ωτ ψ(µτ)dτ, ω ,µ ∈ (−∞,∞) (4)

We denote that the Natural transform of the time function ψ(τ) is N[ψ(τ)], and the variables ω and µ are the Natural

transform elements. Furthermore, define ψ(τ)H (τ) as on the axis of positive real, if H (τ) is Heaviside function, and

τ ∈ (0,∞). Consider

A = {ψ(τ) : ∃M, t1, t2 > 0,with |ψ(τ)| ≤ Me
|τ|
t j , for τ ∈ (−1) j × [0,∞), j ∈ Z+}

The natural transform, often known as the NT, is defined as follows:

N[ψ(τ)H (τ)] = N
+[ψ(τ)] = R+(ω ,µ) =

∫ ∞

0
e−ωτ ψ(µτ)dτ, ω ,µ ∈ (−∞,∞) (5)

The natural transform has the following essential characteristics:

1.N+[1] = 1
ω

2.N+[τα ] = Γ (α+1)µα

ωα+1 , such that α ≥−1
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4 Fractional Natural Adomian Decomposition Method (FNADM) Analysis

Suppose that the general fractional nonlinear PDEs with Caputo fractional operator for the system

Dα
τ ψi(ξ ,τ)+Rψi(ξ ,τ)+N ψi(ξ ,τ) = ℑi(ξ ,τ), 0 < α ≤ 1 (6)

with the initial condition

ψi(ξ ,0) = ℑi(ξ ), (7)

where D
(α)
τ ψi(ξ ,τ) which is the CF derivative of ψi(ξ ,τ), i = 1,2 and 3 defined as:

D
(α)
τ ψi(ξ ,τ) =

dα ψi(ξ ,τ)

dτα















1

Γ (n−α)

∫ τ
0 (τ −ω)n−α−1 dnψi(ξ ,τ)

dτn dω , n− 1 < α < n

dnψi(ξ ,τ)
dτn , α = n ∈ N

(8)

R denotes the operator for linear differentials, N indicates generic NDO, and ℑi(ξ ,τ) is the source term.

When we use NT on both sides of (6), we obtain

N[Dα
τ ψi(ξ ,τ)]+N[Rψi(ξ ,τ)]+N[N ψi(ξ ,τ)] = N[ℑi(ξ ,τ)] (9)

Wi(τ,ω ,µ) =
µα

ωα ∑
ωα−(k+1)

µα−k
[Dkψi(ξ ,τ)]τ=0 +

µα

ωα
N[ψi(ξ ,τ)]−

µα

ωα
N[Rψi(ξ ,τ)+N ψi(ξ ,τ)] (10)

By taking the inverse NT to (10), we obtain

ψi(ξ ,τ) = φi(ξ ,τ)−N
−1
[ µα

ωα
N[Rψi(ξ ,τ)+N ψi(ξ ,τ)]

]

(11)

From the nonhomogeneous term to the essential initial condition, φi(ξ ,τ) is an increasing function. Now, if the unknown
function ψi(ξ ,τ) has an infinite series solution, of the kind

ψi(ξ ,τ) =
∞

∑
n=0

(ψi)n(ξ ,τ) (12)

and

N ψi(ξ ,τ) =
∞

∑
n=0

(Ai)n(ξ ,τ) (13)

The, by using (13), we may formulate (11) as follows:

∞

∑
n=0

(ψi)n(ξ ,τ) = φi(ξ ,τ)−N
−1
[ µα

ωα
N
[

R

∞

∑
n=0

(ψi)n(ξ ,τ)
]

+
∞

∑
n=0

(Ai)n

]

(14)

such that (Ai)n is an AD polynomial that is representing the nonlinear value and is defined as follows:

(Ai)n =
1

n!

dn

dηn
N

[ ∞

∑
i=0

η iψi

]

η=0
(15)

We can infer by comparing the two sides of (14)

ψi0(ξ ,τ) = φi(ξ ,τ)

ψi1(ξ ,τ) =−N
−1
[ µα

ωα
N[Rψi0(ξ ,τ)+Ai0]

]

ψi2(ξ ,τ) =−N
−1
[ µα

ωα
N[Rψi1(ξ ,τ)+Ai1]

]
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.

.

.

We continue in this direction until we reach the wide form offered by

(ψi)n+1(ξ ,τ) =−N
−1
[ µα

ωα
N[R(ψi)n(ξ ,τ)+ (Ai)n]

]

, n ≥ 1

Finally, we have an approximate solution

ψ(ξ ,τ) =
∞

∑
n=0

(ψi)n(ξ ,τ)

5 Applications

The proposed technique (FNDM) in order to solve fractional system of PDEs will be applied in this section.

5.1 Example

Dα
τ ψ(ξ ,τ)−ψξ ξ (ξ ,τ)− 2ψψξ +(ψϕ)ξ = 0, 0 < α ≤ 1

D
β
τ ϕ(ξ ,τ)−ϕξ ξ (ξ ,τ)− 2ϕϕξ +(ψϕ)ξ = 0, 0 < α ≤ 1 (16)

subject to initial conditions

ψ(ξ ,0) = e−ξ

ϕ(ξ ,0) = e−ξ (17)

Applying NT to each side of (16), and we have achieved this by utilizing the differential characteristic of FNDM

N[ψ(ξ ,τ)] =
1

ω
e−ξ +

µα

ωα
N[ψξ ξ (ξ ,τ)+ 2ψψξ − (ψϕ)ξ ]

N[ϕ(ξ ,τ)] =
1

ω
e−ξ +

µβ

ωβ
N[ϕξ ξ (ξ ,τ)+ 2ϕϕξ − (ψϕ)ξ ] (18)

Taking the inverse Natural transform to (18), then

ψ(ξ ,τ) = e−ξ +N
−1
[ µα

ωα
N[ψξ ξ (ξ ,τ)+ 2ψψξ − (ψϕ)ξ ]

]

ϕ(ξ ,τ) = e−ξ +N
−1
[ µβ

ωβ
N[ϕξ ξ (ξ ,τ)+ 2ϕϕξ − (ψϕ)ξ ]

]

(19)

Assume the following infinite series solutions for the unknown functions ψ(ξ ,τ) and ϕ(ξ ,τ) :

ψ(ξ ,τ) =
∞

∑
n=0

ψn(ξ ,τ), ϕ(ξ ,τ) =
∞

∑
n=0

ϕn(ξ ,τ) (20)

In addition, ψψξ = ∑∞
n=0 An, ϕϕξ =∑∞

n=0Cn and (ψϕ)ξ =∑∞
n=0 Bn are nonlinear terms which are shown by the Adomian

polynomials. Then, construct equation (19) as follows using equation (20)

∞

∑
n=0

ψn(ξ ,τ) = e−ξ +N
−1
[ µα

ωα
N[

∞

∑
n=0

(ψn)ξ ξ + 2
∞

∑
n=0

An −
∞

∑
n=0

Bn]
]

∞

∑
n=0

ϕn(ξ ,τ) = e−ξ +N
−1
[ µβ

ωβ
N[

∞

∑
n=0

(ϕn)ξ ξ + 2
∞

∑
n=0

Cn −
∞

∑
n=0

Bn]
]

(21)

Where
A0 = ψ0(ψ0)ξ

A1 = ψ0(ψ1)ξ +ψ1(ψ0)ξ
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.

.

.

B0 = (ψ0ϕ0)ξ

B1 = (ψ1ϕ0 +ψ0ϕ1)ξ

.

.

.

C0 = ϕ0(ϕ0)ξ

C1 = ϕ0(ϕ1)ξ +ϕ1(ϕ0)ξ

.

.

.

Now, comparing both sides of (21), we get

ψ0(ξ ,τ) = e−ξ
, and ϕ0(ξ ,τ) = e−ξ

ψ1(ξ ,τ) = N
−1
[ µα

ωα
N[(ψ0)ξ ξ + 2A0 −B0]

]

= e−ξ
N
−1
[ µα

ωα+1

]

= e−ξ τα

Γ (α + 1)

ϕ1(ξ ,τ) = N
−1
[ µβ

ωβ
N[(ϕ0)ξ ξ + 2C0 −B0]

]

= e−ξ
N
−1
[ µβ

ωβ+1

]

= e−ξ τβ

Γ (β + 1)

ψ2(ξ ,τ) = N
−1
[ µα

ωα
N[(ψ1)ξ ξ + 2A1 −B1]

]

= N
−1
[

e−ξ µ2α

ω2α+2
− 2e−2ξ µ2α

ω2α+2
+ 2e−2ξ µα+β

ωα+β+2

]

= e−ξ τ2α

Γ (2α + 1)
− 2e−2ξ τ2α

Γ (2α + 1)
+ 2e−2ξ τα+β

Γ (α +β + 1)

ϕ2(ξ ,τ) = N
−1
[ µβ

ωβ
N[(ϕ1)ξ ξ + 2C1 −B1]

]

= N
−1
[

e−ξ µ2β

ω2β+2
− 2e−2ξ µ2β

ω2β+2
+ 2e−2ξ µα+β

ωα+β+2

]

= e−ξ τ2β

Γ (2β + 1)
− 2e−2ξ τ2β

Γ (2β + 1)
+ 2e−2ξ τα+β

Γ (α +β + 1)
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.

.

We continue to get the following approximate solutions:

ψ(ξ ,τ) = ψ0(ξ ,τ)+ψ1(ξ ,τ)+ψ2(ξ ,τ)+ .....

= e−ξ + e−ξ τα

Γ (α + 1)
+ e−ξ τ2α

Γ (2α + 1)
− 2e−2ξ τ2α

Γ (2α + 1)
+ 2e−2ξ τα+β

Γ (α +β + 1)
+ ...

ϕ(ξ ,τ) = ϕ0(ξ ,τ)+ϕ1(ξ ,τ)+ϕ2(ξ ,τ)+ .....

= e−ξ + e−ξ τβ

Γ (β + 1)
+ e−ξ τ2β

Γ (2β + 1)
− 2e−2ξ τ2β

Γ (2β + 1)
+ 2e−2ξ τα+β

Γ (α +β + 1)
+ ... (22)

Using α = 1,β = 1, and a Taylor series expansion, the above approximation yields

ψ(ξ ,τ) = e−ξ + e−ξ τ + e−ξ τ2

2!
− 2e−2ξ τ2

2!
+ 2e−2ξ τ2

2!
+ · · ·

ϕ(ξ ,τ) = e−ξ + e−ξ τ + e−ξ τ2

2!
− 2e−2ξ τ2

2!
+ 2e−2ξ τ2

2!
+ · · ·

Therefore,

ψ(ξ ,τ) = e−ξ+τ

ψ(ξ ,τ) = e−ξ+τ

These are the precise solutions to equation (16) for α = 1,β = 1. As a result, the estimate rapidly approaches the solution.

5.2 Example

Dα
τ ζ (ξ1,ξ2,τ)−ϕξ1

ψξ2
(ξ1,ξ2,τ) = 1

D
β
τ ϕ(ξ1,ξ2,τ)−ψξ1

ζξ2
(ξ1,ξ2,τ) = 5

D
γ
τ ψ(ξ1,ξ2,τ)− ζξ1

ϕξ2
(ξ1,ξ2,τ) = 5 (23)

Subject to the initial conditions

ζ (ξ1,ξ2,0) = ξ1 + 2ξ2,

ϕ(ξ1,ξ2,0) = ξ1 − 2ξ2,

ψ(ξ1,ξ2,0) =−ξ1 + 2ξ2 (24)

Applying NT to each side of (23), and by using the differential property of FNDM, we have

N[ζ (ξ1,ξ2,τ)] =
1

ω
(ξ1 + 2ξ2)+

µα

ωα+1
+

µα

ωα
N[ϕξ1

ψξ2
(ξ1,ξ2,τ)]

N[ζ (ξ1,ξ2,τ)] =
1

ω
(ξ1 − 2ξ2)+ 5

µβ

ωβ+1
+

µβ

ωβ
N[ψξ1

ζξ2
(ξ1,ξ2,τ)]

N[ψ(ξ1,ξ2,τ)] =
1

ω
(−ξ1 + 2ξ2)+ 5

µγ

ωγ+1
+

µγ

ωγ
N[ζξ1

ϕξ2
(ξ1,ξ2,τ)] (25)
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Taking the inverse Natural transform to (18), then

ζ (ξ1,ξ2,τ) = ξ1 + 2ξ2 +
τα

Γ (α + 1)
+N

−1
[ µα

ωα
N[ϕξ1

ψξ2
(ξ1,ξ2,τ)]

]

ϕ(ξ1,ξ2,τ) = ξ1 − 2ξ2 + 5
τβ

Γ (β + 1)
+N

−1
[ µβ

ωβ
N[ψξ1

ζξ2
(ξ1,ξ2,τ)]

]

ψ(ξ1,ξ2,τ) =−ξ1 + 2ξ2 + 5
τγ

Γ (γ + 1)
+N

−1
[ µγ

ωγ
N[ζξ1

ϕξ2
(ξ1,ξ2,τ)]

]

(26)

Consider ϕξ1
ψξ2

=∑∞
n=0 An, ψξ1

ζξ2
= ∑∞

n=0 Bn and ζξ1
ϕξ2

=∑∞
n=0 Cn are the Adomian polynomials indicate the nonlinear

terms. Now, equation (26) may be rewritten as follows:

ζ (ξ1,ξ2,τ) = ξ1 + 2ξ2 +
τα

Γ (α + 1)
+N

−1
[ µα

ωα
N[

∞

∑
n=0

An]
]

ϕ(ξ1,ξ2,τ) = ξ1 − 2ξ2 + 5
τβ

Γ (β + 1)
+N

−1
[ µβ

ωβ
N[

∞

∑
n=0

Bn]
]

ψ(ξ1,ξ2,τ) =−ξ1 + 2ξ2+ 5
τγ

Γ (γ + 1)
+N

−1
[ µγ

ωγ
N[

∞

∑
n=0

Cn]
]

(27)

Where
A0 = (ϕ0)ξ1

(ψ0)ξ2

A1 = (ϕ1)ξ1
(ψ0)ξ2

+(ϕ0)ξ1
(ψ1)ξ2

.

.

.

B0 = (ψ0)ξ1
(ζ0)ξ2

B1 = (ψ1)ξ1
(ζ0)ξ2

+(ψ0)ξ1
(ζ1)ξ2

.

.

.

C0 = (ζ0)ξ1
(ϕ0)ξ2

C1 = (ζ1)ξ1
(ϕ0)ξ2

+(ζ0)ξ1
(ϕ1)ξ2

.

.

.

Now, comparing both sides of (27), we get

ζ0(ξ1,ξ2,τ) = ξ1 + 2ξ2+
τα

Γ (α + 1)

ϕ0(ξ1,ξ2,τ) = ξ1 − 2ξ2 + 5
τβ

Γ (β + 1)

ψ0(ξ1,ξ2,τ) =−ξ1 + 2ξ2 + 5
τγ

Γ (γ + 1)

ζ1(ξ1,ξ2,τ) = N
−1
[ µα

ωα
N[A0]

]

= 2N−1
[ µα

ωα+1

]

= 2
τα

Γ (α + 1)
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ϕ1(ξ1,ξ2,τ) = N
−1
[ µβ

ωβ
N[B0]

]

=−2N−1
[ µβ

ωβ+1

]

=−2
τβ

Γ (β + 1)

ψ1(ξ1,ξ2,τ) = N
−1
[ µγ

ωγ
N[C0]

]

=−2N−1
[ µγ

ωγ+1

]

=−2
τγ

Γ (γ + 1)

ζ2(ξ1,ξ2,τ) = N
−1
[ µα

ωα
N[A1]

]

= N
−1
[ µα

ωα
N[0]

]

= 0

ϕ2(ξ1,ξ2,τ) = N
−1
[ µβ

ωβ
N[B1]

]

= N
−1
[ µβ

ωβ
N[0]

]

= 0

ψ2(ξ1,ξ2,τ) = N
−1
[ µγ

ωγ
N[C1]

]

= N
−1
[ µγ

ωγ
N[0]

]

= 0

.

.

.

We continue to get
∞

∑
n=1

ζn(ξ1,ξ2,τ) = ξ1 + 2ξ2 +
τα

Γ (α + 1)
+ 2

τα

Γ (α + 1)
+ 0+ ...

∞

∑
n=1

ϕn(ξ1,ξ2,τ) = ξ1 − 2ξ2+ 5
τβ

Γ (β + 1)
− 2

τβ

Γ (β + 1)
+ 0+ ...

∞

∑
n=1

ψn(ξ1,ξ2,τ) =−ξ1 + 2ξ2 + 5
τγ

Γ (γ + 1)
− 2

τγ

Γ (γ + 1)
+ 0+ ...

Therefore, we have

ζ (ξ1,ξ2,τ) = ξ1 + 2ξ2+ 3
τα

Γ (α + 1)

ϕ(ξ1,ξ2,τ) = ξ1 − 2ξ2 + 3
τβ

Γ (β + 1)

ψ(ξ1,ξ2,τ) =−ξ1 + 2ξ2 + 3
τγ

Γ (γ + 1)
(28)

If α = 1,β = 1,γ = 1, and by applying Taylor, the approximation yields

ζ (ξ1,ξ2,τ) = ξ1 + 2ξ2 + 3τ

ϕ(ξ1,ξ2,τ) = ξ1 − 2ξ2 + 3τ

ψ(ξ1,ξ2,τ) =−ξ1 + 2ξ2 + 3τ (29)

These are the precise solutions to equation (23) for α = 1,β = 1,γ = 1. As a result, the estimate rapidly approaches the
solution.

6 Conclusion

The FNDM was effectively used in this research to provide the analytical approximation solution to the nonlinear systems
of FPDEs. The FNDM provides solutions in the form of convergent series with simply computed elements, as well as the
elements of the precise solution.
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