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Abstract: The process of teleport information remotely in presence of an error in the implementation of the local operations as CNOT
and Hadamard gate at the sending station is discussed. Through the control of the laboratory equipment the errors in the achieving the
local operations could be resisted. The imperfect CNOT gates performance could be improved as the error’s strength in implementing
of the Hadamard gate increases. It is shown that the accuracy of the information transfer not only depends on the laboratory equipment,
but also on nature of the information to be teleported.
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1. Introduction

Quantum teleportation is a process that could be used to
rapidly transfer unknown state between two separate loca-
tions. It is one of more common method which has been
investigated theoretically [1,2] and experimentally [3–5].
To achieve this protocol, one needs entangled pairs which
represent the quantum channel between the sender and the
receiver, local operations and measurements. Since entan-
gled pairs are crucial resource for quantum communica-
tion, the preparation of maximally entangled states is a
crucial task. There are several attempts have been carried
out to generate entangled channels between different types
of particles. Ideally, entangled atoms are used widely for
this proposal because they would remain stable over long
timescales. As an example, Wang and Schirmer [7] have
generated a maximum entangled states between distant atoms
by Lyapunov control. Generated entangled atoms in finite
time between a pair of space-like separated atoms, is in-
vestigated by Leon and Sabin [8]. Lee and et. al. [9], have
proposed a cavity-QED-based scalable scheme to an ar-
bitrary number of atoms of generating entanglement be-
tween atoms. A different scheme to generate maximally
entangled state, using trapped ions interacting with a res-
onant external laser and sideband tuned single mode of a
cavity field has been proposed [10–13].

One of promising pairs in context of quantum informa-
tion are the Cooper pairs boxes. Due to their potential in
quantum information processing, there are several studies
has been done investigated the properties of these parti-
cles [14,15]. One of the most important studies is quan-
tum memories for theses pairs, where the speed and accu-
racy of storing information is investigated for these types
of pairs [16]. Tordrup and Mo lmer have present a method
for many-qubit quantum computing with a single molecu-
lar ensemble and a Cooper pair box [17]. Also, these par-
ticles have been employed to generate entangled state by
interacting them with a single cavity mode [18]. There-
for, these pairs have been used in quantum teleportation as
quantum channels [14,21].

To implement quantum information tasks, we need lab
equipments with high efficiency and free from manufac-
turing defects. In reality, the process of these requirements
is impossible. Also the quantum information processing is
sensitive to any external noise [19]. As an example, quan-
tum teleportation, coding, cryptography require a maxi-
mum entangled state to be achieved. experimentally, one
can generate maximum entangled stated but due to the in-
teractions with surrounding turn into partially entangled
states [20]. Therefore the efficiency of performing these
quantum information tasks decreases. For this reason, there
are many efforts have been treated these tasks using par-
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tially entangled states [22,23]. Also, there are local oper-
ations have to be done to implement quantum information
tasks. The most common local operations are the CNOT
and Hadamard gates, where they are used in most quantum
information and computation processing [24,25]. Due to
the imperfect lab equipments and the noise environments
the users may can not implement these gates perfectly. So,
understanding achieving these tasks taking into account
the noise operations is very important.

This leads us to the main aim of this article, where
we use entangled state between a superconducting charged
qubit and a single cavity mode as a quantum channel to
perform quantum teleportation. In this strategy, we assume
that the local operations are achieved partially perfect. The
effect of the qubit and the field’s parameters on the fidelity
of transporting information between two users is investi-
gated.

This paper is organized as follows: In Sec.2, an ana-
lytical solution to the suggested model is introduced. The
model of the noise operations is described Sec.3. Employ-
ing the entangled state between a superconducting charged
qubit and the cavity mode for transmitted unknown infor-
mation remotely is discussed in Sec.4. Finally Sec.5, is de-
voted to discuss the results.

2. Model description

We consider a single superconducting island connect to a
superconducting electron reservoir. It could be considered
as a two-level quantum system which is useful in build-
ing a block of quantum computations. The most relevant
example of pairing is BCS superconductivity, in which at-
tractive interactions cause electrons to perfectly anticorre-
late in momentum and spin, forming Cooper pairs [28,29]

Hs = 4Ec(n− ng)2 − Ej cosφ, (1)

where,Ec = 1
2e2 (CJ + Cg) is the charging energy,EJ =

1
2

h̄
e Ic is the Joesphson coupling energy,e is the charge

of the electron,ng = 1
2

Vg

e Cg is the dimensionless gate
charge,n is the number operators of excess cooper pair on
the island andφ is the phase operator [28,29]. The Hamil-
tonian of the system (1) can be simplified, if the Josephon
coupling energy,Ej is much smaller than the charging
energy i.eEj << Ec . In this case, the Hamiltonian of
the system can be parameterized by the number of cooper
pairsn on the island. If the temperature is low enough, the
system can be reduced to a qubit.

Hs = −1
2
Bzσz − 1

2
Bxσx, (2)

whereBz = − (2n− 1) Ecl, Ecl is the electric energy,
Bx = Ej andσx, σy, σz are Pauli matrices. This cooper
pair can be viewed as an atoms with large dipole moment
coupled to microwave frequency photons in a quasi-one-
dimensional transmission line cavity (a coplanar waveg-
uide resonator). The combined Hamiltonian for qubit and

transmission line cavity is given by [30,31],

H = $a†a + $cσz (3)

−λ(µ− νσz +
√

1− ν2σx(a† + a)),

where,ω is the cavity resonance frequency,

ωc =
√

E2
j + 16E2

c (2ng − 1)2

is the transition frequency of the cooper pair qubit,

λ =
√

Cj

Cg+CJ

√
1
2

$
h̄ e2 is coupling strength of resonator to

the cooper pair qubit,µ = 1− ng, ν = cos θ and

θ = − arctan
(

1
Ec

Ej

2ng−1

)

is mixing angle.
Let us assume that the initial state of the system is pre-

pared initially in |ψs(0)〉 = |e, n〉. The time evolution of
the initial system is given by

|ψs(t)〉 = U(t) |ψs(o)〉 , (4)

where,u(t) is a unitary operator defined by,

U11(t) =
1
2
(1− δ

ηn
)eiηnt +

1
2
(1 +

δ

ηn
)e−iηnt,

U12(t) = − λ

2ηn
(eiηnt − e−iηnt)a,

U22(t) =
1
2
(1 +

δ

ηn
)eiη

′
nt +

1
2
(1− δ

ηn
)e−iη

′
nt, (5)

andU21(t) = U∗
12, ὴn = λ2a†a+ δ2

4 , ηn = ὴn +λ2[a, a†]
and δ = Ej − $ is the detuning parameter between the
Josephson energy and the cavity field frequency. Now, by
using (4) and (5), the density operator of the systemρs is
given by,

ρs(t) = A |e, n〉 〈e, n|+ B |e, n〉 〈g, n + 1| (6)

+C |g, n + 1〉 〈e, n|+ D |g, n + 1〉 〈g, n + 1| ,
where

A = C2
n+1 + ∆2S2

n+1,

B = −i
√

(n + 1)(Cn+1 − i∆Sn+1)Sn,

C = B∗, D = (n + 1)S2
n, (7)

Cn = cos Ωτ

√
(

δ

2λ
)2 + n,

Sn =
2λ√

∆2 + 4λ2n
sin Ωτ

√
∆2 + n,

with Ω =
√

cj

Cj+Cg
, τ =

√
ω
2h̄e and∆ δ

2λ .

Since we have got the density operator of the system,
we can investigate all the classical and quantum phenom-
ena associated with the quantum channel (6). In this con-
text, we use this quantum channel to achieve the quantum
teleportation to transmit unknown information between two
users, Alice and Bob.
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3. Imperfect Teleportation

In this section, a scheme to implement quantum teleporta-
tion is proposed. In this scheme, we assume that the local
operations, CNOT and Hadamard gate, which are needed
to achieve the quantum teleportations are non ideal. As-
sume that Alice is given unknown state defined by,

ρ = |α|2 |e〉 〈e|+ αβ∗ |e〉 〈g| (8)

+βα∗ |g〉 〈e|+ |β|2 |g〉 〈g| ,
and she is asked to send it to Bob, who share with Alice an
entangled state given by ( 6).

1.Due to the defect on the equipment Alice performs im-
perfectly the CNOT gate on her qubit and the given
unknown qubit. After this operation the final state of
the system is given by

ρ
(1)
out = pCNOTρ

(0)
in CNOT + (1− p)ρ(0)

in (9)

where, with probabilityp the CNOT gate is performed
perfectly and with probability(1 − p) the operation
fails andρ

(0)
in = ρu ⊗ ρ.

2.If Alice applies the imperfect Hadamard gate on the
output state , then the output state is given by,

ρ
(2)
out = qHρ

(1)
out H + (1− q)ρ(1)

out (10)

where, the Hadamard gate is applied correctly with
probabilityq and fils with probability(1− q).

3.Alice measures her qubit and the unknown qubir ran-
domly in one of the basis|ee〉 , |eg〉 , |ee〉 and |gg〉 and
sends her results to Bob by using classical channel.

4.As soon as Bob receives the classical data from Al-
ice,he applies a single qubit operation on his qubit de-
pending on Alies’s results. Therefor, if Alice measures
in the basis|gg〉 , Bob will obtain the state

ρBob = Aη1 |n〉 〈n| −Bη2 |n〉 〈n + 1|
−Cη3 |n + 1〉 〈n|+ Dη4 |n + 1〉 〈n + 1| , (11)

where,

η1 =
q2(1− p)2

2
(|α|2 − αβ∗ − βα∗ + |β|2)

+
(

q2p2

2
|β|2 + (1− p)2(1− q)2|α|2

)
,

η2 =
βα∗

2
q2p2, η3 =

αβ∗

2
q2p2,

η4 = |α|2
[
1
2
q2p2 + p2(1− q)2

]
. (12)

The fidelity,F of the teleported state (8) is given by,

F = D|α|4η4 + A|β|2η1 + |α|2|β|2q2p2∆SnSn+1. (13)

Fig.(1), shows the behavior of the fidelity,F, under the
effect of noise CNOT operation while the Hadamard gate
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Figure 1 The fidelity,F of the transmitted unknown state (8),
whereq = 1 andδ = 0 and the CNOT operation is implemented
with probability0 ≤ p ≤ 1 (a) The unknown state is defined by
α = 0.2 andβ =

√
1− α2 andCj = Cg = 0.01(b) The same

as Fig.(a) butCj = 0.5 andCg = 0.01.

is applied perfectly. We investigate the effect of the corre-
lation parameterλ between the Cooper pair and the cavity
mode as a function of the capacitiesCj and Cg, where

λ ∝ Ω =
√

Cj

Cj+Cg
. Let us assume that Alice is given un-

known state defined byα = 0.2 andβ =
√

1− α2. In Fig.
(1a), we investigate the time evolution of the fidelity,F ,
where small values of the superconducting charged qubit
capacity,Cj and the gate capacityCg are considered. It
is clear that, for small values ofp i.e., Alice fails to per-
form the CNOT gate correctly, the fidelity,F ' 0.29 at
t = 0.0. This behavior is due to the second term of Eq.
(13), where all the other terms are cancelled. Asp in-
creases i.e Alice is partially successes in achieving the
CNOT gate,F increases gradually and reaches to its max-
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Figure 2 The same as Fig.(1), respectively butα = 1.

imum valueF = 0.4. at p = 1. Fig. (1b), shows the dy-
namics of the fidelity for different initial values setting for
theΩ, where we setCj = 0.5 andCg = 0.01. In this case,
the fidelity increases asp increases, while the number of
revivals decreases.

The structure of the unknown state plays an important
role on the fidelity of the transport it between two loca-
tions. Consider that, Alice is given an unknown state with
α = 1., while the other parameters are fixed as those in
Fig. (1a). In this case the fidelity,F = 1

2p2q2S2
n (n + 1).

Therefor atp = 0, the fidelityF = 0 and increases asp
increases. The fidelity reaches its maximum values at the
dimensionless timeτ = π

2λ , this behavior is seen in Fig.
(2a). The dynamics of the fidelity for the same unknown
state i.e.,α = 1 is shown in Fig. (2b) for different values
of Cj = 0.5 andCg = 0.01. The same behavior is seen
as that depicted in Fig. (2a), but the number of revivals
decreases.
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Figure 3 The same as Fig.(1a) but (a)δ = 0.15 and (b)δ = 1.0.

In Fig. (3), we consider the effect of the dimensionless
detuning parameter,∆ = δ

2λ which measures the reso-
nances between the cavity mode and the Cooper pair box
. The dynamics of the fidelity,F for small value of the de-
tuning,δ = 1

2 is shown in Fig. (3a). It is clear that the oscil-
lations decreases this means that the minimum value of the
fidelity increases. As one increasesδ = 1, the rate of de-
creasing the revivals decreases and consequently the mini-
mum values ofF increases as shown in Fig. (3b). However
as the probability of performing the CNOT gate correctly,
the fidelity of the teleported state increases.

Assume that Hadamard gate can be implemented with
a probability(q = 0.1). In this case the dynamics ofF is
depicted in Fig. (4a), where the values of the other param-
eter is the same as that for Fig. (1a). It is clear that, the
parametersη1 andη4 control the dynamics of the fidelity
F , where they have maximum values for small values of
p. Therefore the fidelity becomes minimum forp = 1.0.
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Figure 4 The same as Fig.(1a) but (a)q = 0.1 and (b)q = 0.5.

This means that CNOT operation is very fragile against
any other noise. We notice that the general behavior of the
accuracy of the transfer of information is the same behav-
ior shown in Fig. (1a), but the fidelity of the teleported state
is very small. However as one increases the probability of
implementing Hadamard gate, the fidelity of the teleported
state increases (see Fig. (4b)).

Let assume that Alice has implemented the CNOT gate
efficiently i.e., with probabilityp = 1 , while the Hadamard
gate is achieved with probability0.0 ≤ q ≤ 1.0. Our
first example is assumed with the same parameters as Fig.
(1a) butp = 1, the behavior of the fidelity,F is shown in
Fig. (5a). We can see that the fidelity reduces to become
F = q2p2

2

(
A|β|4 + D|α|6). Therefor atq = 0, the fidelity

vanishes and re-increases gradually asq increases. AsΩ is
increases, the fidelity increases and the number of oscilla-
tions decreases as shown in Fig. (5b).
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Figure 5 The fidelity of the transmitted unknown stateF , where
p = 1,δ = 0 and the Hadamard gate is implemented with prob-
ability 0 ≤ q ≤ 1 (a)cj = 0.1 andCg = 0.01 and (b)cj = 0.5
andCg = 0.01.

Finally, we consider that the CNOT operation is per-
formed correctly with a small probabilityp = 0.1, while
the Hadamard is achieved correctly with probabilityq. In
this case a surprising result is obtained, where the fidelity
is improved atq = 0, where in this case the fidelityF =
D|α|6p2 + A|β|2|α|2(1 − p)2. These results are depicted
in Fig. (6b). On the other hand the average values of the fi-
delity decreases comparing with that depicted in Fig. (5a).
In Fig. (6b), we set larger values ofp = 0.5, the fidelity at
q = 0 decreases because the value(p− 1)2 decreases as
one increasesp.
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Figure 6 The same as Fig.(5a) but (a)p = 0.1 and (b)p = 0.5.

4. Conclusions

In this contribution, the problem of quantum teleportation
in the presences of noise quantum operations is treated. An
entangled state between a superconducting qubit and a sin-
gle cavity mode is used as quantum channel. The effect of
the noise CNOT, Hadamard gate and the channel parame-
ters on the dynamics of the teleported state is investigated.

We have shown that, for small values of the coupling
constant, which is a function of the cooper pair capaci-
ties, the fidelity of the teleported state increases as one
increases the strength of the noise CNOT operation. How-
ever, only the number of revivals increases as one increases
the coupling constant. On the other hand, for larger values
of the detuning parameter, the fidelity oscillates so fast,
but its lower bound increases for larger value of the de-
tuning. The effect of the noise CNOT gate is investigated
in the presences of the noise Hadamard gate. We showed
that the fidelity decreases very vast for small values of the

strength of noise Hadamard gate, while as one increases
this strength, the fidelity is much better. These results show
that, the imperfect CNOT operation is very sensitive to any
additional noise (Hadamard), where the fidelity decreases
gradually. However, the additional noise gate represented
in (Hadamard) gate, improves the fidelity of information
transfer. On the other hand, for perfect CNOT operation,
the fidelity increases the strength of the Hadamard gate in-
creases.

The effect of structure of the teleported state on the fi-
delity is investigated. For pure state, the fidelity increases
as one increases the strength of the CNOT operation for
small values of the coupling constant. Also, for larger val-
ues of the coupling constant, the number of oscillations de-
creases. On the other hand, if the teleported state is a mixed
state, the average of the fidelity is much smaller than that
depicted for pure state.

Finally, this study could be useful in building quan-
tum computer, particulary by using the superconducting
charged qubit. This study gives us an idea about the rate of
information transfer, and then the pace of the calculations.
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