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Abstract: In this article, for a homogeneous equation of high even order with a fractional derivative in the sense of Caputo, a non-

trivial solution of the homogeneous Cauchy problem in the upper half-plane is constructed by the method of A.N.Tikhonov. The idea

of the method is that the solution is constructed as a series of infinitely differentiable functions with certain estimates. The values of the

functions themselves and derivatives of any order at the initial point are equal to 0. The existence of such functions follows from the

works of Carleman on quasi-analytic functions.
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1 Introduction

Consider in the domain Ω = {(x,y) : −∞ < x <+∞,0 < y < T} the following initial value problem of problem type
Cauchy

{

CD
1
p

0yu(x,y) = ∂ 2nu(x,y)
∂x2n ,

u(x,0) = 0,
(1)

where
1 6= p ∈ N, n = 2m− 1, m ∈ N,

CD
1
p

0yu(x,y) =
1

Γ
(

1− 1
p

)

y
∫

0

ut (x, t)dt

(y− t)
1
p

is a fractional derivative in Caputo’s sense.
In works [1,2] an equation of type (1) for n = 1 was studied and it was shown that it describes the process of diffusion

in a medium with fractal geometry. The article [3] shows the uniqueness of the solution to the Cauchy problem for the
diffusion equation of fractal order, in the class of the following functions:

|u(x,y)|6 M1 exp
(

M2|x|
2

2−α

)

,M1,M2 > 0. (2)

Also in the work [3] a nontrivial solution to the homogeneous Cauchy problem was constructed when condition (2) is
violated. Note also that problems with initial conditions for equations of even order, involving fractional derivatives, were
considered in the works [4,5,6], where a uniqueness class similar to the Tikhonov classes [7] was obtained.

In this article, using methods from works [7,8], a non-zero solution to the Cauchy problem is constructed.
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2 Main Results

The following lemma is true.
Lemma. Let the F(y) satisfy the following conditions:

1. F(y) has a derivative of any integer order;

2.
dkF(y)

dyk

∣

∣

∣

y=0
= 0,∀k ∈ N ∪{0} ;

3.

∣

∣

∣

dkF(y)

dyk

∣

∣

∣< [αk]!,∀k ∈ N ∪{0} ,1 < α;

then

1. CD
1
p+k

0y F (y) = 1

Γ
(

1− 1
p

)

dk+1

dyk+1

y
∫

0

F(t)dt

(y−t)
1
p
= D

1
p+k

0y F (y) ;

2.CD
1
p

0y

(

CD
k+m

p

0y F (y)

)

=







dk+1F(y)

dyk+1 ,m = p− 1,

D
k+m+1

p

0y (y) , 0 ≤ m ≤ p− 1;

3. lim
y→+0

CD
k+m

p

0y F (y) = 0;

4.

∣

∣

∣

∣

CD
k+m

p

0y F (y)

∣

∣

∣

∣

6 M [α (k+ 1)]!,

here [a] is the integer part of the number a; m,k ∈ N ∪{0} ,0 6 m 6 p− 1,0 < M− const.

Proof of the lemma.

Note that for the existence of F(y), it is sufficient to satisfy the following condition (see [7,9]):

∞

∑
k=1

1
k
√

[αk]!
< ∞.

Let’s check this condition, we have

n! =
√

2πn

(n

e

)n

exp
1

12n+θn
, 0 < θn < 1,

from here we get
∞

∑
k=1

1
k
√

[αk]!
=

∞

∑
k=1

1
(

√

2π [αk]
(

[αk]
e

)[αk]
exp

(

1
12[αk]+θn

)

) 1
k

∼

∼
∞

∑
k=1

1
(

(

[αk]
e

)αk−{αk})
1
k

=
∞

∑
k=1

(

[αk]
e

)
{αk}

k

((

[αk]
e

)α) ∼
∞

∑
k=1

1
((

[αk]
e

)α) < ∞.

Now let’s prove the lemma.
1. Known formula [10]

CD
1
p+k

0y F (y) = D
1
p+k

0y F (y)−
k

∑
i=0

F(i) (0)

Γ

(

i+ 1− 1
p
− k

)y
i− 1

p−k
,

from here

CD
1
p+k

0y F (y) = D
1
p+k

0y F (y) ,k ∈ N ∪{0} .
2.

CD
1
p

0y

(

CD
m
p +k

0y F (y)

)

= CD
1
p

0y





1

Γ
(

1− m
p

)

y
∫

0

F(k+1) (t)dt

(y− t)
m
p



=

=
1

Γ
(

1− 1
p

)

Γ
(

1− m
p

)

y
∫

0

d
dz

z
∫

0

F(k+1)(t)dt

(z−t)
m
p

(y− z)
1
p

dz =
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=
1

Γ
(

1− 1
p

)

Γ
(

1− m
p

)

y
∫

0

F(k+2) (t)dt

y
∫

t

dz

(y− z)
1
p (z− t)

m
p

=

=
1

Γ
(

2− 1+m
p

)

y
∫

0

(y− t)1−m+1
p F (k+2) (t)dt =







F(k+1) (y) , m = p− 1,

CD
k+m+1

p

0y F (y) ,0 6 m 6 p− 2.

3. Let us prove the third property

∣

∣

∣

∣

CD
k+m

p

0y F (y)

∣

∣

∣

∣

<
[α (k+ 1)]!

Γ
(

1− m
p

)

y
∫

0

(y− t)−
m
p dt =

=
[α (k+ 1)]!

Γ
(

1− m
p

)

y
1−m

p

1− m
p

,

from here

lim
y→+0

CD
k+m

p

0y F (y) = 0.

4. From property 3 we have
∣

∣

∣

∣

CD
k+m

p

0y F (y)

∣

∣

∣

∣

6 M [α (k+ 1)]!,

where

M =
T

1−m
p

Γ
(

2− m
p

) .

The lemma is proved.

The solution to the Cauchy problem (1) will be constructed in the form of the following series:

u(x,y) =V0 (x,y)+V1 (x,y)+ ...+Vp−1 (x,y) , (3)

where

V0 (x,y) =
∞

∑
j=0

x2np j

(2np j)!
F ( j) (y) , (4)

V1 (x,y) =
∞

∑
j=0

x2n( jp+1)

(2n( jp+ 1))!
CD

j+ 1
p

0y F (y) , (5)

...

Vp−2 (x,y) =
∞

∑
j=0

x2n( jp+p−2)

(2n( jp+ p− 2))!
CD

j+ p−2
p

0y F (y) , (6)

Vp−1 =
∞

∑
j=0

(

CD
j+ p−1

p

0y F (y)

)

x2n( jp+p−1)

(2n( jp+ p− 1))!
. (7)

Using the lemma, we formally have

∂ 2nV0 (x,y)

∂x2n
=

∞

∑
j=1

x2n(p j−1)

(2n(p j− 1))!
F( j) (y) , (8)

∂ 2nV1 (x,y)

∂x2n
=

∞

∑
j=0

x2n jp

(2n jp)!
CD

j+ 1
p

0y F (y) , (9)

...
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∂ 2nVp−2 (x,y)

∂x2n
=

∞

∑
j=0

x2n( jp+p−3)

(2n( jp+ p− 3))!
CD

j+ p−2
p

0y F (y) , (10)

∂ 2nVp−1 (x,y)

∂x2n
=

∞

∑
j=0

x2n( jp+p−2)

(2n( jp+ p− 2))!
CD

j+ p−1
p

0y F (y) , (11)

CD
1
p

0yV0 (x) =
∞

∑
j=0

x2np j

(2np j)!
D

1
p+ j

0y F (y) , (12)

CD
1
p

0yV1 (x,y) =
∞

∑
j=0

x2n( jp+1)

(2n( jp+ 1))!
CD

2
p+ j

0y F (y) , (13)

...

CD
1
p

0yVp−2 (x,y) =
∞

∑
j=0

x2n( jp+p−2)

(2n( jp+ p− 2))!
CD

p−1
p + j

0y F (y) , (14)

CD
1
p

0yVp−1 (x,y) =
∞

∑
j=1

x2n( jp−1)

(2n( jp− 1))!
F( j) (y) , (15)

Next we will show that the series (4) -(15) will converge uniformly, then we get that (3) is a non-zero solution to the
problem (1). In what follows we will assume that |x| ≥ L > 1, where L is some fixed number and for any fixed value ε > 0
the relation

2n

2n− α
p

6
2n

2n− 1
p

+ ε, 1 < α < 2n. (16)

It is not difficult to check the correctness of the relation that we will use further

k!

n!
6

1

(n− k)!
,k,n ∈ N,k 6 n. (17)

Using relations (16)-(17), we begin to study the convergence of series. Let us show the uniform convergence of series (4)
and (7), the convergence of others is shown in a similar way. We have

|V0 (x)|<
∞

∑
j=0

x2np j [α j]!

(2np j)!
6

∞

∑
j=0

x2np j

(2np j− [α j])!
,

let be
m( j) = 2np j− [α j] ,

then

|V0 (x)|<
∞

∑
j=0

(

|x|
2np j

2np j−[α j]

)m

m( j)!
6

∞

∑
j=0

(

|x|
2np j

2np j−α j

)m

m( j)!
6

6

∞

∑
m=0

(

|x|
2np

2np−α

)m

m!
= exp

(

|x|
2n

2n− α
p

)

6 exp



|x|
2n

2n− 1
p

+ε


 .

Further
∣

∣

∣

∣

CD
1
p

0yVp−2 (x,y)

∣

∣

∣

∣

< M
∞

∑
j=0

x2n( jp+p−2) [α ( j+ 1)]!

(2n( jp+ p− 2))!
6

6 Mx2n(p−2)
∞

∑
j=0

x2n jp

(2n( jp+ p− 2)− [α ( j+ 1)])!
,

we introduce the notation
m( j) = 2n( jp+ p− 2)− [α ( j+ 1)] ,
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then

∣

∣

∣

∣

CD
1
p

0yVp−2 (x,y)

∣

∣

∣

∣

< Mx2n(p−2)
∞

∑
j=0

(

|x|
2n jp

2n( jp+p−2)−[α( j+1)]

)m

m( j)!
<

< Mx2n(p−2)
∞

∑
j=0

(

|x|
2n jp

2n jp−α j

)m

m( j)!
< Mx2n(p−2) exp

(

|x|
2n

2n−α
p

)

.

Now let 0 < δ <
2n

2n− α
p

an arbitrary fixed number, then the number L is chosen so that for all |x| > L, the following

inequalities were simultaneously satisfied:

|x|δ
ln |x| > 2n(p− 2) , |x|>

(

2n(p− 2)

δ

) 1
δ

,

then
∣

∣

∣

∣

CD
1
p

0yVp−2 (x,y)

∣

∣

∣

∣

< M exp



|x|
2n

2n− α
p

+ |x|δ


 <

< M exp



2|x|
2n

2n−α
p



< M exp






2|x|

2n

2n− 1
p

+ε





.

Theorem. The Cauchy problem (1) has a non-zero solution from the class

|u(x,y)|6 M1 exp






M2|x|

2n

2n− 1
p

+ε





,

where
0 < M1,M2,ε − const.
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