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Abstract: This paper focuses in studying the genetic diffusion process of a finite population in the absence of mutation, migration and

immigration. In this paper, we aim to numerically solve the modified Kimura model in order to mathematically and computationally

prove the Galton’s theory of hereditary genius. There are two steps to the proof. Assuming that the number of diploid individuals

varies randomly over generations is the first step. In the second step, the classical random genetic drift equation with selection is

extended to the time-fractional random genetic drift equation to include the memory effect on the diffusion process. The fourth order

compact finite difference is implemented to derive the approximate solutions of the studied partial differential equation. For the purpose

of determining the discrete scheme of the time-fractional operator, the Grünwald-Letnikov scheme is implemented. The simulations

of the approximate solutions, the stationary approximate solution, the stability of the difference scheme and the total sum of the

approximate solutions are all calculated and interpreted computationally. The discrete convergence of the approximate solutions is

numerically studied and its asymptotic behaviors are compared with the Mittag-Leffler function.

Keywords: Random genetic drift equation with selection, fourth order compact finite difference method, Grünwald- Letnikov

scheme, Caputo-time fractional operator, Galton’s theory of genius inheritance, random number of individuals.

1 Introduction

The history book of any individual is carried on his, or its, DNA as it carries the genetic inheritance of the individual. The
population genetics is the genetic study whose aim is to interpret the factors influencing the population genetic variables.
The changes of genes of populations or species are scientifically affected by many factors such as mutation, natural
selection, immigration and emigration. The first big steps on this field are done by the following pioneer researchers:
Darwin [1], Gregor Mendel [2], Francis Galton [3], William Bateson [4], and not finally G. H. Hardy [5]. Francis Galton
[3] was the first to apply statistical methods to discuss how intelligence is inherited and how people differ from one another.
He got the fact that the Laplace-Gauss distribution, the normal distribution, could be applied to human psychological
attributes including intelligence. Galton [3] invented in his book Hereditary Genius, the term positive and negative

eugenics, for families having good talents and families with bad characteristics, respectively. He statistically proved that
most of the talents, intelligence, diseases and physical characteristics were inherited from the big families. That means
the child inherit his characteristics, that are carried on the DNA, from his parents, grand parents, ancestors and so on. In
other words he concluded that the inheritance process has a memory.

Ronald Fisher and Sewall Wright mathematically formulated the genetic evolution and studied the basis for population
of genetics. Their works leaded to the known mathematical Wright–Fisher model, WF model for genetic drift, see [6] and
[7]. Later in (1945), Sewall Wright [8] derived the partial differential equation (pde) describing the distribution of the gene
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frequencies among populations under the interaction of the natural selection, mutation, migration and genetic random drift,
see [9] and [10].

Feller [11,12] is also one of the pioneers of the genetic diffusion studies. He built his mathematical model on the
simple Markov branching process. As a mathematical consequence of Mendelian inheritance, Haldane re-established the
contribution of the natural selection on the genetic diffusion, see [13],[14] and [15].

Kimura derived the classical pde being mathematically modelled the diffusion process with selection by using the
discrete Markov transition probabilities and Kolmogorov forward equation, see [16], [17], [18] and [19]. He assumed a
fixed finite population.

Hossjer et. al. [20] studied the analytical solution of the diffusion equation of the WF model with one-way mutation
rate and with no selection, by implementing the Kolmogorov forward equation or the Fokker–Planck equation [18].

Zhao et. al. [21] numerically discussed the classical diffusion equation of random genetic till the fifth generation by
implementing the finite volume method.

The history of the inheritance process was not discussed in any of the old or new literatures, which focused only on the
traditional case in which children inherit their traits (genes) from their parents, see WF model [6,7]. Most of the literature
also fix the number of individuals in all the successive generations. Therefore, the studied pde are far away from the real
life problem. As in the real life problem the offspring, the new born individual, may have a physical character or a talent
that is not one of his parents characteristics and exist on his grandparents or ancestors, etc.. Also the number of individuals
are changed randomly through generations. That is because the pioneer researchers studied only the continuous Markov
process that is mathematically modelled in the classical genetic drift pdes of Markov-Type with non constant coefficients.
Kimura, [18], [19] and [22] , studied the influences of the selection on the genetic diffusion process. He mathematically
formulated the genetic diffusion with two allele A and a in which they take part with respective frequencies x and 1− x. It
is also assumed that the population size N of the diploid adults is large and constant and there is no generational overlap.
It is supposed that u(p,x;t) be the conditional probability with the initial frequency p at t = 0. u(p,x;t) represents the
transition probability that the gene will move from p to x after t time, namely

∂u(p,x;t)

∂ t
=

1

2

∂ 2

∂x2
{V(x, t)u(p,x;t)}−

∂

∂x
{M(x, t)u(p,x;t)} . (1)

This equation is subjected to the initial condition

u(p,x;0) = δ (x− p). (2)

If p is fixed, u(p,x;t) ≈ u(x, t). In other words, the conditional probability of finding allele A with frequency x,
0 < x < 1, is represented by u(x, t) at the generation t, t ∈N, and it must satisfy

1
∫

0

u(x, t)dx = 1 , (3)

at any generation t.
The points x = 0,1 are lateral singular points. Assuming the general case of Zygotic natural selection by letting s and

sε to be the selective advantages of the mutant homo-zygote AA and the hetero-zygote aa. Here s is the selective rate and
ε represents the mutation rate. Then the general average rate of change in x per generation of the selective advantage on
the random mating of A and a alleles is represented by

M(∆x) = sx(1− x)(x+ ε(1− 2x)) . (4)

The values s = {0, 0.5, 1} in equation (4) represent the no dominant, the semi dominant and the fully dominant cases,
respectively. Kimura assumed that the diploid population consisting of fixed Ne individuals (genes) at any generation t.
That means there are Ne of genes at each locus. The only constraint imposed on s is that |sNe| ≤ 1, see [21]. This condition
means that the selection effect is weak. For the semi dominant case, i.e. ε = 0.5, the drift term is represented by

M(x, t) =
1

2
sx(1− x) , (5)

while the fully dominant case is represented by

M(x, t) = sx(1− x)2 . (6)

The variance of the change in gene frequency V (x, t) is defined as

V (x, t) =
x(1− x)

2Ne

, (7)
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then the classical genetic drift equation (gde) with fixed number of individuals (Kimura model) reads

∂u(p,x;t)

∂ t
=

1

4Ne(t)

∂ 2

∂x2
{x(1− x)u(p,x;t)}− s

∂

∂x
{x(1− x)u(p,x;t)} . (8)

The explicit approximate solutions of this model represent the conditional probability of obtaining the studied allele with
specific frequency at a certain generation. According to the condition (3), the summation of the approximate solution
must be one at any number of generation. Abdel-Rehim et. al. [23] computationally proved by using the finite difference
method (FDM) that the solutions of the Markov-Type genetic equations loose this property on the long Run. The sum
of the approximate solution of the classical diffusion genetic with fixed number of individuals, Ne is plotted at Fig[ 1].
The biologists explain this phenomenon by the occurring of sudden death of the individuals of the community, the huge
migration or the huge immigration. All these factors can have effects on the diffusion of the genes but it takes many years.

Our aim in this paper is to solve this problem by modifying the classical equation (8) to make it more reality. We aim
also to maintain the normalization condition (3). In other words the approximate solution must maintain the conservation
of the probability to be sure that nothing flow out through the lateral points. Unfixing the number of individuals to make
it randomly varies through generations is the first step. The classical random gde with random individuals number reads

∂u(p,x;t)

∂ t
=

1

4Ne(t)

∂ 2

∂x2
{x(1− x)u(p,x;t)}−

s1

Ne(t)

∂

∂x
{x(1− x)u(p,x;t)} . (9)

Here s1 is the random selection. We aim also to computationally prove the Galton’s theory. To do so, one has to replace

the first order time derivative operator ∂
∂ t

at equation (9) by the Caputo time–fractional operator as

C
0D

β
t u(x, t) =

1

4Ne(t)

∂ 2

∂x2
{x(1− x)u}−

s1

Ne(t)

∂

∂x
{x(1− x)u} ,0 < β < 1 ,0 < x < 1 . (10)

The Caputo-time derivative operator reflects the memory of the stochastic processes. The memory-dependent processes
are called the Non-Markov processes and the time–fractional Caputo derivative operator of order β reads

C
0D

β
t f (t) =







1
Γ (m−β )

{
t
∫

0

f (m)(τ)Kβ (t − τ)dτ} for m− 1 < β < m ,

dm

dtm f (t) for β = m ,

(11)

where the kernel

Kβ (t − τ) =
(t − τ)β+1−m

Γ (m−β )
,

is called the memory function and it is responsible for reflecting the memories of several physical, biological, etc. ,
processes [24]. For further information about time–fractional Caputo operator and its relation to the Riemann-Liouville
Integral operators, see also [25].

D. Baleanu et. al. [26] introduced a new and general Caputo fractional derivative C
t D

β
T f (t) to investigate the complex

behaviours of a capacitor microphone dynamical system that reads

C
t D

β
T f (t) =

T
∫

t

f
′
(τ)Kβ (t − τ)dτ , (12)

where

Kβ (t − τ) =
n

∑
k=1

ak

(t − τ)−βk

Γ (1−βk)
, 0 < β1 < · · ·< βn < 1 .

The general Caputo fractional formulation has also been used successfully to investigate the asymptotic behavior of
immunogenic tumor dynamics, see [27]. A new mathematical model of cholera disease including the general form of the
Caputo fractional operator was recently studied by the same research group [28].

Abdel-Rehim et. al. [23], studied the time-fractional genetic diffusion models with fixed number of individuals by
using the common rules of the FDM besides the Grünwald- Letnikov scheme. In this paper, the fourth-order compact finite
difference method FOCFDM is used to get more accurate approximate solutions. The FOCFDM has been successfully
implemented to solve numerically lots of pdes, specially those with non constant coefficients, i.e. the diffusion convection
pdes. The stability of all the studied schemes will be investigated by implementing the matrix method.
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Therefore, the paper is organized as follows: section 1 is devoted to the introduction. Section 2, is devoted to derive the
approximate solutions of the classical random genetic diffusion equation with fixed Ne by FOCFDM. Section 3 is devoted
to derive the approximate solution corresponds to unfixed number of genes Ne(t). Section 4 is to prove the Galton’s
Theory by implementing the Grüwald-letnikov scheme. In section 5, the stationary approximate solution, the reversibility
property are driven. The discrete convergence is estimated and compared with the Mittag-Leffler function for different
values of the fractional order β . In section 6, simulations of the time evolution of the studied model’s approximations are
given and interpreted for different values of the time-fractional order β .

2 The Approximate Solutions of the Classical GDE with Constant Number of Individuals by

the FOCFDM

In this section, we begin by driving the difference scheme of the gde (8) in which the population is consisting of a

fixed number of individuals at any generation. Therefore, let Ne(t = 0) = N
(0)
e = Ne. Define the grids of the independent

variables (x, t) as
x j = jh, h > 0, j ∈ N , (13)

where j ∈ (2,R− 2), h = 1
R−2

and R ∈ N. Let the time grid be τ > 0 and

tn = nτ, τ > 0, n ∈ N0 . (14)

Introduce the clump y(n) as

y(n) = {y
(n)
2 , · · · ,y

(n)
R−2}

T , (15)

where y(n) = y(tn) represents the discrete probability column vector to find the A allele with frequency x j at generation tn.
This choice makes us avoid the lateral frequencies, (x = 0,x = 1), to be sure that there is out flow of the probability. The

initial value y(0) must satisfy
R−2

∑
j=2

y
(0)
j = 1, ∀n ∈ N0, see [29]. Regarding the initial condition (2), let p is fixed at p = 0.5.

That means each one of the random mating couple is carrying half the initial number of genes Ne. Therefore, y(0) reads

y(0) = {0 · · · ,1, · · · ,0}T . (16)

To derive the boundary conditions, substitute x = 0 and x = 1 at equation (9), one gets

∂u(0, t)

∂ t
=

∂u(1, t)

∂ t
= 0 ,

and let f (t) and g(t) be any functions. Then one can generally write u(0, t) = f (t) and u(1, t) = g(t). In this paper, we
numerically investigate the Kimura model, in which he assumed the boundary conditions

u(0, t) = u(1, t) = 0 . (17)

We derive the approximate solutions y
(n)
j for 2 ≤ j ≤ R− 2, as we are interested only on the frequencies 0 < x < 1.

The FOCFDM approximately approaches the exact solutions of the diffusion equations than by using the common
FDM. The basic idea of the FOCFDM is that more nodes are added and smaller mesh mesh sizes are defined to get more
exact numerical results. Turkel and Singer [30], defined fixed grid sizes to improve high-order compact finite difference
schemes to calculate more better solutions. In order to simplify the implementation of the central difference schemes
and facilitate accurate solution of convection-diffusion equations, the FOCFDM is later discussed in [31]. For further
information on the benefits and drawbacks of the compact finite difference methods, see [32], [33], [34], [35] and [36]. It

is known that the first δxy
(n)
j and the second δ 2

x y
(n)
j classical spatial discrete central finite difference operators are defined

as

δxy
(n)
j =

y
(n)
j+1 − y

(n)
j−1

2h
, δ 2

x y
(n)
j =

y
(n)
j+1 − 2y

(n)
j + y

(n)
j−1

h2
. (18)

To implement the FOCFDM, one has to use 1st derivative operator that is defined as, see [31,34],

(
∂y

∂x
)
(n)
j =

δxy
(n)
j

2h(1+ 1
6
δ 2

x )
, (19)
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and the 2nd derivative operator is defined as

(
∂ 2y

∂x2
)
(n)
j =

δ 2
x y

(n)
j

h2(1+ 1
12

δ 2
x )

. (20)

To implement the FOCFDM on the random gde (8) of fixed number of individuals, rewrite equation (8) as

y
(n+1)
j − y

(n)
j

τ
=

1

4Ne

δ 2
x [x(1− x)y

(n)
j ]

h2(1+ 1
12

δ 2
x )

− s
δx[x(1− x)y

(n)
j ]

2h(1+ 1
6
δ 2

x )
. (21)

Then apply (1+ 1
12

δ 2
x ) to both sides of equation (21), to get

(1+
1

12
δ 2

x )(y
(n+1)
j − y

(n)
j ) =

τ

4Neh2
δ 2

x [x(1− x)y
(n)
j ]−

sτ

2h

(1+ 1
12

δ 2
x )(δx[x(1− x)y

(n)
j ])

(1+ 1
6
δ 2

x )
, (22)

and apply δxy
(n)
j , and δ 2

x y
(n)
j defined in equation (18), to get

5

6
y
(n+1)
j +

1

12
y
(n+1)
j−1 +

1

12
y
(n+1)
j+1 − (

5

6
−

2x j(1− x j)τ

4Neh2
)y

(n)
j − (

1

12
+

x j−1(1− x j−1)τ

4Neh2
)y

(n)
j−1

−(
1

12
+

x j+1(1− x j+1)τ

4Neh2
)y

(n)
j+1 =

−sτ

2h(1+ 1
6
δ 2

x )
{[

5

6
x j+1(1− x j+1)]y

(n)
j+1 − [

5

6
x j−1(1− x j−1)]y

(n)
j−1

+[
1

12
x j+2(1− x j+2)]y

(n)
j+2 − [

1

12
x j−2(1− x j−2)]y

(n)
j−2}+O(h4+ τ) .

(23)

Again apply operator (1+ 1
6
δ 2

x ) to both sides of equation (23), and use the central difference operators δxy
(n)
j , and δ 2

x y
(n)
j ,

to get

[
7

12
y
(n+1)
j +

7

36
y
(n+1)
j−1 +

7

36
y
(n+1)
j+1 +

1

72
y
(n+1)
j−2 +

1

72
y
(n+1)
j+2 ] = [

7

12
−

µ j

4RNe

(1−
j

R
)]y

(n)
j +[

7

36
+

(
µ

12Ne

+
5shµ

12
)(

j− 1

R
)(1−

j− 1

R
)]y

(n)
j−1 +[

7

36
+(

µ

12Ne

−
5shµ

12
)(

j+ 1

R
)(1−

j+ 1

R
)]y

(n)
j+1 +[

1

72
+

(
µ

24Ne

+
shµ

24
)(

j− 2

R
)(1−

j− 2

R
)]y

(n)
j−2 +[

1

72
+(

µ

24Ne

−
shµ

24
)(

j+ 2

R
)(1−

j+ 2

R
)]y

(n)
j+2 +O(h4 + τ) ,

(24)

where µ is the scaling relation being defined as µ = τ
h2 . The non-negativity condition of equation (24) requires that

0 < µ ≤
7Ne

3max[ jh(1− jh)]
=

28Ne

3
, (25)

and to get a good result of the term max[ jh(1− jh)], one has to choose the mid point jh = r
2
× 1

r
= 1

2
. In other words,

max[ jh(1− jh)] is replaced by 1
4
. At the program code, the population size is fixed at Ne = 100. This means the scaling

parameter fulfills the condition

0 < µ ≤
2800

3
. (26)

Again, rewrite equation (24) in the matrix form as

KT .y(n+1) = PT .y(n) ,n ≥ 0 ,2 ≤ j ≤ R− 2 , (27)

where P = (pi j), K = (ki j) are R− 2×R− 2 fifth-diagonal matrices with i, j = 2, . . . ,R− 2 and are respectively defined
as follows

Pi j =



































P
(1)
i j = 1

72
+( µ

24Ne
+ shµ

24
)( j−2

R
)(1− j−2

R
), i = j− 2, j = 2, · · · ,R− 2

P
(2)
i j = 7

36
+( µ

12Ne
+ 5shµ

12
)( j−1

R
)(1− j−1

R
), i = j− 1, j = 2, · · · ,R− 2

P
(3)
i j = 7

12
− µ j

4RNe
(1− j

R
), i = j, j = 2, · · · ,R− 2

P
(4)
i j = 7

36
+( µ

12Ne
− 5shµ

12
)( j+1

R
)(1− j+1

R
), i = j+ 1, j = 2, · · · ,R− 2

P
(5)
i j = 1

72
+( µ

24Ne
− shµ

24
)( j+2

R
)(1− j+2

R
), i = j+ 2, j = 2, · · · ,R− 2 ,

(28)
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and

Ki j =































K
(1)
i j = 1

72
, i = j− 2, j = 2, · · · ,R− 2

K
(2)
i j = 7

36
, i = j− 1, j = 2, · · · ,R− 2

K
(3)
i j = 7

12
, i = j, j = 2, · · · ,R− 2

K
(4)
i j = 7

36
, i = j+ 1, j = 2, · · · ,R− 2

K
(5)
i j = 1

72
, i = j+ 2, j = 2, · · · ,R− 2 .

(29)

The sum of all the rows of the matrix (P.K−1) is 1 proving once more that it is a stochastic matrix. With the aid of the
scaling relation condition (25) and equation (26), the matrix P is an M-Matrix and a non-negative diagonally dominating
matrix. Therefore the obtained approximate solutions are stable, see [37] and [38]. It is recommended to transpose each
side of equation (27) for computation purposes, to get

z(n+1) =
(

z(n).P
)

.K−1 ,n ≥ 0 ,2 ≤ j ≤ R− 2 . (30)

It is more suitable for the numerical calculation, by Mathematica soft ware, to write the matrix PT = (KT + µHT ), then
equation (27), is rewritten as

KT .y(n+1) = (KT + µHT ).y(n) , 2 ≤ j ≤ R− 2 , (31)

where H is R− 2×R− 2 fifth diagonal matrix H defined as

Hi j =



































H
(1)
i j = ( 1

24Ne
+ sh

24
)( j−2

R
)(1− j−2

R
), i = j− 2, j = 2, · · · ,R− 2

H
(2)
i j = ( 1

12Ne
+ 5sh

12
)( j−1

R
)(1− j−1

R
), i = j− 2, j = 2, · · · ,R− 2

H
(3)
i j =− j

4RNe
(1− j

R
), i = j, j = 2, · · · ,R− 2

H
(4)
i j = ( 1

12Ne
− 5sh

12
)( j+1

R
)(1− j+1

R
), i = j+ 1, j = 2, · · · ,R− 2

H
(5)
i j = ( 1

24Ne
− sh

24
)( j+2

R
)(1− j+2

R
), i = j+ 2, j = 2, · · · ,R− 2 .

(32)

Then (30) is rewritten as

z(n+1) = z(n).
(

I+ µH.K−1
)

, 2 ≤ j ≤ R− 2 ,n ≥ 0 , (33)

where I is R− 2×R− 2 unit matrix. The H.K−1 matrix has the property that the sum of all of its rows is zero.

The matrix method is used to prove the stability of the matrix equation (30). To do so, let us calculate the infinity norm
of the matrix (I+ µH.K−1), which is defined as

||(I + µH.K−1)||∞ = max
1≤i≤ j

R−2

∑
j=2

|(I + µH.K−1)|i, j .

For all the values of the matrix (I+µH.K−1) to be positive, one has to be sure that he uses the scaling relation (26). Then
constitute a vector row η whose length is R− 2 elements and is defined as

η = {1, · · · ,1, · · · ,1} , 0 = {0, · · · ,0, · · · ,0} . (34)

The row vector η is called the good vector. It is widely used in the theory of the stochastic processes. It satisfies with
the stochastic matrix (I + µH.K−1) that η .(I + µH.K−1) = η . This is natural as the matrix (I + µH.K−1) represents the
transition probabilities of a Markov chain, see [17]. Also η .(H.K−1) = 0, in other words, the summation over the rows of
the matrix (H.K−1) is zero because its elements represent the diffusion process.

Suppose that the spectral radius of the matrix (I + µH.K−1)T .(I + µH.K−1) is ρ . By using MATHEMATICA, one
can easily calculate the set of eigenvalues {λ} of the matrix (I+ µH.K−1)T .(I+ µH.K−1) and one gets

||(I + µH.K−1)||2 =
√

ρ((I+ µH.K−1)T .(I + µH.K−1)) = λmax = 1

Then the matrix (I+µH.K−1) is stable and henceforth its corresponding approximate solution is stable. For more details
about the conservative schemes, see [37] and [38] .
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In the section (6), the time evolution of the approximate solution of the genetic diffusion with drift solution for

successive generations are simulated and compared, and the
R−2

∑
j=2

y
(n)
j n ∈ N0 is also plotted in Fig[ 1]. The figure shows

that there is a loss of unity as t >> 1, for this Markov case. While y(n) should represent the conditional probability of

finding the specific allele at the generation t with frequency x and 0 < x < 1. Therefore its
R−2

∑
j=2

y
(n)
j n ∈ N0 must be one at

any tn. According to Biologists, dramatic death, migration and immigration may responsible about this loose. In the next
sections, we mathematically try to solve this still open problem by firstly randomly change the number of individuals at
any generations and secondly use the time-fractional operator.

3 Discretization of the Classical Random GDE with Variable Number of Genes Using the

FOCFDM

The discrete scheme of equation (9) is derived in this section. Equation (9) represents the genetic drift with the number of
individuals randomly varies through generations. To imitate the natural random genetic diffusion, it is important to have
random variable number of individuals Ne(t) at any generation. Since |sNe(t)| ≤ 1, i.e. s ≤ 1

Ne(t)
, then the selection rate will

also be randomly changed from generation to generation. Generate λ1,λ2 as two uniform random variables representing
two successive rates of growth in the population at any generation. Then the random average number of increasing is

mi =
1
λi
, i = 1,2. For more details about the stochastic processes, see [17]. Now, suppose Ne(t = 0) = N

(0)
e = Ne, then

generate

Ne(t) = N
(n)
e = Random Integer ∈ [N

(n−1)
e ,N

(n−1)
e +mr] ,n ≥ 1 , (35)

where mr = Random Integer ∈ ( 1
λ1
, 1

λ2
). To implement the FOCFDM on the random gde (9) having random number of

individuals, rewrite equation (9) as

y
(n+1)
j − y

(n)
j

τ
=

1

4N
(n)
e

δ 2
x [x(1− x)y

(n)
j ]

h2(1+ 1
12

δ 2
x )

−
s1

N
(n)
e

δx[x(1− x)y
(n)
j ]

2h(1+ 1
6
δ 2

x )
. (36)

Then apply (1 + 1
12

δ 2
x ) to both sides of equation (36), and then apply operator (1 + 1

6
δ 2

x ) to the resultant equation.

Rearrange the result and solve for y(n+1), to have

KT .y(n+1) = (KT +
µ

N
(n)
e

HT ).y(n) ,n ≥ 0 ,2 ≤ j ≤ R− 2 , (37)

where the Matrix K is the same defined matrix at equation (29), and the matrix H is defined as

Hi j =































H
(1)
i j = ( 1

24
+ s1h

24
)( j−2

R
)(1− j−2

R
), i = j− 2, j = 2, · · · ,R− 2

H
(2)
i j = ( 1

12
+ 5s1h

12
)( j−1

R
)(1− j−1

R
), i = j− 1, j = 2, · · · ,R− 2

H
(3)
i j =− j

4R
(1− j

R
), i = j, j = 2, · · · ,R− 2

H
(4)
i j = ( 1

12
− 5s1h

12
)( j+1

R
)(1− j+1

R
), i = j+ 1, j = 2, · · · ,R− 2

H
(5)
i j = ( 1

24
− s1h

24
)( j+2

R
)(1− j+2

R
), i = j+ 2, j = 2, · · · ,R− 2 .

(38)

For computational purposes, rewrite the transpose of the matrix equation (37) as

z(n+1) = z(n).

(

I+
µ

N
(n)
e

H.K−1

)

, 2 ≤ j ≤ R− 2, n ≥ 0 , (39)

where µ is same defined scaling relation and η .(H.K−1) = 0. This scheme is convergent and stable as

η .(I + µ

N
(n)
e

H.K−1) = η . furthermore
R−2

∑
j=2

y
(n)
j → 1 n ∈ N0 and is also plotted in Fig[ 2]. Again the spectral radius of the

matrix (I + µ

N
(n)
e

H.K−1)T .(I + µH.K−1) is λmax = 1. The matrix (I + µ

N
(n)
e

H.K−1) is a stochastic matrix as its elements

are the transition probabilities of this Markov chain. Henceforth we approximately satisfies the normalization condition

(3). In the following step we try to keep
R−2

∑
j=2

y
(n)
j = 1 at any number of generation and on the long run by adding the effect

of the memory on the genetic diffusion process. In the same time, this will prove the Galton’s theory
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4 Extending the Classical Random GDE and the Computational Proof of Galton’s Theory

The simulation of
R−2

∑
j=2

y
(n)
j ,n ∈ N0 of the approximate solution y(n), n ∈ N, of the previous classical case, along the

successive 30 generations of the genetic drift is plotted at Figure [ 2]. The figure shows that there is still some lose of the
unity on the long run. The fundamental reason is that the early pioneer researchers relied on the Markov chain for their
mathematical manipulation. The Markov chain is independent of the genetic inheritance history of the human population.
Random genetic drift Markov process means that children inherit their characteristics from their parents regardless of
whether the parents’ characters (genes) come from relatives outside of their own or from their grandparents and ancestors.
The reason is that the models of Markov process have an exponential waiting time between each pair of succeeding
generations. That means the influence of the earlier generations on the transition of the gene between the parents to their
offspring is neglected. Furthermore, the exponential distribution possesses the memoryless property. In other words, the
generation tn+1 relies only on the generation tn and not on tn−1, or on any earlier generations.

The mathematical proof is quite simple regarding the L. H. S. of the discrete schemes of the classical genetic equations

(8) and (9), in which
∂u(x,t)

∂ t
=

y
(n+1)
j −y

(n)
j

τ . Suppose that the approximate solution at the next time step is represented by

y
(n+1)
j . Here y

(n+1)
j represents the conditional probability of finding the studied allele at the offspring generation tn+1 with

frequency x j = jh. The conditional probability at the parents generation is represented by y
(n)
j . Then to study the genetic

history through the family, one needs the grandparents generation, i.e. y
(n−1)
j , and the grand grandparents generation y

(n−2)
j

and back in the past till you add y
(1)
j and y

(0)
j . Only the Caputo time-fractional operator (11) reflects the memory of the

stochastic processes. So far,the Caputo time–fractional operator must be used in place of the first order time derivative
on the studied equations. Researchers have successfully implemented the Caputo time-fractional operator to represent the

memory of enormous diffusion processes in many fields. The used Caputo–time fractional operator C
0D

β
t on equation

(10) has been applied in modeling many processes in chemistry, physics, medicine, biology, and etc., see [24], and [25]
for more details. The Grünwald-Letnikov scheme of the Caputo–time fractional operator reads

C
0D

β
t y j(tn+1) = τ−β

n+1

∑
k=0

(−1)k

(

β

k

)

(

y
(n+1−k)
j − y

(0)
j

)

, 0 < β < 1 , n ≥ 1 . (40)

This scheme has been applied successfully by several authors, see for examples [25], [29], [39] and [40] and the references
therein. Applying this Grünwald–Letnikov scheme on equation (10) and rearrange its terms, one gets

y
(n+1)
j −β y

(n)
j −

n+1

∑
m=2

(−1)m

(

β

m

)

y
(n+1−m)
j −

n+1

∑
m=0

(−1)m

(

β

m

)

y
(0)
j =

τβ

4N
(n)
e h2

δx2(x j(1− x j)y
(n)
j )

(1+ 1
12

δ 2
x )

−
s1

N
(n)
e

τβ

2h

δx(x j(1− x j)y
(n)
j )

(1+ 1
6
δ 2

x )
, n ≥ 1 .

(41)

Let’s recall the coefficients bn =
n

∑
m=0

(−1)m
(

β
m

)

, and cm = (−1)m+1
(

β
m

)

, which were defined by Gorenflo et. al. [40], in

order to satisfy the relation

bn +
n

∑
m=1

cm = 1 ,

where b0 = c1 = β . The scaling relation is defined as µ = τβ

h2 , and equation(41), has to be rewritten as

y
(n+1)
j −β y

(n)
j −

n+1

∑
m=2

cmy
(n+1−m)
j − bny

(0)
j =

τβ

4N
(n)
e h2

×

δx2(x j(1− x j)y
(n)
j )

(1+ 1
12

δ 2
x )

−
s1

N
(n)
e

τβ

2h

δx(x j(1− x j)y
(n)
j )

(1+ 1
6
δ 2

x )
, n ≥ 1 .

(42)
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Now by applying the difference operators (1+ 1
12

δ 2
x ) and (1+ 1

6
δ 2

x ) on both sides with taking into consideration the initial

clump (16), one gets (1+ 1
12

δ 2
x )y

(0) = y(0) because all y
(0)
j±k = 0 ∀k ≥ 1. After some mathematical manipulations, one gets

7

12
y
(n+1)
j +

7

36
y
(n+1)
j−1 +

7

36
y
(n+1)
j+1 +

1

72
y
(n+1)
j−2 +

1

72
y
(n+1)
j+2 = bny

(0)
j +

n

∑
m=2

cm(
7

12
y
(n+1−m)
j +

7

36
y
(n+1−m)
j−1 +

7

36
y
(n+1−m)
j+1 +

1

72
y
(n+1−m)
j−2 +

1

72
y
(n+1−m)
j+2 )+ [

7β

12
−

µ j

4RN
(n)
e

(1−
j

R
)]y

(n)
j +

[
7β

36
+(

µ

12N
(n)
e

+
5s1hµ

12N
(n)
e

)(
j− 1

R
)(1−

j− 1

R
)]y

(n)
j−1 +[

7β

36
+(

µ

12N
(n)
e

−
5s1hµ

12N
(n)
e

)(
j+ 1

R
)(1−

j+ 1

R
)]y

(n)
j+1 +[

β

72
+(

µ

24N
(n)
e

+
s1hµ

24N
(n)
e

)(
j− 2

R
)(1−

j− 2

R
)]y

(n)
j−2 +[

β

72
+(

µ

24N
(n)
e

−
s1hµ

24N
(n)
e

)×

(
j+ 2

R
)(1−

j+ 2

R
)]y

(n)
j+2 +O(h4 + τ) , n ≥ 1 .

(43)

The positivity and the stability of this difference scheme required that the scaling relation µ must satisfy the following
condition

0 < µ ≤
2800

3
β . (44)

The matrix form of the difference scheme (43) is written as

KT .y(n+1) = bny(0)+
n

∑
m=2

cmKT .y(n+1−m) + (β KT +
µ

N
(n)
e

HT ).y(n) ,n ≥ 1 (45)

For the numerical calculations, it is better to rewrite equation (45), after taking the transpose of each sides, as

z(n+1) = bn(z
(0).K−1) +

n

∑
m=2

cmz(n+1−m) + z(n).(β I+
µ

N
(n)
e

H.K−1) ,n ≥ 1. (46)

As n = 0, and with the initial condition (16), the memory term bn(z
(0).K−1) +

n

∑
m=2

cmz(n+1−m) is vanished, then

z(1) = z(0)(β I+
µ

Ne

)H.K−1 , 2 ≤ j ≤ R− 2 , (47)

with the same matrices H and K defined at (38) and (29).
Again this difference scheme is convergent and stable if the scaling relation µ satisfies the condition (44). Taking into

consideration that the time fractional random gde is not representing the diffusion limit of Markov process as we have a
memory. Then use the same good row vector (34), to get

η .(β I +
µ

N
(n)
e

H.K−1) = β η , (48)

and η .(H.K−1) = 0. Let Q(n) = (β I+ µ

N
(n)
e

H.K−1), then it is non stochastic matrix for a Non-Markov process, the sum

of all of its rows is β at each time step n. Therefore, the infinity norm of the matrix Q(n) is β . Again its spectral radius

ρ = λmax = β , where β is the maximum eigenvalue of the matrix Q(n). Our difference scheme (43) is therefore stable, and
once more with the help of the scaling relation condition (44), one has a diagonally dominant non-negative matrix and
M-Matrix, which ensures the stability of the approximate solutions, see [37].

In section (6), the approximate solutions for the Markov case with (β = 1) and the Non-Markov case with (0< β < 1)
are compared for various numbers of generations. Also, the comparison of the total sum of the approximate solutions for
different values of β . The comparison of the classical and time-fractional genetic drift are given for constant number of

generations that could be calculated from the matrix equation (46) and its defined matrices H and K by fixing N
(n)
e at its

initial value Ne.
The simulation shows that the extension to the time-fractional order maintains the allele within the same big family for

longer number of generations. This explains why the individuals of the isolated trips have the same physical and mental
characteristics.
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5 The Stationary Discrete Approximate Solution, Approximate Solution Convergence and the

Reversibility Property of the GDEs

The classical and the time-fractional pdes being discussed here have the same continuous stationary approximate
solutions. To get their stationary solutions, let

∂u(x, t)

∂ t
=

∂ β u(x, t)

∂ tβ
= 0 ,∀β ,0 < β ≤ 1 ,

and ignore any terms that depend on t. Apply this approach here, on the equations (8), (9), and (10), leading to analytic
stationary solutions that are given in terms of hyper-geometric functions.

The alternative method is calculating the discrete stationary approximations, ȳ, of the above discussed equations. By
neglecting the time-dependent t at the discrete schemes, ȳ is given. The process of calculating ȳ is as follows: Replace all

y
(n+1)
j±k by y

(n)
j±k, k = 0,1,2 on the classical schemes (24) and on the time-fractional schemes (43), all y(0), yn+1 and yn+1−m

have to be replaced by yn and more precisely by y. Then for n → ∞, the discrete schemes of the gdes (8), (9) and (10)
converge to z.(P−K) = 0, which is identical to

(P−K)T .y = 0 .

The matrices P,K are defined in equations (28,29). The classical and the time-fractional gdes also has the same stationary
approximate solution ȳ, where their P,K matrices are specified in equations (28,29). Then find the eigenvector corresponds

to the eigenvalue zero of the matrix (P−K)T , and call it y∗. Constitute the ȳ = cy∗ vector with c = 1/
R−2

∑
j=2

y∗j . The column

vector ȳ is also a vector of probability, i.e. it satisfies
R−2

∑
j=2

ȳ j = 1. The simulation of stationary approximate solution of the

gdes are plotted at figure [ 7].

Now to discuss the discrete convergence of the clump y(n), constitute the column vector d = d0,d1,d2, · · · ,dn, whose
elements are defined as

dn = d(tn) =
R−2

∑
j=2

|y j(tn)− ȳ j|, n = 1,2, · · · . (49)

The simulation for β = 1, for the classical gdes (8) and (9), demonstrates that the row vector d approximates an exponential
function

d(t)≈ e−wt ,

where w is called the convergence rate. While the numerical results indicate that the row vector d behaves like the Mittag-

Leffler function Eβ (−tβ ) for 0 < β < 1, for the time-fractional random gde (10). The Mittag-Leffler function Eβ (−tβ ) is

a special form of the Mittag–Leffler function of two fractional parameters (γ,ζ ) being defined as

Eγ,ζ =
∞

∑
k=0

zk

Γ (γ + ζk)
, γ,ζ ∈ R, z ∈ C . (50)

We need here to use the asymptotic behavior of Eβ (−tβ ) being defined as,

Eβ (−tβ )

{

= 1− tβ

Γ (β+1) ≅ exp{−tβ/Γ (β + 1)} , 0 ≪ t ≪ 1 ,

≈ sin β π
π

Γ (β )

tβ , t → ∞ ,
(51)

and for further information on how the Mittag-Leffler is implemented in the time-fractional diffusion processes, see [29]
and [39]. The simulations of the Mittag-Leffler function (51) are plotted at Figures[ 15] and [ 16]. It is worth to say that
as β = 1, one gets the fastest decay function e−t . The simulation of ln(d(tn)) of the genetic drift is plotted at Figure[ 8],
to be compared with the the Mittag-Leffler function formulae that are plotted at Figures [ 15] and [ 16].

The Diffusion Processes Reversibility are defined according to Kelly[41] as: If X(t1),X(t2), · · · ,X(tn) have the same
distribution as X(τ − t1),X(τ − t2), · · · ,X(τ − tn){Xn,n ∈ N}, then {Xn,n ∈ N} is said to be reversible if it is a two-
sided extension of a non-negative recurrent Markov state, see also Ross[17]. The matrix of the classical processes P are

given in equations (28). While the time fractional diffusion processes’ non-stochastic matrices Q is defined as Q(n) =
(β I+ µ

N
(n)
e

H.K−1). This reversible property is mathematically formulated as

ȳ j.P
(n)
i j = ȳ jP

(n)
ji , (52)
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where the time-reversibility is represented by the equation (52), see [17], [29], [41], and [42]. Abdel-Rehim [29] has
shown that

R−2

∑
j=2

PT .ȳ j = 1 , (53)

for the classical cases. While for the time-fractional cases, one has

R−2

∑
j=2

(Q(n))T .ȳ = β ,0 < β < 1 ,n ≥ 0 , (54)

as the discrete stationary solution is valid for all values of n. One can use the MATHEMATICA software, to prove the
conditions of reversibility defined in equation (53) for the classical processes and equation (54) for the time-fractional
processes.

6 The Numerical Results and Their Interpretations

In this section, the approximate solutions of the discussed pde are compared numerically. The Markov, classical case,
and the Non-Markov, the time-fractional or the non-classical case, chains and and the loss of unity in the conditional
probability summing of obtaining the gene with frequency x at the generation t are also discussed.

In this numerical analysis, Boundary conditions are set for the models (8), (9) and (10) according to equations (17) to
zeros as t ≥ 5, i.e. u(x, p,0) = u(1, p, t) = 0 ∀t ≤ T , where T is the number of generations. Singularities occur at x = 0
and x = 1 points in the solutions, which must be provided separately. The initial condition is u(x, p,0) = δ (x− p), where
the genes frequency is p, and 0 < x < 1. While the initial condition for x0 = p = 0.5 is u(x, p;0) = δ (x0 − p) = δ (0)

is y(0) = {0, · · · ,1, · · · ,0}T . Let R = 100 and the single step number per generation n = 1/τ . Then use the condition
imposed on the scaling relations to calculate the proper value of µ to ensure the stability and the convergence of the
studied difference schemes.

For the numerical calculation of y(n) of the gdes (9) and (10), by using the MATHEMATICA software, we fix the seed

at seed = 200, and use equation (35) to generate the random number of individual N
(n)
e at each time step tn.

To do so, first choose mr as integer random number ∈ (10,20). That means, we suppose that the random average of

increasing is between 10 to 20 percent of the initial number of individuals N
(0)
e . This choice is coincide with the average

of increasing of populations all over the world.
In this numerical computations, we fix the initial number of individuals to Ne = 100, and since we restrict the selection

rate to sNe < 1, then we fix s = 0.01 for equation(8).

For the random variable number of individuals represented by equations (9) and (42), we replace s by
s1

N
(n)
e

.

The plot of
R−2

∑
j=2

y
(n)
j n ∈ N0, up to 30 generations of the y(n) of equation(8) is represented at Figure[ 1] and that of

equation (9) is plotted at Figure[ 2]. The figures show that changing the random number of individuals at each time step,
even for β = 1, satisfies the normalization condition more than Ne(t) is fixed.

Now the diffusion processes of the y(n) of the classical gde (8) and of the non-classical gde, with constant number
of individuals, for different values of β and t are plotted at Figures[ 3- 5]. Figure[ 6] represents the comparison of the
classical and time-fractional gdes, with constant number of individuals, for different β and t. The comparison shows that
the diffusion away from the initial frequency x0 = 0.5 is slower in the time-fractional than the classical.

That partially proves Galton’s theory in which the effect of the inheritance, memory, from the big family makes the
conditional probability to find the allele on the long run generations does not much smaller than its first generation. In

other words y
(n)
j diffuses near to p = 0.5.

The discrete stationary solution of the gdes, all the studied equations have the same stationary solution, is represented
at Fig[ 7]. The convergence of the stationary solution d(t) of the gdes for fixed number of individuals, being called also
the first norm, is calculated by using equation (49). In Figure[ 8], we plotted ln[d(t)] against t : 1 → 50. The figure shows
that ln[d(t)] asymptotically converges as e−t as β = 1 and behaves as the Mittag-Leffler function for 0 < β < 1.

The diffusion of y(n) of the classical random gde (9), having random variable individuals number at each time step is
plotted at Figure[ 9] for different values of t. Figures[ 10, 11] represent the simulation of the diffusion of the approximate
solutions of the time-fractional gde (10), for β = 0.85 and β = 0.75 respectively. In these figures, the number of individuals
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is represented by an integer random variable that is varying from a generation to generation. Figure[ 12] represents the
comparison between the diffusion of the approximate solutions for different values of β at the third generation and at the
generation number 20. The simulation shows that the approximations for β < 1 is more slower than that of Figure[ 9]
and more more slower than the previous case. That means changing the number of individuals beside adding the memory
effect make the conditional probability to find the allele on the long run is much close to its initial frequency p = 0.5. That
is exactly the proof of the Galton’s. The gene that carries the physical characteristic or the talent in the early generation
remains strong and still exist with approximately the same frequency in the coming generations on the future.

Figures[ 13, 14] represent the proof of the normalization condition (3), that is computationally proved by the plot of
R−2

∑
j=2

y
(n)
j , n ∈ N0. The figures show that the fractional order beside using random number of individuals make

R−2

∑
j=2

y
(n)
j =

1, n ∈N0 even till the 30th generation. while using only fractional order with fixed number of individuals makes
R−2

∑
j=2

y
(n)
j ≈

1, n ∈ N0 till the 30th generation.
Finally, the modifications that we made to the classical gde (8), Kimura model, improve its numerical results, make it

more reality, and prove Galton’s theory.

Fig. 1:
R−2

∑
j=2

y
(n)
j of the random gde (8) as Ne fixed. Fig. 2:

R−2

∑
j=2

y
(n)
j of the gde (8) as Ne randomly changed.
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Fig. 3: Simulation of the classical gde (8), for Ne fixed, within different generations.

Fig. 4: Simulation of the non–classical gde (10, with fixed number of individuals, for β = 0.85.

Fig. 5: Simulation of the non–classical gde (10, with fixed number of individuals, for β = 0.75.
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Fig. 6: Comparison of the classical and the time–fractional gde (8),(10), with fixed number of individuals, and for t = 10,20,

respectively.

Fig. 7: ȳ of the gdes.
Fig. 8: The convergence of the discrete scheme of the

non–classical gde (10) for Ne fixed.

Fig. 9: Simulation of the classical gde (9), for random variable number of individuals at each time step, for different generations.
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Fig. 10: Simulation of the non-classical gde (10), for random variable number of individuals at each time step, for different

generations, and for β = 0.85.

Fig. 11: Simulation of the non-classical gde (10), for Ne unfixed at each time step, for different generations, and for β = 0.75.

Fig. 12: Comparison of the classical and the non–classical gdes (9),(10), with the number of individuals is represented by integer

random variable, for different values of β , and for t = 3,20, respectively.
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Fig. 13:
R−2

∑
j=2

y
(n)
j of the gde, with constant number of

individuals at each generation, for different values of β

Fig. 14:
R−2

∑
j=2

y
(n)
j of the genetic drift equation, with random

variable number of individuals at each generation, for

different values of β

Fig. 15: The simulation of the Mittag-Leffler as t : 0 → 1,

for different values of β
Fig. 16: The simulation of the Mittag-Leffler as t : 0 → 10,

for different values of β
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7 Conclusion

In this paper, the classical gde is computationally proved to be not relevant to model the hereditary process on human
beings. The influence of the memory, the history of the diffusion of the studied allele through the random mating
individuals, should be add and studied. Therefore, the modification of the classical gde by the time-fractional gde has
been computationally proved. Changing randomly the number of individuals through generations, also modifies Kimura
model to make it more realistic. In section (6), we demonstrate that memory dependence causes the time-fractional
diffusion processes to be slower compared to the classical cases. That means the human talents and characteristics
remains very longer, for many generations, in the same family. According to time-fractional gdes, the numerical results
show that the conditional probability cumulative summation to find the genes after many generations, is very near to 1,
but those corresponding to the classical cases behave very far than 1. That means approximations of the classical pdes
lose their efficiency as conditional probabilities.

Finally, after all these numerical results one can say that the time-fractional gde with random variable number of
individuals at each time step is more effective at simulating the processes of genetic diffusion, and the hereditary processes
than the classical ones. These numerical results are consistent with the Galton’s theory of inheritance.
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