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Abstract: In the present paper, we prove equality of the wave equation for Modulation Instability and Vlasov kinetic equation. On

the basis of Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of classical kinetic equations, the kinetic equations for any

number of Modulation Instabilities are defined and the method a solution for these equations is proposed.
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1 Introduction

Modulation instability (MI) is a process by which
continuous radiation becomes unstable by the
simultaneous action of nonlinearity and anomalous
dispersion [1]. Ever since the first observation of the
modulation instability effect in the mid-1970s by N. F.
Piliptetskii and A. R. Rustamov [2], V. I. Bespalov and V.
I. Talanov [3] and T. Brooke Benjamin and Jim E. Feir [4]
remain the subject of research [5,6,7,8,9,10,11,12].

It is known that the dynamics of modulation
instability in optical fibers were first described by
Hasegawa in the form of a kinetic equation for waves, and
dispersion relations for one and two quasi-particles were
derived [5]. It was assumed that these two quasi-particles
were mutually independent. That is, correlations between
these quasi-particles were not taken into account when
taking into account the presence of interaction between
these quasi-particles. In reality, all quasi-particles interact
with each other, and therefore, when solving the equation
for MI, one should take into account the correlations
between these quasi-particles.

On the other hand, usually during the real process of
transfer of quasi-particles in optical fibers, many
quasi-particles rise and therefore, the problem of taking
into account all these quasi-particles and the interactions
between them arises.

The present work is devoted to solving this problem.
For this purpose, in the present paper, the equality of
wave equations for MI to the Vlasov kinetic equation [13]

is shown. Then, using a hierarchy of
Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY)
classical kinetic equations for a many-particle system [14,
15,16,17,18,19] and the relation between kinetic
equation for one MI and kinetic equation for a
many-particle system [20] we can define the classical
kinetic equations for any number of MIs, describing the
actual IM system. We can also define the exact solution of
this kinetic equation for MI. In this case, the method of
Ichimaru [21] and Liboff [22] was used to order the
interaction, correlation matrices, and perturbations with
respect to a small parameter.

The results can be useful for describing transport
phenomena of any number of modulation instabilities in
optic fibers.

2 The equality of wave kinetic equation for

modulation instability to Vlasov equation

The wave equation for modulation instability is [5]:

∂ f (t)

∂ t
− vg

∂ f (t)

∂ z
−w0

n2

2n0

∂ |E|2

∂ z

∂ f (t)

∂k
= 0, (1)

where w0 is the frequency of an unmodulated lightwave, k
is the wave number, z is distance of propagation, t is
time,n0 index of refraction, n2 is the Kerr coefficient,
E(z, t) is the optical electric field and the group velocity is
given by

vg(k) =
c

n0

,

∗ Corresponding author e-mail: rasulova@live.com

c© 2022 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/160305


436 M. Y. Rasulova: Statistical approach to dynamics of modulation...

where c is the velocity of light. Since f is the phase space
density of the wave pocket, f is related to the real space
density of the quasi-particles through

|E|2

w0

=

∫ ∞

−∞
f dk. (2)

Equations (1) and (2) give a closed set of equations that
describe the phase-space dynamics of the quasi-particles.

The Vlasov kinetic equation has the form [13]:

(
∂

∂ t
−

k

m

∂

∂ z
) f (t,z,k) =

1

v

∫
∂Φ(|z− z′|)

∂ z

∂ f (t,z,k)

∂k
·

f (t,z′,k′)dz′dk′, (3)

where z is the 1th particle coordinate, k - is the 1th
particle impulse, v is volume per particle, θ is the
potential between two particles, f (t,z,k) is distribution
function, t is time, m = 1 is particle mass.

Substituting in the Vlasov equation (3) k
m
= vg, Φ(|z−

z′|) = vθ (|z− z′|) = w0
n2
2n0

δ (|z− z′|) and

|E|2(t,z) =
1

v

∫
z′,k′

Φ(|z− z′|) f (t,z′,k′)dz′dk =

∫
z′,k′

θ (|z− z′|) f (t,z′,k′)dz′dk′ =

w0

n2

2n0

∫
z′,k′

δ (|z− z′|) f (t,z′,k′)dz′dk′ =

w0
n2

2n0

∫
k′

f (t,z,k′)dk′

we obtain the equation (1). This is the proof of the equality
of Vlasov equation (3) and the wave kinetic equation (1).

3 Solution of linearized Vlasov equation

Let us now describe the modulation instability of
quasi-particles using the (1), (2) set of the equation. We
first linearize this set by writing [5]

f (t) = f0(k)+
1

2
[ f̃1expi(kz−σt)+ c.c.]

|E|2 = |E|20(k)+
1

2
[Ẽ2

1 expi(kz−σt)+ c.c.]. (4)

in this case, linearized Vlasov equation will

(
∂

∂ t
+

k

m

∂

∂ z
) f̃1(t,z,k) =

1

v

∫
∂θ (|z− z′|)

∂ z

∂ f0(k)

∂k
·

f̃1(t,z
′
,k′)dz′dk′. (5)

From (1),(3), (4) and (5) is followed that

f̃ (k,σ) =
w0n2

2n0

k

(σ0 − kvg)

∂ f0

∂k
|Ẽ|21. (6)

Substituting (6) into (2), we obtain the following
dispersion relation

w2
0n2

2n0

∫ ∞

−∞

k

σ0 − kvg

∂ f0

∂k
dk = 1. (7)

The modulational instability is a process of localization of
monochromatic waves. Thus we have

f0(k) =
|E|20

δ (k− k0)
. (8)

If we substitute (8) into (7) and integrate the result by parts,
we have

1+
w0n2

2n0

∂vg

∂k2

k

(σ0 − kvg)2
= 0.

Here
∂vg

∂k2
=−k′′v3

g.

That is, the quasi-particles have a monochromatic energy.

If there are two sets of quasi-particles of different wave
numbers, for example, if we take the two wave numbers at
k1 and k2, f0 may be given by

f0 =
|E|20
w

[δ (k− k2)+ δ (k− k2)].

Then the dispersion is given

k′′1 v3
g1w02n2

2n0

k2

(σ − kvg1)2
+

k′′2 v3
g2w01n2

2n0

k2

(σ − kvg2)2
= 1,

(9)
where vg1 and 4vg2 are the group velocities at wave
numbers k1 and k2. This dispersion relation was first
devised by Hasegawa [5].

Unfortunately, when deriving the equation (9), the
contribution of correlations between the two modulation
instabilities was not taken into account, considering them
independent, i.e. , considering distribution function of two
modulation instabilities as a product of distribution
functions of one-particle modulation instabilities

f2(t,z1,z2,r1,k2) = f (t,z1,k1) f (t,z2,k2)

It is known reality consists of many particles and
these particles are interconnected. Accordingly, the two
modulation instabilities are also interconnected.
Therefore, an urgent task is to determine the dynamics of
an arbitrary number of modulation instabilities that
satisfies the equation (1) for one modulation instability
and also takes into account the correlations that arise
between many modulation instabilities.

Below we propose a method for generalizing the
theory of modulation instabilities for an arbitrary number
of particles, taking into account the correlations between
the, and satisfying the equation (1) for one modulation of
the instability.
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4 Consideration of the any number

modulation instability

For a description of the any number modulation
instability, we start from the
Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy of classical kinetic equations [14]:

∂ fs(t,z1,z2, ...,zs,k1,k2, ...,ks)

∂ t
=

[H, f ]s(t,z1,z2, ...,zs,k1,k2, ...,ks)+

1

v

∫
Ω
[ ∑
1≤i≤s

Φ(|zi − z′|),

fs+1(t,z1,z2, ...,zs,z
′;k1,k2, ...,ks,k

′)]dz′dk′

where Ω is the infinite space of points (z,k), m = 1 is
mass, [, ] is the Poisson bracket, s ∈ N,N is the number of
particles, V is the volume of the system, N → ∞, V → ∞,
v = V

N
= const is volume per particle, and H is the

Hamiltonian:

Hs = Ts +Us =− ∑
1≤i≤s

∂ 2

2∂ z2
i

+ ∑
1≤i< j≤s

Φ(|zi − z j|),

where

Ts =− ∑
1≤i≤s

∂ 2

2∂ z2
i

, Us = ∑
1≤i< j≤s

Φ(|zi − z j|).

Using the following relation [20,23]

f (t) = Γ ψ(t) = Γ f0 ∗Γ f̃ (t),

where f0 is the equilibrium state and f̃ (t) is the
non-equilibrium perturbation of equilibrium correlation
function f0 and [20,24,25]

Γ f0 = I+ f0 +
f0 ∗ f0

2
+ ...+

(∗ f0)
s

s!
+ ...,

Γ f̃ (t) = I+ f̃ (t)+
f̃ (t)∗ f̃ (t)

2
+ ...+

(∗ f̃ (t))s

s!
+ ...,

f0 = {( f0)1(z1;k1),( f0)2(z1,z2;k1,k2), ...

...,( f0)s(z1,z2, ...,zs;k1,k2, ...,ks), ...},

f̃ (t) = { f̃1(t,z1;k1), f̃2(t,z1,z2;k1,k2), ...

..., f̃s(t,z1,z2, ...,zs;k1,k2, ...,ks), ...},

( f0 ∗ f0)(X) = ∑
Y∈X

f0(Y ) f0(X \Y ),

( f̃ ∗ f̃ )(t,X) = ∑
Y∈X

f̃ (t,Y ) f̃ (t,X \Y),

where

X = (x1,x2, ...,xs), Y = (x1,x2, ...,xs̃), x = (z;k)

s, s̃ = 1,2, ..,s, s′ ∈ s, I ∗ f = f ,

(∗ f )s = f ∗ f ∗ ...∗ f , s time,

on the basis

∂

∂ t
(Γ f0 ∗Γ f̃ (t)) = H (Γ f0 ∗Γ f̃ (t))+

∫
Az′Dz′(Γ f0 ∗Γ f̃ (t))dz′, (10)

and

∂

∂ t
(Γ f0 ∗Γ f̃ (t)) =

∂

∂ t
f̃ (t)∗ (Γ f0 ∗Γ f̃ (t)),

T (Γ f0∗Γ f̃ (t))=T f0∗Γ f0∗Γ f̃ (t)+T f̃ (t)∗Γ f0∗Γ f̃ (t),

Ds′(Γ f0∗Γ f̃ (t))=Ds′ f0∗Γ f0∗Γ f̃ (t)+Ds′ f̃ (t)∗Γ f0∗Γ f̃ (t),

U (Γ f0∗Γ f̃ (t))=U f0∗Γ f0∗Γ f̃ (t)+U f̃ (t)∗Γ f0∗Γ f̃ (t)+

(
1

2
W ( f0, f0)+

1

2
W ( f̃ (t), f̃ (t))+W ( f0, f̃ (t)))∗Γ f0∗Γ f̃ (t),

Az′(Γ f0∗Γ f̃ (t))=Az′ f0∗Γ f0∗Γ f̃ (t)+Az′ f̃ (t)∗Γ f0∗Γ f̃ (t),

Az′Dz′(Γ f0 ∗Γ f̃ (t)) = Az′Dz′ f0 ∗Γ f0 ∗Γ f̃ (t)+

Az′Dz′ f̃ (t)∗Γ f0 ∗Γ f̃ (t)+

Az′ f0∗Dz′ f0∗Γ f0∗Γ f̃ (t)+Az′ f̃ (t)∗Dz′ f0∗Γ f0∗Γ f̃ (t)+

Az′ f0∗Dz′ f̃ (t)∗Γ f0∗Γ f̃ (t)+Az′ f̃ (t)∗Dz′ f̃ (t)∗Γ f0∗Γ f̃ (t),

where

(H f̃ )s = [Hs, f̃s]; (T f̃ )s = [Ts f̃s];

(Ds′ f̃ )s(t,z1,z2, ...,zs) = f̃ (t,z1,z2, ...,zs,zs′);

(As′ f̃ )s =
1

v
∑

1≤i≤s

[Φ(|zi −z′|), f̃s]; (U f̃ )s = [Us, f̃ (t)s],

(W ( f̃ (t), f̃ (t))s = ∑
Y∈X

U(Y ;X \Y) f̃s̃(t,Y ) f̃s−s̃(t,X \Y ),

multiplying both sides of the equation (10) by
Γ f0 ∗Γ f̃ (t)−1 and taking into account

H f0 +
1

2
W ( f0, f0)+

∫
(Az′Dz′ f0 +Az′ f0 ∗Dz′ϕ)dz′ = 0

we obtain quantum kinetic equations for perturbations of
equilibrium correlation functions [20]:

∂ f̃ (t)

∂ t
= H f̃ (t)+

1

2
W ( f̃ (t), f̃ (t))+W ( f0, f̃ (t))+

+
∫
(Az′Dz′ f̃ (t)+Az′ f̃ (t)∗Dz′ f0+

Az′ f0 ∗Dz′ f̃ (t)+Az′ f̃ (t)∗Dz′ f̃ (t))dz′. (11)

To study our system based on similar arguments to [21,
22] we can select an extension parameter v, setting:

Φ = vθ .
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The smallness of the perturbation from equilibrium can be
taken into account by setting

fs(t) = ( f0)s + v f̃s(t),

and thus regarding f̃ (t) as the first approximation
parameter v. In this case the assumption for correlation
functions [21,22]:

ψs(t)∼ vs−1ψ̃s(t),

can be expressed in terms of ψs(t)

ψs(t)∼ vs−1ψ̃(t) = vs−1( f0)s + v( f̃1)s(t)). (12)

Under the assumptions (12) equation (11) for s

Modulation Instability takes this form

∂ ( f̃1)s(t,X)

∂ t
= (T f̃1)s(t,X)+ v(U f̃1)s(t,X)+

(W ( f0, f̃1(t)))s(X)+
v

2
W ( f̃1(t), f̃1(t))s(X)+

+v2
∫
(Az′Dz′ f̃1(t))s(X)dz′+

v

∫
(Az′ f̃1(t)∗Dz′ f0)s(X)dz′+

v

∫
(Az′ f0 ∗Dz′ f̃1(t))s(X)dz′+

v2
∫
(Az′ f̃1(t)∗Dz′ f̃1(t))s(X))dz′. (13)

Here and also in what follows in the symbols U ,W , A the

interaction Φ is replaced by θ and
∫ ∂θ(|zi−z|)

∂ zi
dz = 0.

5 Solution of equation (13)

To solve equation (13), we apply the perturbation theory.
We shall seek a solution in the terms of series [20]

( f̃1)s(t,X) = ∑
µ

vµ( f̃1)
µ
s (t,X), (14)

s = 1,2,3, ...., µ = 0,1,2, , ....

Substituting the series (14) in equation (13) and equalizing
the coefficients of equal powers of ṽ, we obtain the set of
homogeneous and inhomogeneous equations

(
∂

∂ t
+L1)( f̃1)

0
1(t) = 0, (15)

(
∂

∂ t
+L1 +L2)( f̃1)

0
2(t) = S0

2(t), (16)

................................................

(
∂

∂ t
+

s

∑
i=1

Li)( f̃1)
µ
s (t) = Sµ

s (t) (17)

where

L1( f̃1)
0
1(t,z1,k1) =

k1

m1

∂

∂ z1

( f̃1)
0
1(t,z1,k1)−

∫
∂θ (|z1 − z|)

∂ z1

∂ f0(k1)

∂k1

f̃ 0
1 (t,z

′
,k′)dz′dk′,

(Li f̃1)
µ
s (t,X) =

ki

mi

∂

∂ z1

( f̃1)
µ
s (t,X)+

∫
(Az′ f0(ki))(Dz′( f̃1)

µ
s−1(t,X \ xi)dz′,

Sµ
s (t,X) = (U f̃

µ−1
1 (t))s(X)+ (W ( f0, f̃

µ
1 (t)))s(X)+

1

2
∑

ν1+ν2=µ−1

(W ( f̃
ν1
1 (t), f̃

ν2
1 (t)))s(X)+

∫
(Az′Dz′ f̃

µ−1
1 (t))s(X)dz′

+

∫
(Az′ f̃

µ
1 (t)∗Dz′ f0)s(X)dz′+

∫
(Az′ f0 ∗Dz′ f̃

µ
1 (t))s(X)dz′+

∫
∑

ν1+ν2=µ−1

(Az′ f̃
ν1
1 (t)∗Dz′ f̃

ν2
1 (t))s(X)dz′.

The solution of the equation (13) is reduced to solving
the homogeneous equation (15) for ( f̃1)

0
1(t) and

non-homogeneous equations (16), (17) for ( f̃1)
0
2(t) and

( f̃1)
0
s (t) respectively. The linearised Vlasov equation

depends on both one and the second particles of the
system and thus serves as a link between the interrelated
equations (15) and (16). Similarly, each equation of the
chain of equations is mutually related recurrently and
therefore the definition of the solution of the previous
equation serves to determine the next equation. As
defined above, the solution of the linearized Vlasov
equation has the form (7). Substituting

( f̃1)
0
2(t,x1,x2) =

∫
dx′1

∫
dx′2

∫ t

∞
dt ′S0

2(t
′x′1,x

′
2)·

G (t − t ′,x1,x
′
1)G (t − t ′,x2,x

′
2) (18)

in (16), you can make sure that (18) is a solution to the
equation (16), if

S0
2(t,z1,z2;k1,k2) = [θ (|z1 − z2|), f0(k1) f̃ 0

1 (t,z2,k2)+

f̃ 0
1 (t,z1,k1) f0(k2)]+∫

∑
1≤i≤2

[θ (|zi − z′|), f0(k1,k2) f̃ 0
1 (t,z

′
,k′)]dz′dk′+

∫
[θ (|z1 − z′|), f̃ 0

1 (t,z1,k1) f0(k2,k
′)]dz′dk′+

∫
[θ (|z2 − z′|), f̃ 0

1 (t,z2,k2) f0(k1,k
′)]dz′dk′
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and if G (t − t ′,x1,x
′
1) satisfies an equation similar to the

linearized Vlasov equation (5):

(
∂

∂ t
+

k1

m1

∂

∂ z1

)G (t − t ′,z1,z
′′
1 ;k1,k

′′
1)−

∫
∂θ (|z1 − z′|)

∂ z1

∂ f0(k1)

∂k1

G (t − t ′,z′,z′′1 ;k′,k′′1)dz′dk′ = 0,

(19)
with the initial condition

G (z1,z
′′
1 ;k1,k

′′
1) = δ (z1 − z′′1)δ (k1 − k′′i ). (20)

The solution of equation (17) for s modulation
instability ( f̃1)

µ
s (t) reduces to the solution of

homogeneous (15) linearized Vlasov equation for
function distribution ( f̃1)

0
i (t,zi,ki) and inhomogeneous

linear equations (17) for ( f̃1)
µ
s (t) on the basis of a

formula

( f̃1)
µ
s (t,X) =

∫
dx′1...

∫
dx′s

∫ t

−∞
dt ′Sµ

s (X
′)·

∩1≤i≤sG (t − t ′,xi,x
′
i). (21)

In (21) the Green function G (t− t ′,xi,x
′′
i ) is the solution to

the Cauchy problem (19),(20).

6 Conclusion

1. The classical analogue of kinetic equation for the
modulation instability process (4.84) of [5] coincides with
the Vlasov equation with potential in the form of delta
function.

2. The process of transfer in optic fiber any number
of modulation instability can be described by BBGKY’s
chain of classical kinetic equations.
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