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Abstract: This study developed the Nadarajah Haghighi generalised power Weibull (NHGPW) distribution by compounding the

Nadarajah Haghighi and the generalised power Weibull distribution. Various statistical properties of this new distribution are derived

for the new distribution. Estimators of the parameters of the developed distribution are also derived using the maximum likelihood

estimation. The hazard rate function of the NHGPW distribution has been shown to be monotonically increasing, monotonically

decreasing, constant, bathtub, upside down bathtub (unimodal), modified bathtub or modified unimodal. Its probability density function

also exhibits various shapes such as decreasing-increasing, decreasing, increasing, increasing-decreasing, decreasing-increasing-

decreasing, increasing-decreasing-increasing, positively skewed among others. Monte Carlo simulations conducted on the estimators of

the NHGPW distribution showed that, the estimators are consistent since the average bias and mean square error approaches zero as the

sample size increases. The NHGPW distribution is applied to two real lifetime data and compared with existing lifetime distributions

for a system connected in series. The results showed that, the NHGPW distribution provides a better fit to both data sets than the

competing distributions.

Keywords: Nadarajah Haghighi, generalised power Weibull, compounding, series connection, consistent, monotonic.

1 Introduction

The quality of every parametric statistical analysis is
determined greatly by the probability distribution
assumed. For this reason, extensive efforts have been
made in developing new and standard probability
distributions with various statistical techniques for many
situations including lifetime cases. Nonetheless,
applications from various fields such as environment,
finance/economics, biological sciences, engineering,
agriculture etc, have shown that, many of the data sets do
not follow these traditional distributions [1].

The practicality of any statistical distribution to a larger
degree, depends on the fundamental properties and the
in-build assumptions considered in deriving that
statistical distribution. These properties and assumptions
significantly support in distinguishing the practical
circumstances in which the distributions are applied. The
more clearly defined the structural properties, the
better-off the scope of the distribution. Over the past
decades, well known classical lifetime distributions like

the exponential, Weibull, Rayleigh, linear failure rate,
gamma and their extensions have been used for modeling
lifetime data. However, in practice, most of these
distributions are not flexible enough to accommodate
different phenomena.

In order to increase the flexibility of these well-known
distributions, many researchers have proposed different
transformations of the models and used these extended
forms in several areas. In distribution theory,
generalisation of existing statistical distributions can be
done by transformations, extensions or by compounding
two distributions whiles introducing additional shape or
scale parameter(s). In reliability and biological studies, a
component or system may contain sub-systems connected
in series with each of the sub-systems functioning
independently and the failure rate following independent
distributions. For such a system, the main component will
fail if any or all of the sub-systems fail. In these
situations, attempts are made to derive a single
distribution that models the failure rates of the main
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system using the concept of compounding. Compounding
two or more distributions have been shown to be very
useful in discovering various skewed and tailed properties
of these distributions and for improving the
goodness-of-fit of the traditional distributions ([2]; [3]).
This approach can be suitable in manufacturing,
biological, medical, reliability analysis etc for modeling a
component/system, with dual sub-systems working
independently in successions or series at an expected
time. The stochastic representation of this case is;

T = min(T1,T2), (1)

where T1 and T2 are the lifetime failure rate random
variables, for the two sub-systems.

Some Earlier researchers who used the concept of
compounding for deriving distributions for modelling
lifetime data from systems connected in series
include;[4], [5], [6], [7],[8],[9], [10] among others. To fill
the gap of limited distributions for systems in series, this
paper developed a new lifetime probability distribution,
named the Nadarajah Haghighi Generalised Power
Weibull (NHGPW) distribution, via compounding the
Nadarajah-Haghighi (NH) and the generalised power
Weibull (GPW) distributions, in the context of a system
with two of its sub-system connected in series. The
statistical properties of the developed lifetime
distributions are also derived. The estimators for the
parameters of the new distribution are also presented.
Monte Carlo simulations were also performed to assess
the performance of the estimators. The developed
NHGPW distribution is also applied to two lifetime data.

The NH distribution is a bi-parameter distribution
proposed by [11] as a generality of the one-parameter
exponential model. If a random variable T follows the
NH distribution, then the cumulative distribution function
(CDF), probability density function (PDF) and hazard
functions of T are given respectively as;

F(t) = 1− e[1−(1+αt)β ] t > 0,α > 0,β > 0, (2)

f (t) = αβ (1+αt)β−1e[1−(1+αt)β ] t > 0, (3)

and

h(t) = αβ (1+αt)β−1
, t > 0, (4)

where β is a shape/tilt parameter and α is the scale
parameter.

The generalized power Weibull (GPW) model, derived by
[12] is a modification of the Weibull distribution on the
bases of accelerated failure time models. If T follows the
GPW distribution, then its CDF, PDF and hazard
functions are given respectively as;

F(t) = 1−e[1−(1+λ tγ)θ ]
, t > 0,γ > 0,θ > 0,λ > 0, (5)

f (t) = λ γθ tγ−1(1+λ tγ)θ−1e[1−(1+λ tγ)θ ]
, t > 0, (6)

and
h(t) = λ γθ tγ−1(1+λ tγ)θ−1

, t > 0, (7)

where λ is the scale parameter and γ,θ are the shape
parameters.

Other sections of the paper are outlined as follows: In
section 2, the survival function, CDF, PDF and hazard
functions of the NHGPW distribution are derived. In
section 3, the sub-distributions of the NHGPW
distribution are defined. In section 4, the statistical
properties of the distribution are derived. Section 5
presents the maximum likelihood estimators for the
parameters of the distribution. Section 6 displays the
simulation analysis whiles section 7 demonstrates the
application of the NHGPW distribution to two lifetime
data.

2 The Nadarajah Haghighi Generalised

Power Weibull Distribution

Assuming we have system in series with its two
components having independently distributed lifetime
random variables T1 and T2 with independently
distributed failure rate. Then the stochastic representation
of their failure rate distribution is defined in Equation (1).
Since the sub-components are independent, and the two
components must be working for the system’s success,
the main system’s reliability (survival) function is the
product of the marginal reliability of the sub-components
([13]; [14]; [15]). Thus;

S(t) = e−
∫ x

0 h1(t)dt × e−
∫ x
0 h2(t)dt

= e−[
∫ x

0 (h1(t)+h2(t))dt]
. (8)

Assuming for these two components operating in series,
the failure rate of component one follows the NH
distribution and that of component two follows the GPW
distribution, then a new distribution can be developed to
model the joint reliability (survival) function of this
system. The survival function of this new distribution
(NHGPW) is given as;

s(t) = e−[
∫ x

0 (((αβ (1+αt)β−1)+(λ γθtγ−1(1+λ tγ )θ−1))dt]. (9)

We represent

H1(t) =

∫ x

0
αβ (1+αt)β−1dt.

and

H2(t) =

∫ x

0
λ θγtγ−1 (1+λ tγ)θ−1

dt.
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Fig. 1: PDF plots of the NHGPW distribution

Solving H1(t) and H2(t) using integration by substitution,
we have;

H1(t) = (1+αx)β − 1,

and

H2(t) = (1+λ tγ)θ − 1.

Hence the survival function of the NHGPW distribution is
given by;

s(x) = e−[(1+αx)β+(1+λ xγ )θ−2]. (10)

The CDF of the NHGPW distribution is given as;

F(x) = 1− e−[(1+αx)β+(1+λ xγ )θ−2]
,x > 0, (11)

where β > 0,γ > 0,θ > 0 shape parameters and
α > 0,λ > 0 are scale parameters.

The PDF of the NHGPW distribution is given as;

f (x) =
{

αβ (1+αx)β−1+λ γθxγ−1(1+λ xγ)θ−1
}

e−[(1+αx)β+(1+λ xγ)θ−2],x > 0.

(12)
The plots of the PDF of the NHPGW distribution is
shown in Figure (1). It is evident that, for various
parameter values, the PDF of the NHPGW distribution
can be decreasing, increasing, increasing-decreasing,
increasing-decreasing-increasing,
decreasing-increasing-decreasing, right skewed and
symmetric. The PDF also showed various values of
skewness and kurtosis based on different combination of
the parameter values.

The hazard rate function of the NHGPW distribution
is;

h(x) = αβ (1+αx)β−1 +λ γθxγ−1(1+λ xγ)θ−1
. (13)

For various parameter combinations as shown in Figure
(2), the hazard function can be constant, monotonically
increasing, monotonically decreasing, bathtub, unimodal
(upside down bathtub), modified bathtub (bathtub
followed by unimodal). Hence the NHGPW distribution
can adequately model both monotonic and
non-monotonic failure rates.

Fig. 2: Hazard plots of the NHGPW distribution

2.1 Sub-distributions of the NHGPW

Distribution

The NHGPW distribution has, as sub-distributions, a
number of existing and new lifetime distributions for
modeling lifetime dataset. Some of these distributions are;

1.the generalised power Weibull distribution.
The NHGPW distribution reduces to the GPW
distribution if either β = 0 or α = 0 with the CDF of
the GPW distribution given as;

F(x) = 1− e[1−(1+λ xγ)θ ]
,x,λ ,γ,θ > 0. (14)

2.the Nadarajah Haghighi Distribution.
If λ = 0, or θ = 0 the NHGPW distribution reduces to
the NH distribution with CDF given as;

F(x) = 1− e[1−(1+αx)β ]
,x,α,β > 0. (15)

3.the Exponential distribution
For β = 1 and λ = 0 (or θ = 0), the NHGPW
distribution reduces to an exponential distribution
with CDF defined as;

F(x) = 1− e−αx
,α > 0. (16)

or
For α = 0 (or β = 0), γ = 1, and θ = 1, the NHGPW
distribution reduces to an exponential distribution with
CDF defined as;

F(x) = 1− e−λ x
,λ > 0. (17)

4.the Weibull distribution.
For α = 0 and θ = 1, the NHGPW distribution reduces
to a two parameter Weibull distribution with its CDF
given as;

F(x) = 1− e−λ xγ
,x,λ ,γ > 0. (18)

5.the Linear failure rate distribution.
For β = 1,γ = 2 and θ = 1, the NHGPW distribution
reduces to the linear failure rate distribution with CDF
defined as;

F(x) = 1− e−[αx+λ x2],x,α,λ > 0. (19)
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6.the Rayhigh distribution.
For β = 1,α = 0,γ = 2, and θ = 1, the NHGPW
distribution is equivalent to the Rayhigh distribution
with CDF defined as;

F(x) = 1− eλ x2

,x,λ > 0. (20)

7.the Generalized power Rayhigh distribution.
For α = 0 and γ = 2, the NHGPW distribution equates
to the Generalized power Rayhigh distribution with the
following CDF;

F(x) = 1− e[1−(1+λ x2)θ ],x,λ > 0,γ > 0. (21)

8.The NH-NH distribution (New distribution)
For, γ = 1, a new distribution called the NH-NH
distribution can be obtained from the NHGPW
distribution with its CDF given as;

F(x) = 1−e−[1−(1+γx)β+(1+λ x)θ−2]
,x,γ >,β ,λ ,θ > 0.

(22)
9.The Exponential-Exponential Distribution (New

distribution)
For β = 1,γ = 1 and θ = 1, another new distribution
termed the exponential exponential distribution can be
derived from the NHGPW distribution with CDF
defined as;

F(x) = 1− e−[αx+λ x]
,x,α,λ > 0. (23)

2.2 Quantiles of the NHGPW distribution

The quantile function of the NHGPW distribution is
obtained by inverting its CDF specified in Equation (11).
The quantile function can be used for generating random
numbers from a given distribution for Monte Carlo
studies and various statistical applications.

Proposition 1. The Quantile function of the NHGPW
distribution is obtained by solving the equation (24).

(1+αxp)
β +(1+λ xγ

p)
θ + log(1− p)− 2= 0, pε[0,1].

(24)
Proof. Using the CDF of the NHPGW distribution in
equation (11), we have;

1− e−[(1+αxp)
β+(1+λ x

γ
p)

θ−2] = p.

Making the exponent of the expression the subject, we
have;

e−[(1+αxp)
β+(1+λ x

γ
p)

θ−2] = 1− p

(1+αxp)
β +(1+λ xγ

p)
θ = 2− log(1− p),

which can also be written as;

(1+ γxp)
β +(1+λ xγ

p)
θ + log(1− p)− 2= 0, pε[0,1].

Using the Newton Raphson estimation approach, some
random numbers are generated using the quantile
function of the NHGPW distribution. The parameter
value combinations are then used to obtain the quantiles
as presented in Table 1. The Booleys skewness (B.Sk) and
Moors kurtosis (M.Ku) values are also calculated. The
Bowleys skewness and Moors kurtosis measures based on
the quantile function, as proposed by Kenney and
Keeping (1962) is;

B.Sk =
Q( 3

4
)− 2Q( 1

2
)+Q( 1

4
)

Q( 3
4
)−Q( 1

4
)

. (25)

M.Ku =
Q( 7

8
)−Q( 5

8
)+Q( 3

8
)−Q( 1

8
)

Q( 3
4
)−Q( 1

4
)

. (26)

In order to obtain other statistical properties of the
NHGPW distribution, further expansion of its PDF is
necessary. The PDF of the NHGPW distribution in
equation (12) distribution can also be written as;

f (x) = f1(x)+ f2(x), (27)

where

f1(x) = αβ (1+αx)β−1e[1−(1+αx)β ]e[1−(1+λ xγ)θ ]
, (28)

and

f2(x) = λ γθxγ−1(1+λ xγ)θ−1e−[(1+αx)β+(1+λ xγ )θ−2]
.

(29)
Using Taylor series, and the generalized binomial
expansion theorem, f1(x) and f2(x) can be expanded into;

f1(x) = αβ (1+αx)β−1 ∑∞
i=0 ∑i

j=0 ∑∞
k=0 xγθ(i− j)−γkwi jke[1−(1+αx)β ],

(30)
and

f2(x) = λ γθxγ−1(1+λ xγ)θ−1 ∑∞
i=0 ∑i

j=0 ∑∞
k=0 xβ (i− j)−kw∗

i jke[1−(1+λ xγ)θ ],

(31)

where wi jk =
(−1)i+ jλ θ (i− j)−k

i!

(

i
j

)(θ(i− j)
k

)

and

w∗
i jk =

(−1)i+ jαβ(i− j)−k

i!

(

i
j

)(β (i− j)
k

)

.

2.3 Moments of the NHGPW distribution

Moments of a random variable are important in statistical
analysis. They can be used in measuring central tendency,
variation, skewness, kurtosis and other statistical
procedures.

Proposition 2. The rth non-central moment of NHGPW
distribution is given as;

µ
′

r =
∞

∑
i=0

i

∑
j=0

∞

∑
k=0

∞

∑
m=0

[

wi jkAΓ

(

m

β
+ 1,1

)

+w∗
i jkBΓ

(m

θ
+ 1,1

)

]

, (32)
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Table 1: NHGPW Quantiles for Selected Parameter Values (α,β ,λ ,θ ,γ)

p (2.5, 10.3,4.5, (3.54, 5.3, 6.5, (2.0, 2.0, 3.5, (4.0, 3.0, 5.0, (3.54, 0.05,0.01,

0.1,0.5) 2.1,8.5) 0.5,2.0) 4.0,0.8) 1.46,3.32)

0.1 0.0031 0.0054 0.0254 0.0011 1.1259

0.2 0.0068 0.0109 0.0519 0.0027 1.8596

0.3 0.0108 0.0167 0.0799 0.0046 2.2988

0.4 0.0151 0.0229 0.1103 0.0069 2.6402

0.5 0.0198 0.0295 0.1437 0.0095 2.9386

0.6 0.0250 0.0369 0.1819 0.0126 3.2203

0.7 0.0307 0.0454 0.2275 0.0166 3.5053

0.8 0.0380 0.0560 0.2866 0.0218 3.8198

0.9 0.0482 0.0714 0.3773 0.0302 4.2253

B.Sk 0.1358 -6.1056 1.3831 0.2390 -0.0790

M.Ku 1.1435 1.1604 1.2028 1.2297 1.2905

where
A = eα−r−rθ(i− j)+γk(−1)r+γθ(i− j)−γk−m

(

r+γθ(i− j)−γk
m

)

and

B = eλ
−γ−β(i− j)+k

γ (−1)
r+β(i− j)−k

γ −m(
r+β(i− j)−k

γ
m

)

.

Proof. For the NHGPW distribution, the rth non-central
moment is defined as;

µ
′

r =
∫ ∞

0
xr f1(x)dx+

∫ ∞

0
xr f2(x)dx.

Using the expanded form of f1(x) defined in equation (30)
we get;

∫ ∞

0
xr f1(x)dx =

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

wi jkαβ e

×
∫ ∞

0
(1+αx)β−1xr+γθ(i− j)−γk

×e−(1+αx)β
dx.

Using integration by substitution, we have;

∫ ∞

0
xr f1(x)dx =

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

wi jkeα−r−γθ(i− j)+γk

×

∫ ∞

1

(

y
1
β − 1

)r−γθ(i− j)−γk

e−ydy.

Using the generalised form of binomial expansion, (x+

y)i =∑i
j=o

(

i
j

)

yi− jx j,(| y |>| x |) with y= (−1) and x= y
1
β

to expand the expression above we have;

∫ ∞

0
xr f1(x)dx =

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

∞

∑
m=0

wi jkeα−r−γθ(i− j)+γk

×(−1)r+γθ(i− j)−γk−m

(

r+ γθ (i− j)− γk

m

)

×

∫ ∞

1
y
[(m

β
+1)−1]

e−ydy.

but
∫ ∞

1 y
(m

β
+1)−1

e−ydy is a complementary gamma
function given as Γ (b,a), where b and a are the
parameters. Therefore,

∫ ∞

0
xr f1(x)dx =

∞

∑
i=0

i

∑
j=0

∞

∑
k,m=0

wi jkeα−r−γθ(i− j)+γk

×(−1)r+γθ(i− j)−γk−m

(

r+ γθ (i− j)− γk

m

)

×Γ

(

m

β
+ 1,1

)

.

Also,

∫ ∞

0
xr f2(x)dx =

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

w∗
i jkλ γθ

×
∫ ∞

0
xr+γ−1+β (i− j)−k(1+λ xγ)θ−1

×e−(1+λ xγ)θ
dx.
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Using integration by substitution and the generalised form
of binomial expansion to solve f2(x), we have;
∫ ∞

0
xr f2(x)dx =

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

∞

∑
m=0

w∗
i jkeλ

−r−β(i− j)+k
γ

×(−1)
r+β(i− j)−k

γ −m

( r+β (i− j)−k

γ

m

)

×

∫ ∞

1
y[(

m
θ
+1

)−1]e−ydy.

But
∫ ∞

1 y[(
m
θ +1)−1]e−ydy =

∫ ∞
1 yb−1e−ydy is a

complementary gamma function. Therefore,

f2(x) =
∞

∑
i=0

i

∑
j=0

∞

∑
k=0

∞

∑
m=0

w∗
i jkeλ

−r−β(i− j)+k
γ

×(−1)
r+β(i− j)−k

γ −m

( r+β (i− j)−k

γ

m

)

Γ
(m

θ
+ 1,1

)

.

Hence,

µ
′

r =

∫ ∞

0
xr f1(x)dx+

∫ ∞

0
xr f2(x)dx

=
∞

∑
i=0

i

∑
j=0

∞

∑
k=0

∞

∑
m=0

[

wi jkAΓ

(

m

β
+ 1,1

)

+w∗
i jkBΓ

(m

θ
+ 1,1

)

]

.

The first five non-central moments obtained by numerical
integration of the NHGPW distribution for selected
parameter values are presented in Table 2. The standard
deviation (SD), coefficient of variation (CV), coefficient
of skewness (CS) and kurtosis (CK) calculated using
these non-central moments are also presented.

2.4 Moment Generating function of the

NHGPW distribution

Proposition 3. The moment generating function (MGF) of
the NHPGW distribution is given as;

Mx(t) =
∞

∑
r=0

i

∑
j=0

∞

∑
k=0

∞

∑
m=0

∞

∑
r=0

tr

γ!

[

wi jkAΓ

(

m

β
+ 1,1

)

+w∗
i jkBΓ

(m

θ
+ 1,1

)

]

. (33)

Proof. By definition, the MGF is given as;

MX(t) = E
[

etX
]

=

∫ ∞

0
etx f (x)dx.

Using Taylor series to expand
∫ ∞

0 etx f (x)dx, we get;

MX(t) =
∞

∑
r=0

tr

r!
µ

′

r.

Inputting, µ
′

r in equation (32), the MGF is obtained.

2.5 Order Statistics of the NHGPW Distribution

Order statistics are used among other things to identify
the maximum and minimum values (extreme values) of a
random variable. They are mostly used in extreme value
theory. Let X1 and X2 denote the smallest and second
smallest value of (X1,X2, ....,Xn) and Xp denote the pth

smallest value of (X1,X2, ....,Xn),1 ≤ p ≤ n, then the
random variables X1,X2, ....,Xn, are called the order
statistics of the sample (X1,X2, ....,Xn) and has pdf of the
pth order, given as;

fp:n(x) =
n!

(n− p)!(p− 1)!
[F(x)]p−1 [1−F(x)]n−p

f (x).

(34)

Proposition 4. The PDF of the first order statistics of the
NHGPW distribution is given as;

fx(1)(x) = n
{

αβ (1+αx)β−1 +λ γθxγ−1(1+λ xγ)θ−1
}

×e−n[(1+αx)β+(1+λ xγ )θ−2]. (35)

Proof. Using Equation (34), the PDF of the first order
statistic is defined as;

fx(1)(x) = n[1−F(x)]n−1 f (x).

Imputing the CDF and PDF of the NHGPW distribution
from equation (11) and (12) into fx(1)(x) , we obtain the
PDF of the first order statistics.

Proposition 5. The PDF of the largest order statistics for
the NHGPW distribution is also given as;

fx(n)(x) = n
{

αβ (1+αx)β−1+λ γθxγ−1(1+λ xγ)θ−1
}

×
n−1

∑
i=1

(−1)i

(

n− 1

i

)

e−(i+1)[(1+αx)β+(1+λ xγ )θ−2].

(36)

Proof. Using equation (34), the PDF of the largest order
statistics, (p = n) is also expressed as;

fx(n)(x) = n[F(x)]n−1 f (x).

Inputting the CDF and PDF of the NHPGW distribution
from equation (11) and (12), fx(n)(x) yields;

fx(n)(x) = n
{

αβ (1+αx)β−1+λ γθxγ−1(1+λ xγ)θ−1
}

×
n−1

∑
i=1

(−1)i

(

n− 1

i

)

e−(i+1)[(1+αx)β+(1+λ xγ )θ−2],

since [1 − e−[(1+αx)β+(1+λ xγ )θ−2]]n−1 =

∑n−1
i=1 (−1)i

(

n−1
i

)

[e−i[(1+αx)β+(1+λ xγ)θ−2]], fx(n)(x).
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Table 2: Moments of the NHGPW Distribution

p (0.1, 0.8,0.8, (3.54, 0.05, 0.01, (3.54, 5.3, 6.5, (2, 2, 3.5, (4, 3,5,

0.5,2.4) 1.4,3.32) 2.1,8.5) 0.5,2) 4,0.8)

µ
′

1 1.476 2.813 0.035 0.178 1.307

µ
′

2 3.002 9.280 0.002 0.052 3.217

µ
′

3 7.724 33.130 0.001 0.020 1.085

µ
′

4 24.049 125.117 1×10−05 0.009 4.502

µ
′

5 87.858 494.022 8.9×10−07 0.005 2.190

SD 0.907 1.170 0.026 0.143 1.229

CV 0.614 0.416 0.760 0.807 0.940

CS 1.160 -0.422 0.750 1.203 -3.810

CK 5.086 2.737 3.502 3.813 8.145

3 Methods of Estimation

This study employed the maximum likelihood estimation
(MLE) method to obtain estimators of the NHGPW
Distribution. For the NHGPW distribution, with PDF
given in equation (12), the likelihood function is given as;

L =
n

∏
i=1

{

αβ (1+αxi)
β−1 +λ γθx

γ−1
i (1+λ x

γ
i )

θ−1
}

×e−[(1+αxi)
β+(1+λ x

γ
i )

θ−2].
(37)

We take logarithm of equation (37) to obtain,

l =
n

∑
i=1

log
{

αβ (1+αxi)
β−1 +λ γθxγ−1(1+λ x

γ
i )

θ−1
}

−
n

∑
i=1

[

(1+αxi)
β +(1+λ x

γ
i )

θ − 2
]

.

(38)

We obtain the score function by taking the partial
differential of the log-likelihood (l) with respect to the
individual parameters. These are given as;

∂ l

∂α
=−

n

∑
i=1

β xi(1+αxi)
β−1

+
n

∑
i=1

α(β − 1)β xi(1+αxi)
β−2 +β (1+αxi)

β−1

αβ (1+αxi)β−1 + γθλ x
γ−1
i (1+λ x

γ
i )

θ−1
. (39)

∂ l

∂β
=−

n

∑
i=1

log[1+αxi](1+αxi)
β

+
n

∑
i=1

α(1+αxi)
β−1 +αβ log[1+αxi](1+αxi)

β−1

αβ (1+αxi)β−1 + γθλ x
γ−1
i (1+λ x

γ
i )

θ−1
.

(40)

∂ l

∂θ
=−

n

∑
i=1

log[1+λ x
γ
i ](1+λ x

γ
i )

θ

+
n

∑
i=1

γλ x
γ−1
i (1+λ x

γ
i )

θ−1 +B

αβ (1+αxi)β−1 + γθλ x
γ−1
i (1+λ x

γ
i )

θ−1
, (41)

where B = γθλ log[1+λ x
γ
i ]x

γ−1
i (1+λ x

γ
i )

θ−1

∂ l

∂λ
=−

n

∑
i=1

θx
γ
i (1+λ x

γ
i )

θ−1

+
n

∑
i=1

γ(θ − 1)θλ x
2γ−1
i (1+λ x

γ
i )

θ−2 +C

αβ (1+αxi)β−1 + γθλ x
γ−1
i (1+λ x

γ
i )

θ−1
, (42)

C = γθx
γ−1
i (1+λ x

γ
i )

θ−1

∂ l

∂γ
= −

n

∑
i=1

θλ log[xi]x
γ
i (1+λ x

γ
i )

θ−1

+∑n
i=1

(γ(θ−1)θλ 2log[xi]x
2γ−1
i (1+λ x

γ
i )

θ−2+θλ x
γ−1
i (1+λ x

γ
i )

θ−1+A

αβ (1+αxi)β−1+γθλ x
γ−1
i (1+λ x

γ
i )

θ−1

(43)

where A = γθλ log[xi]x
γ−1
i (1+λ x

γ
i )

θ−1

4 Monte Carlo Simulation

Monte Carlo simulations are conducted to assess the
performance of the maximum likelihood estimators for
the parameters of the NHGPW distribution. Five different
combinations of parameter values of the NHGPW
distribution are specified. The quantile function of the
NHGPW distribution is then used to generate five
different random samples of sizes, n=40, 80, 120, 160,
200. These are further used to obtain the maximum
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likelihood estimates of the parameters of the distribution.
The simulation is replicated for N=1000 times. The
average bias (ABias) and mean square error (MSE) are
calculated for the estimators of the parameters of the
NHGPW distribution. From Table 3, the results showed
that, the maximum likelihood estimates of the parameters
of the NHGPW distribution converges to the true
parameter value since the mean square errors decay to
zero and the biases of each parameter also decrease as the
sample size increases.

5 Applications

The NHGPW distribution is applied to failure times of 36
appliances subjected to an automatic life test and the
Aircraft Windshield failure rate data. The goodness-of-fit
of the NHGPW distribution was compared with some of
its sub-models and other five parameter distributions.
Thus; the NH distribution, the GPW distribution, Weibull
NH (WNH) distribution, Kumaraswamy log-logistic
Weibull (KLLoGW) distribution, exponentiated
Kumaraswamy Dagum (EKD) distribution, exponentiated
generalised Fisk (EGFD) distribution, exponentiated
generalised exponential Fisk Dagum (EGEFD)
distribution, exponentiated generalised exponential
Dagum (EGED) distribution. The comparison are done
using the Kolmogorov Smirnov statistic, Cramér-Von
Mises statistic, log-likelihood and model selection criteria
such as the AIC, AICc and BIC. The CDFs of the
distributions, the NHGPW distribution is compared with
are given as;

FKLLoGW (x) = 1−
[

1− (1− (1+ xc)−1e−αxβ
)a
]b

, (44)

a,b,c,α,β > 0 and x > 0.

FEKD(x,α,λ ,σ ,φ ,θ ) =
{

1−
[

1− (1+λ x−σ)−α
]φ
}θ

,

(45)
α,λ ,σ ,φ ,θ > 0 and x > 0.

FEGEBD(x) = 1−
{

1−
[

1− (1− (1+ x−θ)−β )d
]c}λ

,

(46)
β ,λ ,c,d,θ > 0 and x > 0.

FEGED(x) = 1−
{

1−
[

1− (1− (1+αx−θ)−β )d
]c}λ

,

(47)
α,θ ,β ,d,c,λ > 0 and x > 0.

FEGFD(x) =

[

1−
(

1− (1+αx−θ)−1
)d

]c

, (48)

α,θ ,d,φ ,c > 0 and x > 0.

FEGEFD(x) = 1−
{

1−
[

1− (1− (1+αx−θ)−1)d
]c}λ

,

(49)

α,λ ,θ ,d,c > 0 and x > 0.

FW NH(x) = 1− e

[

−ae((1+λx)α −1)
]b

, (50)

α,λ ,a,b > 0 and x > 0.

5.1 Application I: Failure times of 36 appliances

The first application used failure times of 36 appliances
subjected to an automatic life test. This data was obtained
by [16]. Table 4 gives this data set.
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Table 3: Monte Carlo Simulation Results of parameters of the NHGPW distribution

n Parameter value ABiase MSE

40

80

120

160

200

α β λ θ γ

0.4 0.4 0.5 0.3 2.7

0.4 0.4 0.5 0.3 2.7

0.4 0.4 0.5 0.3 2.7

0.4 0.4 0.5 0.3 2.7

0.4 0.4 0.5 0.3 2.7

α β λ θ γ

0.43 0.21 0.28 0.150 0.35

0.41 0.20 0.26 0.10 0.34

0.41 0.20 0.20 0.10 0.34

0.40 0.20 0.19 0.08 0.34

0.39 0.20 0.17 0.07 0.33

α β λ θ γ

0.24 0.06 0.10 0.07 0.17

0.23 0.06 0.08 0.04 0.16

0.22 0.05 0.06 0.03 0.16

0.22 0.06 0.06 0.02 0.16

0.20 0.05 0.05 0.02 0.15

40

80

120

160

200

0.3 0.5 0.7 0.5 2.5

0.3 0.5 0.7 0.5 2.5

0.3 0.5 0.7 0.5 2.5

0.3 0.5 0.7 0.5 2.5

0.3 0.5 0.7 0.5 2.5

0.53 0.28 0.34 0.41 0.52

0.41 0.28 0.28 0.35 0.53

0.36 0.28 0.27 0.32 0.54

0.32 0.23 0.23 0.29 0.53

0.30 0.27 0.20 60.28 0.52

0.35 0.10 0.13 0.20 0.28

0.24 0.10 0.10 0.15 0.28

0.19 0.07 0.08 0.13 0.28

0.16 0.01 0.07 0.11 0.28

0.14 0.01 0.06 0.10 0.27

40

80

120

160

200

0.32 0.5 0.8 0.6 2.7

0.32 0.5 0.8 0.6 2.7

0.32 0.5 0.8 0.6 2.7

0.32 0.5 0.8 0.6 2.7

0.32 0.5 0.8 0.6 2.7

0.62 0.35 0.28 0.39 0.66

0.59 0.34 0.25 0.38 0.66

0.57 0.34 0.25 0.38 0.66

0.57 0.34 0.24 0.38 0.66

0.57 0.33 0.24 0.38 0.66

0.41 0.13 0.09 0.16 0.44

0.38 0.13 0.07 0.15 0.43

0.36 0.13 0.07 0.15 0.44

0.36 0.13 0.07 0.15 0.43

0.36 0.13 0.06 0.15 0.43

The TTT transformed plot of the failure times of the 36
appliances is shown in Figure 3. The data have a modified
bathtub shaped hazard function since its hazard function
is first convex in shape, followed by a concave shape and
then another convex shape.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

i/n

T
(i
/n
)

Fig. 3: TTT plot Failure times of 36 appliances data set

The detailed parameter estimates of the NHGPW
distribution and the competitive distributions considered
for the failure times of the 36 appliances are shown in
Table 5. By using the standard errors of the NHGPW
distribution, it is seen that all the parameters are
significant at 5 percent significance level since their
standard errors are less than half of their parameter
estimates.

Table 6 presents the goodness-of-fit measures and the
information criteria for the considered distribution for the
failure times of the 36 appliances. As compared to the
other distributions, the developed NHGPW distribution
has the highest log-likelihood value with the smallest
values of the Kolmogorov Smirnov (K-S) and
Cramér-Von Mises (W*) statistics. By using the model
selection criteria, the NHGPW distribution has the
smallest AIC, AICC, and BIC values as compared to the
other distributions. These indicate that, the NHPGW
distribution provides a better fit to the failure times of the
36 appliances data as compared to the existing
distributions.
The asymptotic variance-covariance matrix for the
estimated parameters of the NHGPW distribution for the
36 appliance data is given by;

A−1=















2.5474×10−6 −7.8642×10−5 −1.9109×10−6 −7.3224×10−6 1.2569×10−5

−7.8642×10−5 1.3349×10−3 −1.1343×10−4 4.4359×10−3 2.9433×10−3

−1.9109×10−6 −1.1343×10−4 5.0988×10−5 9.1186×10−5 −4.8622×10−4

−7.3224×10−6 4.4359×10−3 9.1186×10−5 1.2669×10−2 −1.0107×10−2

1.2569×10−5 2.9433×10−3 −4.8622×10−4 −1.0107×10−2 8.3314×10−3















The approximate 95 percent confidence interval (CI) for
the five parameters of the NHGPW distribution are;
α : [0.0161;0219],β : [0.1399;0.2833],λ :
[0810;1089],θ : [0.1831;0.6245]; and
γ : [0.4602;0.8178]. The estimated CI of the parameters
of the NHGPW distribution also showed that, its
parameters were all significant at 5 percent significance
level since their estimated confidence intervals do not
contain zero.
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Table 4: Failure times of 36 appliances

11 35 49 170 329 381 708 958 1062 1167 1594 1925 1990

2223 2327 2400 2451 2471 2551 2565 2568 2694 2702 2761 2831 3034

3059 3112 3214 3478 3504 4329 6367 6976 7846 13403

Fig. 4: Plots of CDFs of the failure times of the 36

appliancesdata set

Figure 4 gives the plot of the empirical CDF of the failure
times of the 36 appliances, the CDF of the NHGPW
distribution and the CDFs of the comparison distributions.
As it is seen from the figure, the NHGPW distribution fits
better to this data set as compared to the considered
models since its CDF approximates the empirical CDF.

5.2 Application II: Air Craft Windshield Failure

Data Set

The NHPGW was also applied on failure times of 84
aircraft windshield data. This data was given in Murthy et
al. (2004). The failure rate data for the 84 aircraft
windshield is given in Table 8.
The TTT transform plot of this data in Figure 5 indicated
that, the data set has an increasing failure rate.

The parameter estimates and standard errors of the
NHGPW distribution and the candidate distributions for
the aircraft windshield failure rate data are shown in Table
8. It is seen that parameters α,β ,λ and γ are significant at
5 percent significant level since their standard errors are
less than half of their parameter estimates.

Fig. 5: TTT Plot of 84 Aircraft Windshield data set

Fig. 6: Empirical CDF and CDF plots of Aircraft Windshield

Failure data set

The goodness-of-fit and information criteria for the
competitive distributions are presented in Table 9. Among
the competitive distributions, the developed NHGPW is
shown to be the best distribution for the aircraft
windshield data set since it has the minimum value of all
the information criteria as well as the minimum value of
the goodness-of-fit statistics and the largest log likelihood
value.
The asymptotic variance covariance matrix for the
parameter estimates of the NHGPW distribution for the
air craft windshield failure data is given by;

A−1 =















8.126×10−5 1.324×10−5 3.415×10−4 −2.712×10−2 4.981×10−3

1.324×10−5 4.076×10−6 4.283×10−5 −4.358×10−3 1.060×10−3

3.415×10−4 4.283×10−5 1.690×10−6 −1.145×10−1 1.869×10−2

−2.712×10−2 −4.358×10−3 −1.145×10−1 9.052 −1.651

4.981×10−3 1.060×10−3 1.869×10−2 −1.651 0.352














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Table 5: Maximum Likelihood Parameter Estimates of the failure times of the 36 appliances

Distribution α̂ β̂ λ̂ θ̂ γ̂

NHGPW 0.019 0.2116 0.095 0.4038 0.6390

(0.0015) (0.0366) (0.0071) (0.1126) (0.0912)

NH α̂ β̂

0.0021 0.3642

(0.0011) (0.0794)

GPW λ̂ θ̂ γ̂

0.0047 0.7072 0.8951

(0.0044) (0.1163) (0.2599)

KLLoGW â b̂ ĉ α̂ β̂

13.7743 41.0088 0.0528 0.0159 0.4332

(3.7281) (0.2302) (0.0721) (0.0096) (0.0571)

EGED α̂ λ̂ β̂ θ̂ ĉ d̂

0.001 27.198 4.560 2.838 20.866 0.070

(0.0001) (0.001) (0.847) (0.123) (0.010) (0.003)

EKD α̂ λ̂ σ̂ φ̂ θ̂

5.561 12.683 3.716 0.128 11.609

(1.517) (2.158) (3.716) (0.128) (3.922)

EGEBD λ̂ β̂ θ̂ ĉ d̂

25.705 14.152 3.412 8.332 0.047

(0.514) (0.110) (0.247) (1.934) (0.009)

EGFD α̂ θ̂ ĉ d̂

8.4843 3.429 16.533 0.143

(1.550) (0.711) (5.833) (0.034)

EGEFD α̂ λ̂ θ̂ ĉ d̂

13.048 27.555 3.561 9.084 0.047

(1.817) (0.071) (0.392) (2.186) (0.009)

WNH α̂ λ̂ â b̂

0.0410 7.8923 1.7341 5.7122

(0.0010) (0.0567) (0.1325) (0.7444)

For the aircraft windshield data, the approximate 95
percent CI of the five parameters of the NHGPW
distribution are;
α : [101.8083;101.8437],β : [0.0006;0.0086],λ :
[0.00045;0.0055],θ : [−3.8530;7.9410]; and
γ : [1.1401;3.4659].

The plot of the empirical CDF, the CDF of the NHGPW
distribution and the CDFs of the competitive distributions
are shown in Figure 6. From the plots, the CDF of the
NHGPW distribution approximates the empirical CDF of
the aircraft windshield failure data set hence provides a
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Table 6: Goodness of fit and Information Criteria of failure times of the 36 appliances

Distribution LL AIC AICc BIC CVM KS

NHGPW −302.600 615.202 617.202 622.833 0.255 0.169

NH −309.850 623.705 623.705 626.758 0.495 0.256

GPW −307.040 661.805 662.555 666.385 0.351 0.590

KLLoGW −312.850 635.705 637.705 643.336 0.502 0.236

EGED −328.870 669.740 670.957 679.241 0.569 0.569

EKD −341.650 693.295 694.198 701.213 0.925 0.269

EGEBD −330.910 671.823 672.726 679.741 0.272 0.634

EGFD −341.030 690.054 690.692 696.388 0.907 0.269

EGEFD −330.730 671.460 672.363 679.377 0.625 0.269

WNH −322.200 652.392 653.682 658.726 0.343 0.204

Table 7: Failure times data of 84 Aircraft Windshield

4.167 1.281 3.00 4.035 2.3 3.344 4.602 1.757 2.324 2.265 3.578 0.943 4.121

1.303 2.089 2.632 2.135 2.962 2.688 2.902 0.557 1.911 1.568 3.595 1.07 4.255

1.899 2.61 3.478 1.248 2.01 1.194 1.505 2.154 2.964 4.278 1.056 0.309 1.281

1.912 3.924 2.19 3 4.305 3.376 2.246 3.699 1.432 2.097 2.934 4.24 1.48

2.194 3.103 4.376 1.615 2.223 0.04 1.866 2.385 3.443 0.301 1.876 2.481 3.467

4.663 2.085 2.89 2.038 2.82 1.124 1.981 2.661 3.779 3.114 4.449 1.619 2.224

3.117 4.485 1.652 2.229 3.166 4.57 1.652

better fit as compared to the other distributions
considered.

6 Conclusion

In this study, the NHGPW distribution is developed based
on the concept of compounding for systems connected in
series. The statistical properties of this distribution are
derived. From the analysis, we conclude that, the CDF
and PDF of the developed NHGPW distribution are well
defined and meet all necessary condition of a probability
distribution. The plot of the PDF and hazard functions of
the NHGPW distribution indicated that this distribution
can adequately model both monotonic and
non-monotonic failure rate data set since its PDF can be
decreasing, increasing, bathtub, unimodal, modified
bathtub and symmetric and its hazard function can also be
constant, monotonically increasing, decreasing, bathtub,
unimodal and modified bathtub. The NHGPW
distribution is also very flexible as compared to existing
distributions since it contains several well-known

distributions as sub-distributions hence contains the
desirable properties of these sub-distributions. Monte
Carlo simulation analysis on the maximum likelihood
estimators showed that, the estimators of the NHGPW
distribution are consistent since they converges to the true
parameter value as the sample size increases. Based on
the log-likelihood value, Kolmogorov Smirnov (KS),
Cramér-Von Mises (W*), AIC, AICc, and BIC statistics,
the NHGPW distribution provides a better fit to the failure
times of 36 appliances data set and the aircraft windshield
failure rate data set when compared with the competitive
distributions for systems connected in series. Also, the
parameter estimates of the distribution are all significant
at 5 percent significant level.
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Table 8: Maximum Likelihood Parameter Estimate for Aircraft Windshield Failure Data

Distribution

NHGPW α̂ β̂ λ̂ θ̂ γ̂

101.826 0.0046 0.003 2.044 2.303

(0.009) (0.000) (0.000) (3.009) (0.594)

NH α̂ β̂

0.008 33.695

(0.000) (0.000)

GPW λ̂ θ̂ γ̂

0.01 1.757 10.051

(0.002) (0.172) (0.001)
Exp-Exp 0.345 0.045

(0.021) (0.021)

BetaMW â b̂ α̂ γ̂ λ̂

0.286 0.009 6.224 2.543 0.057

(0.184) (0.003) (0.012) (1.062) (0.341)

KLLoGW â b̂ ĉ α̂ β̂

7.934 12.501 0.129 0.15 1.286

(5.499) (43.587) (0.143) (0.114) (0.651)

WNH α̂ λ̂ â b̂

0.562 4.22 0.023 1.088

(0.226) (9.357) (0.043) (0.547)

Table 9: Goodness of Fit and Information Criteria of Air Craft Windshield Data

Distribution LL AIC AICc BIC CVM K-S(p-value)

NHGPW −127.230 264.059 264.828 276.272 0.062 0.085

NH −145.550 295.099 295.248 299.985 0.082 0.258

Exp-Exp −164.990 333.975 334.123 338.861 0.166 0.303

GPW −128.960 686.572 686.872 693.900 0.307 0.915

BetaMW −128.260 264.517 265.286 277.730 3.129 0.682

KLLoGW −127.990 265.971 266.740 278.184 0.077 0.086

WNH −128.180 264.355 264.861 274.125 0.105 0.088
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