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Abstract: When Type-II hybrid censoring is used on two samples in a combined manner, the exact inference for two exponential

populations is developed in this paper. The two unknown exponential mean parameters’ conditional maximum likelihood and Bayesian

estimators are determined. The maximum likelihood estimators’ conditional moment generating functions and conditional exact

distributions are then calculated. For the unknown parameters, the exact, approximate, and Bayes credible confidence intervals are

also constructed. In addition, a Monte Carlo simulation study is carried out to evaluate the performance of the two estimation methods

and also the three confidence intervals. Finally, using a real data set, some numerical results are presented.

Keywords: Exponential distribution, Type-II Hybrid censoring, Joint censoring, Maximum likelihood estimation, Bayesian estimation,

Confidence interval.

1 Introduction

Due to a variety of factors, the experimenter may choose
to end the experiment before failing all units on the test in
reliability analysis. Censored data refers to the results of
such experiments. There are numerous different types of
censoring schemes, with Type-I and Type-II being the
most frequent. The experimenter terminates the life
testing experiment at a pre-determined time T in the
Type-I censoring scheme, whereas the experimenter
terminates the life testing experiment at the time of the rth

failure in the Type-II censoring method. Surveys of
censorship schemes can be found in papers [1,2,3,4,5].

Epstein [6] proposed the Type-I hybrid censoring
scheme (Type-I HCS), in which the life testing
experiment is ended after a pre-determined number r out
of n items fails or a pre-determined time T on test is
reached. MIL-STD-781 C [7] has employed the Type-I
HCS as a reliability acceptance test. However, the Type-I
HCS may result in the data having too few observations.
As a result, Childs et al. [8] presented the Type-II hybrid
censoring scheme (Type-II HCS), in which the life-testing
experiment ends when one of the aforementioned two
termination rules is achieved. It is better to employ
Type-II HCS since it guarantees that the number of
observations in the data is at least r, resulting in more

efficient inferential processes than Type-I HCS. The
literature on hybrid censoring and associated inferential
approaches is vast; see, for example, [9,10,11]. The new
discussion paper [12] provides an in-depth review of
different developments in hybrid censoring approach and
its applications.

We can utilise the joint Type-II censoring scheme to
perform comparative life-tests of items from different
lines of manufacturing. Assume two independent samples
of sizes m and n are chosen from two product lines and
placed on a life-testing experiment at the same time.
Under the joint Type-II censoring scheme, the experiment
is ended after a pre-specified number of failures are
recorded. Balakrishnan and Rasouli [13] studied the exact
inference using a joint Type-II censored sample from two
exponential populations. They established exact
inferential methods based on maximum likelihood (ML)
estimators and compared their performance to that of
other approaches such as Bayesian and bootstrap; for a
generalization of their results to progressive Type-II
censoring, see paper [14]. In this paper, we extend these
findings to the scenario where the two samples are
censored using a joint Type-II hybrid censoring scheme.

The following is a description of this model. Assume
that X1, ...,Xm are the lifetimes of m specimens of product
A and they are independent and identically distributed
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(iid) random variables derived from the distribution
function F(x) and density function f (x). Assume that
Y1, ...,Yn are the lifetimes of n specimens of product B and
they are iid random variables derived from the
distribution function G(x) and the density function g(x).
Assume that W1 ≤ ... ≤ WN denote the order statistics of
the combined sample of N = m + n random variables
{X1, ...,Xm;Y1, ...,Yn}, and the experiment ends at time
T ∗ = max{Wr,T}, where 1 ≤ r ≤ N and T ∈ (0, ∞) are
pre-determined.

Let D represent the total number of failures up to T .
Then D is a discrete random variable with the following
probability mass function

P(D = d) =
min(m,d)

∑
k=max(0,d−n)

(
m

k

)(
n

d − k

)
p1

kq1
m−k

p2
d−kq2

n−d+k, d = 0,1, ...,N, (1)

where p1 = F(T ), q1 = 1− F(T ), p2 = G(T ) and q2 =
1−G(T).

Therefore, under the joint Type-II hybrid censoring
scheme described above, the observable data consist of
(Z,W) where Z = (Z1, ...,Zr∗) and W = (W1, ...,Wr∗)
with

r∗ =

{
r, if T ∗ =Wr, D = 0,1, ...,r− 1,
D, if T ∗ = T, D = r,r+ 1, ...,N,

and Zi = 1 or 0 according as Wi is from an X- or Y -failure.

The likelihood function of (Z,W) is given by

L(θ1,θ2,z,w) =
m!n!

(m−mr∗)!(n− nr∗)!

r∗

∏
i=1

f (wi)
zi

g(wi)
(1−zi){F̄(T ∗)}m−mr∗ {Ḡ(T ∗)}n−nr∗

(2)

where F̄ = 1−F, Ḡ = 1−G, Mr∗ =
r∗

∑
i=1

Zi is the number

of X-failures in W and Nr∗ =
r∗

∑
i=1

(1−Zi) is the number of

Y -failures in W.

The content of this work is arranged in the following
manner. In Section 2, we consider the case of two
exponential distributions based on joint Type-II hybrid
censored data and compute the ML estimators of the two
scale parameters, after which we generate the exact
conditional moment generating function of the ML
estimators and then use them to obtain the means,
variances, and mean squared errors of these estimators.
The exact, approximate, and Bayesian techniques of
forming confidence intervals (CIs) for unknown
parameters are discussed in Section 3. Finally, in Section
4, Monte Carlo simulation and numerical results are
provided to illustrate all of the inferential approaches
presented here.

2 Methods

The conditional ML estimators of the unknown
parameters are calculated in this section, followed by the
conditional moment generating functions and conditional
exact distributions of the ML estimators. Assume the
distributions of the two populations are exponential with
the following survival functions

F̄(x) = e−x/θ1 and Ḡ(x) = e−x/θ2 , x > 0, θ1 > 0, θ2 > 0.

In this case, the likelihood function of (Z,W) in (2)
simplifies to

L(θ1,θ2,z,w) =
m!n!

(m−mr∗)!(n− nr∗)!θ
mr∗

1 θ
nr∗

2

e

[
−

u1
θ1

−
u2
θ2

]

,

(3)

where

u1 =
r∗

∑
i=1

ziwi +(m−mr∗)T
∗

and

u2 =
r∗

∑
i=1

(1− zi)wi +(n− nr∗)T
∗.

From this likelihood function, we readily obtain the MLEs
of θ1 and θ2 as

θ̂1 =
u1

mr∗

=





1
mr
(

r

∑
i=1

ziwi +(m−mr)wr), D = 0,1, ...,r− 1,

1
mD

(
D

∑
i=1

ziwi +(m−mD)T ), D = r,r+ 1, ...,N,
(4)

and

θ̂2 =
u2

nr∗

=





1
nr
(

r

∑
i=1

(1− zi)wi +(n− nr)wr), D = 0,1, ..,r− 1,

1
nD
(

D

∑
i=1

(1− zi)wi +(n− nD)T ), D = r,r+ 1, ..,N.

(5)

Remark 1. From the ML estimators in (4) and (5), it can
be seen immediately that if T < Wr and Mr = 0 (or r),

then θ̂1 (or θ̂2) does not exist. Also, if Wr < T and
MD = 0 (or D), then θ̂1 (or θ̂2) does not exist. Hence, the
ML estimators in (4) and (5) are only conditional ML
estimators, conditioned on

max{1,r− n} ≤ Mr ≤ min{r− 1,m}

or

max{1,D− n}≤ MD ≤ min{D− 1,m},

corresponding to T < Wr or Wr < T , respectively.
Therefore, we need to discuss the sampling distributions
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and other properties of the ML estimators only
conditional on the event A = A1 ∪A2 where

A1 = (max{1,r− n} ≤ Mr ≤ min{r− 1,m})

and

A2 = (max{1,D− n}≤ MD ≤ min{D− 1,m}).

The primary findings described in the subsequent
theorems will be developed using the following Lemma.
Lemma 2. Let a j > 0, for j = 1,2, ...,s. Then, we have
∫ T

0

∫ ws

0
...
∫ w2

0
e
−∑s

j=1 a jw j dw1...dws−1dws

=
s

∑
i=0

ci,s(as)e
−bi,s(as)T , (6)

where as = (a1,a2, ...,as),

ci,s(as) =
(−1)i

(
i

∏
j=1

s−i+ j

∑
k=s−i+1

ak

)(
s−i

∏
j=1

s−i

∑
k= j

ak

) (7)

and

bi,s(as) =
s

∑
j=s−i+1

a j, (8)

in which we adopt the usual conventions that
0

∏
k=1

d j ≡ 1

and
i−1

∑
k=i

d j ≡ 0.

For a proof of this result and some generalizations of
it, one may refer to paper [15].

Theorem 3.

1.Conditional on D = d, d = 0,1, ...,r − 1, the joint
probability mass function of Zr = (Z1, ...,Zr) is

P( Zr = zr|D = d) =
Cr

θ1
mr θ2

nr P(D = d)

d

∑
i=0

ci,d(ad) e
−{bi,d(ad)+

m−mr
θ1

+ n−nr
θ2

+
r

∑
j=d+1

a j}T

r−d

∏
j=1

(m−mr
θ1

+ n−nr
θ2

+
j

∑
k=1

ar−k+1)

, (9)

for Q1 = {zr = (z1, ...,zr) : z j = 0 or 1}, where Cr =
m!n!

(m−mr)!(n−nr)!
, and ci,d(ad) and bi,d(ad) as in (7) and

(8), respectively, with s = d and a j =
z j

θ1
+

1−z j

θ2
, for

j = 1, ...,r;
2.Conditional on D = d, d = r,r + 1, ...,N, the joint

probability mass function of Zd = (Z1, ...,Zd) is

P( Zd = zd |D = d) =
Cd

θ
md
1 θ

nd
2 P(D = d)

d

∑
i=0

ci,d(ad)e
−{bi,d(ad)+

m−md
θ1

+ n−nd
θ2

}T
, (10)

for Q2 = {zd = (z1, ...,zd) : z j = 0 or 1}, where Cd =
m!n!

(m−md)!(n−nd)!
, and ci,d(ad) and bi,d(ad) as in (7) and

(8), respectively, with s = d and a j =
z j

θ1
+

1−z j

θ2
, for

j = 1, ...,d;
3.Thence, conditional on D = d, d = 0,1, ...,r − 1, the

probability mass function of Mr =
r

∑
j=1

Z j, for

ℓ= 0,1, ...,r, is

P(Mr = ℓ|D = d) =
Cℓ,r

θ ℓ
1θ r−ℓ

2 P(D = d)

∑ ...∑
zr∈Q∗

1

d

∑
i=0

ci,d(ad)

ωℓ,d
e−δi,ℓ,dT , (11)

for Q∗
1ℓ = {zr = (z1, ...,zr) : z j = 0 or 1,

r

∑
j=1

z j = ℓ},

where Cℓ,r = m!n!
(m−ℓ)!(n−r+ℓ)! ,

ωℓ,d =
r−d

∏
j=1

(m−ℓ
θ1

+ n−r+ℓ
θ2

+
j

∑
k=1

ar−k+1), and

δi,ℓ,d = bi,d(ad)+
m−ℓ
θ1

+ n−r+ℓ
θ2

+
r

∑
k=d+1

ak;

4.Thence, conditional on D = d, d = r,r + 1, ...,N, the

probability mass function of Md =
d

∑
j=1

Z j, for

ℓ= 0,1, ...,d, is

P(Md = ℓ|D = d)

=
C∗
ℓ,d

θ ℓ
1 θ d−ℓ

2 P(D = d)
∑ ...∑

zd∈Q∗
2ℓ

d

∑
i=0

ci,d(ad)e
−δ ∗

i,ℓ,dT , (12)

for Q∗
2ℓ = {zd = (z1, ...,zd) : z j = 0 or 1,

d

∑
j=1

z j = ℓ},

where C∗
ℓ,d = m!n!

(m−ℓ)!(n−d+ℓ)!
and

δ ∗
i,ℓ,d = bi,d(ad)+

m−ℓ
θ1

+ n−d+ℓ
θ2

.

Proof. Since, for d = 0,1, ..,r − 1, the conditional joint
density function of (W1, ...,Wr;Zr), given D = d, is given
by

f (w1, ..,wr,zr|D = d) =

Cr

P(D = d)

r

∏
i=1

f (wi)
zig(wi)

(1−zi){F̄(wr)}
m−mr{Ḡ(wr)}

n−nr

=
Cr

θ1
mr θ2

nr P(D = d)
e
−{

r

∑
j=1

a jw j+(m−mr
θ1

+ n−nr
θ2

)wr}

,

0 < w1 < ... < wd < T < wd+1 < ... < wr < ∞.
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Then, we obtain the joint probability mass function of
Zr = (Z1, ...,Zr) as

P(Zr = zr|D = d) =

∫ ∞

T
..

∫ ∞

wr−1

∫ T

0
..

∫ w2

0

f (w1, ..,wr ,zr|D = d)dw1..dwddwr..dwd+1

=
Cr

θ1
mr θ2

nr P(D = d)

d

∑
i=0

ci,d(ad)

×
e
−

{
bi,d(ad)+

m−mr
θ1

+ n−nr
θ2

+
r

∑
j=d+1

a j

}
T

r−d

∏
j=1

(m−mr
θ1

+ n−nr
θ2

+
j

∑
k=1

ar−k+1)

, (13)

as presented in (9).

2. Since, for d = r,r+1, ..,N, the conditional joint density
function of (W1, ...,Wd ;Zd), given D = d, is given by

f (w1, ..,wd ,zd |D = d) =
Cd

P(D = d)

×
d

∏
i=1

f (wi)
zi g(wi)

(1−zi){F̄(T )}m−md{Ḡ(T )}n−nd

=
Cd

θ
md
1 θ

nd
2 P(D = d)

e
−{

d

∑
j=1

a jw j+(m−md
θ1

+ n−nd
θ2

)T}

,

0 < w1 < ... < wd < T.

Then, we obtain the joint probability mass function of
Zd = (Z1, ...,Zd) as

P(Zd = zd |D = d)

=

∫ T

0

∫ wd

0
..

∫ w2

0
f (w1, ..,wd ,zd |D = d)dw1..dwd−1dwd

=
Cd

θ
md
1 θ

nd
2 P(D = d)

d

∑
i=0

ci,d(ad)e
−{bi,d(ad)+

m−md
θ1

+ n−nd
θ2

}T
,

(14)

as presented in (10).

3. From (9), the formula P(Mr = ℓ|D = d) in (11) follows
easily.

4. From (10), the formula P(Md = ℓ|D= d) in (12) follows
easily.

3 The exact conditional distribution of θ̂1

Theorem 4. Conditional on the event A, the moment
generating function (mgf) of θ̂1 is given by

Mθ̂1
(t) =

r−1

∑
d=0

1

P(ℓ1,r ≤ Mr ≤ ℓ2,r|D = d)




ℓ2,r

∑
ℓ=ℓ1,r

∑ ...∑
zr∈Q∗

1ℓ

d

∑
i=0

Cℓ,rci,d(ad)

θ ℓ
1θ r−ℓ

2 ωℓ,d

i

∏
j=1

(1−φ j,i,ℓ,dt)−1

d−i

∏
j=1

(1−ψ j,i,ℓ,dt)−1
r−d

∏
j=1

(1− χ j,i,ℓ,dt)−1e−(1−γi,ℓ,dt)δi,ℓ,dT

}

+
N

∑
d=r

1

P(ℓ1,d ≤ Md ≤ ℓ2,d |D = d)




ℓ2,d

∑
ℓ=ℓ1,d

∑ ...∑
zd∈Q∗

2ℓ

d

∑
i=0

C∗
ℓ,dci,d(ad)

θ ℓ
1 θ d−ℓ

2

i

∏
j=1

(1−φ j,i,ℓ,dt)−1

d−i

∏
j=1

(1−ψ j,i,ℓ,dt)−1e
−(1−γ∗i,ℓ,dt)δ ∗

i,ℓ,dT

}
, (15)

where ℓ1,r = max{1,r − n}, ℓ2,r = min{r − 1,m}, ℓ1,d =
max{1,d− n}, ℓ2,d = min{d− 1,m},

φ j,i,ℓ,d =
∑

d−i+ j

k=d−i+1 zk

ℓ∑
d−i+ j

k=d−i+1 ak

, ψ j,i,ℓ,d =
∑d−i

k= j zk

ℓ∑d−i
k= j ak

,

χ j,i,ℓ,d =
m− ℓ+∑

j
k=1 zr−k+1

ℓ(m−ℓ
θ1

+ n−r+ℓ
θ2

+
j

∑
k=1

ar−k+1)

,

γi,ℓ,d =
m− ℓ+∑r

k=d−i+1 zk

ℓδi,ℓ,d
, γ∗i,ℓ,d =

m− ℓ+∑d
k=d−i+1 zk

ℓδ ∗
i,ℓ,d

.

Proof. Conditioning on the event A, we have

Mθ̂1
(t) = E(etθ̂1 |A)

=
r−1

∑
d=0

E(etθ̂1 |D = d, ℓ1,r ≤ Mr ≤ ℓ2,r)P(D = d)

+
N

∑
d=r

E(etθ̂1 |D = d, ℓ1,d ≤ Md ≤ ℓ2,d)P(D = d). (16)
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First, for d = 0,1, ..,r− 1, we have

E(etθ̂1 |D = d, ℓ1,r ≤ Mr ≤ ℓ2,r)

=

ℓ2,r

∑
ℓ=ℓ1,r

E(etθ̂1 |D = d,Mr = ℓ)

×P(Mr = ℓ|D = d, ℓ1,r ≤ Mr ≤ ℓ2,r)

=
ℓ2,r

∑
ℓ=ℓ1,r

1

∑
zr=0

...
1

∑
z1=0

E(etθ̂1 |D = d,Mr = ℓ,Zr = zr)

×P(Zr = zr|D = d,Mr = ℓ)

×P(Mr = ℓ|D = d, ℓ1,r ≤ Mr ≤ ℓ2,r)

=
1

P(ℓ1,r ≤ Mr ≤ ℓ2,r|D = d)P(D = d)

×
ℓ2,r

∑
ℓ=ℓ1,r

∑ ...∑
zr∈Q∗

1ℓ

Cℓ,r

θ ℓ
1 θ r−ℓ

2

∫ ∞

T
...

∫ ∞

wr−1

∫ T

0
...

∫ w2

0

e
−(

r

∑
j=1

A j,ℓ(t)w j+Bℓ,r(t)wr)

dw1...dwddwr...dwd+1,

where A j,ℓ(t) = a j −
z j

ℓ t, for j = 1, ...,r, and

Bℓ,r(t) =
m−ℓ
θ1

+ n−r+ℓ
θ2

− m−ℓ
ℓ t.

After completing the necessary integration and
applying Lemma 2, we now have

E(etθ̂1 |D = d, ℓ1,r ≤ Mr ≤ ℓ2,r)

=
1

P(ℓ1,r ≤ Mr ≤ ℓ2,r|D = d)P(D = d)

×

ℓ2,r

∑
ℓ=ℓ1,r

∑ ...∑
zr∈Q∗

1ℓ

r−1

∑
i=0

Cℓ,rci,d(ad)

θ ℓ
1θ r−ℓ

2 ωℓ,d

i

∏
j=1

(1−φ j,i,ℓ,dt)−1

d−i

∏
j=1

(1−ψ j,i,ℓ,dt)−1
r−d

∏
j=1

(1− χ j,i,ℓ,dt)−1e−(1−γi,ℓ,dt)δi,ℓ,d T .

(17)

Next, for d = r,r+ 1, ..,N, we have

E(etθ̂1 |D = d, ℓ1,d ≤ Md ≤ ℓ2,d)

=

ℓ2,d

∑
ℓ=ℓ1,d

E(etθ̂1 |D = d,Md = ℓ)

×P(Md = ℓ|D = d, ℓ1,d ≤ Md ≤ ℓ2,d)

=

ℓ2,d

∑
ℓ=ℓ1,d

1

∑
zd=0

...
1

∑
z1=0

E(etθ̂1 |D = d,Md = ℓ,Zd = zd)

×P(Zd = zd |D = d,Md = ℓ)

×P(Md = ℓ|D = d, ℓ1,d ≤ Md ≤ ℓ2,d)

=
1

P(ℓ1,d ≤ Md ≤ ℓ2,d |D = d)P(D = d)

×

ℓ2,d

∑
ℓ=ℓ1,d

∑ ...∑
zd∈Q∗

2ℓ

C∗
ℓ,d

θ ℓ
1 θ d−ℓ

2

∫ T

0

∫ wd

0
...

∫ w2

0

e
−(

d

∑
j=1

A∗
j,ℓ(t)w j+B∗

ℓ,d(t)T )

dw1...dwd−1dwd ,

where A∗
j,ℓ(t) = a j −

z j

ℓ t, for j = 1, ...,d, and

B∗
ℓ,d(t) =

m−ℓ
θ1

+ n−d+ℓ
θ2

− m−ℓ
ℓ t.

After completing the necessary integration and
applying Lemma 2, we now have

E(etθ̂1 |D = d, ℓ1,d ≤ Md ≤ ℓ2,d)

=
1

P(ℓ1,d ≤ Md ≤ ℓ2,d |D = d)P(D = d)

×

ℓ2,d

∑
ℓ=ℓ1,d

∑ ...∑
zd∈Q∗

2ℓ

d

∑
i=0

C∗
ℓ,dci,d(ad)

θ ℓ
1 θ d−ℓ

2

i

∏
j=1

(1−φ j,i,ℓ,dt)−1

×
d−i

∏
j=1

(1−ψ j,i,ℓ,dt)−1e
−(1−γ∗i,ℓ,dt)δ ∗

i,ℓ,d T . (18)

We can get the formula in (15) by substituting (17) and
(18) into (16).

Remark 5.

1. (1− ct)−1 is the mgf of the exponential distribution
with scale parameter c;

2. ect is the mgf of the degenerate distribution localized
at a point c.

Theorem 6. Conditional on the event A, the density of the

MLE θ̂1 is given by

fθ̂1
(x) =

r−1

∑
d=0

1

P(ℓ1,r ≤ Mr ≤ ℓ2,r|D = d)




ℓ2,r

∑
ℓ=ℓ1,r

∑ ...∑
zr∈Q∗

1ℓ

d

∑
i=0

Cℓ,rci,d(ad)

θ ℓ
1θ r−ℓ

2 ωℓ,d

e−δi,ℓ,dT gXi,ℓ,d
(x)





+
N

∑
d=r

1

P(ℓ1,d ≤ Md ≤ ℓ2,d|D = d)




ℓ2,d

∑
ℓ=ℓ1,d

∑ ...∑
zd∈Q∗

2ℓ

d

∑
i=0

C∗
ℓ,dci,d(ad)

θ ℓ
1θ d−ℓ

2

e
−δ ∗

i,ℓ,dT
hX∗

i,ℓ,d
(x)



 .

(19)

where, Xi,ℓ,d
d
= X1i,ℓ,d

+ X2i,ℓ,d
+ X3i,ℓ,d

+ X4i,ℓ,d
, with

X1i,ℓ,d
= ∑i

j1=1 X1 j1 , X2i,ℓ,d
= ∑d−i

j2=1 X2 j2 and

X3i,ℓ,d
= ∑r−d

j3=1 X3 j3 , with X1 j1 ( j1 = 1, ..., i), X2 j2

( j2 = 1, ...,d − i) and X3 j3 ( j3 = 1, ...,r − d) being
independent random variables having exponential
distributions with scale parameters φ j1,i,ℓ,d , ψ j2,i,ℓ,d and
χ j3,i,ℓ,d , respectively, X4i,ℓ,d

being a random variable

distributed as degenerate localized at a point γi,ℓ,dδi,ℓ,dT,

and X∗
i,ℓ,d

d
= X1i,ℓ,d

+ X2i,ℓ,d
+ X∗

3i,ℓ,d
, with X∗

3i,ℓ,d
being a

random variable distributed as degenerate localized at a
point γ∗i,ℓ,dδ ∗

i,ℓ,dT .

Proof. The conditional mgf of θ1 in (15) and Remark 5
instantly lead to this result.
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Corollary 7. From (19), we can obtain

E(θ̂1) =
r−1

∑
d=0

1

P(ℓ1,r ≤ Mr ≤ ℓ2,r|D = d)




ℓ2,r

∑
ℓ=ℓ1,r

∑ ...∑
zr∈Q∗

1ℓ

d

∑
i=0

Cℓ,rci,d(ad)

θ ℓ
1θ r−ℓ

2 ωℓ,d

e−δi,ℓ,dT

×
i

∑
j=1

φ j,i,ℓ,d +
d−i

∑
j=1

ψ j,i,ℓ,d +
r−d

∑
j=1

χ j,i,ℓ,d + γi,ℓ,dδi,ℓ,dT

}

+
N

∑
d=r

1

P(ℓ1,d ≤ Md ≤ ℓ2,d|D = d)




ℓ2,d

∑
ℓ=ℓ1,d

∑ ...∑
zd∈Q∗

2ℓ

d

∑
i=0

C∗
ℓ,dci,d(ad)

θ ℓ
1θ d−ℓ

2

e
−δ ∗

i,ℓ,dT

×
i

∑
j=1

φ j,i,ℓ,d +
d−i

∑
j=1

ψ j,i,ℓ,d + γ∗i,ℓ,dδ ∗
i,ℓ,dT

}
, (20)

E(θ̂ 2
1 ) =

r−1

∑
d=0

1

P(ℓ1,r ≤ Mr ≤ ℓ2,r|D = d)

ℓ2,r

∑
ℓ=ℓ1,r

∑ ...∑
zr∈Q∗

1ℓ

d

∑
i=0

Cℓ,rci,d(ad)

θ ℓ
1θ r−ℓ

2 ωℓ,d

e−δi,ℓ,dT

×

{
i

∑
j=1

φ2
j,i,ℓ,d +

d−i

∑
j=1

ψ2
j,i,ℓ,d +

r−d

∑
j=1

χ2
j,i,ℓ,d + γ2

i,ℓ,dδ 2
i,ℓ,dT 2

+
i

∑
j=1

i

∑
k=1

φ j,i,ℓ,dφk,i,ℓ,d +
d−i

∑
j=1

d−i

∑
k=1

ψ j,i,ℓ,dψk,i,ℓ,d

+
r−d

∑
j=1

r−d

∑
k=1

χ j,i,ℓ,d χk,i,ℓ,d + 2
i

∑
j=1

d−i

∑
k=1

φ j,i,ℓ,dψk,i,ℓ,d

+2
i

∑
j=1

r−d

∑
k=1

φ j,i,ℓ,dχk,i,ℓ,d + 2
d−i

∑
j=1

r−d

∑
k=1

ψ j,i,ℓ,d χk,i,ℓ,d

+ 2γi,ℓ,dδi,ℓ,dT

(
i

∑
j=1

φ j,i,ℓ,d +
d−i

∑
j=1

ψ j,i,ℓ,d +
r−d

∑
j=1

χ j,i,ℓ,d

)}

+
N

∑
d=r

1

P(ℓ1,d ≤ Md ≤ ℓ2,d|D = d)

ℓ2,d

∑
ℓ=ℓ1,d

∑ ...∑
zd∈Q∗

2ℓ

d

∑
i=0

C∗
ℓ,dci,d(ad)

θ ℓ
1θ d−ℓ

2

e
−δ ∗

i,ℓ,dT

{
i

∑
j=1

φ2
j,i,ℓ,d

+
d−i

∑
j=1

ψ2
j,i,ℓ,d + γ∗2

i,ℓ,dδ ∗2
i,ℓ,dT 2 +

i

∑
j=1

i

∑
k=1

φ j,i,ℓ,dφk,i,ℓ,d

+
d−i

∑
j=1

d−i

∑
k=1

ψ j,i,ℓ,dψk,i,ℓ,d + 2
i

∑
j=1

d−i

∑
k=1

φ j,i,ℓ,dψk,i,ℓ,d

+2γ∗i,ℓ,dδ ∗
i,ℓ,dT

(
i

∑
j=1

φ j,i,ℓ,d +
d−i

∑
j=1

ψ j,i,ℓ,d

)}
. (21)

Then, using these two expressions, Var(θ̂1) and MSE(θ̂1)
may be easily derived.

The mgf of θ̂1 in (15) may be rewritten as

Mθ̂1
(t) =

r−1

∑
d=0

1

P(ℓ1,r ≤ Mr ≤ ℓ2,r|D = d)




ℓ2,r

∑
ℓ=ℓ1,r

∑ ...∑
zr∈Q∗

1ℓ

d

∑
i=0

Cℓ,rci,d(ad)

θ ℓ
1 θ r−ℓ

2 ωℓ,d

e−δi,ℓ,dT

×
k1

∏
j=1

(1−λ j,i,ℓ,dt)−r j eαi,ℓ,dt

}

+
N

∑
d=r

1

P(ℓ1,d ≤ Md ≤ ℓ2,d|D = d)




ℓ2,d

∑
ℓ=ℓ1,d

∑ ...∑
zd∈Q∗

2ℓ

d

∑
i=0

C∗
ℓ,dci,d(ad)

θ ℓ
1 θ d−ℓ

2

e
−δ ∗

i,ℓ,dT

×
k2

∏
j=1

(1−λ ∗
j,i,ℓ,dt)−s j e

α∗
i,ℓ,dt

}
,

where λ1,i,ℓ,d, . . . ,λk1,i,ℓ,d are the distinct values of
{φ1,i,ℓ,d, ..,φi,i,ℓ,d ,ψ1,i,ℓ,d , ..,ψd−i,i,ℓ,d ,χ1,i,ℓ,d, ..,χr−d,i,ℓ,d}
with frequencies r1, ..,rk1

, respectively, such that
r1 + ...+ rk1

= r, and λ ∗
1,i,ℓ,d , . . . ,λ

∗
k2,i,ℓ,d

are the distinct

values of {φ1,i,ℓ,d . . .φi,i,ℓ,d ,ψ1,i,ℓ,d . . .ψd−i,i,ℓ,d} with
frequencies s1, . . . ,sk2

, respectively, such that
s1 + · · · + sk2

= d, αi,ℓ,d = γi,ℓ,dδi,ℓ,dT and
α∗

i,ℓ,d = γ∗i,ℓ,dδ ∗
i,ℓ,dT.

Then, by using partial fractions method, we can

express the mgf of θ̂1 as

Mθ̂1
(t) =

r−1

∑
d=0

1

P(ℓ1,r ≤ Mr ≤ ℓ2,r|D = d)




ℓ2,r

∑
ℓ=ℓ1,r

∑ ...∑
zr∈Q∗

1ℓ

d

∑
i=0

Cℓ,rci,d(ad)

θ ℓ
1 θ r−ℓ

2 ωℓ,d

e−δi,ℓ,dT

×
k1

∑
j=1

r j

∑
q=1

Aq, j,i,ℓ,d(1−λ j,i,ℓ,dt)−qeαi,ℓ,dt

}

+
N

∑
d=r

1

P(ℓ1,d ≤ Md ≤ ℓ2,d|D = d)




ℓ2,d

∑
ℓ=ℓ1,d

∑ ...∑
zd∈Q∗

2ℓ

d

∑
i=0

C∗
ℓ,dci,d(ad)

θ ℓ
1 θ d−ℓ

2

e
−δ ∗

i,ℓ,dT

×
k2

∑
j=1

s j

∑
q=1

Bq, j,i,ℓ,d(1−λ ∗
j,i,ℓ,dt)−qe

α∗
i,ℓ,dt

}
, (22)

where Aq, j,i,ℓ,d’s are the coefficients obtained by writing

the product ∏
k1
j=1(1 − λ j,i,ℓ,dt)−r j in the partial fraction

form ∑
k1
j=1 ∑

r j

q=1 Aq, j,i,ℓ,d(1−λ j,i,ℓ,dt)−q, and Bq, j,i,ℓ,d’s are

the coefficients obtained by writing the product
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∏
k2
j=1(1 − λ ∗

j,i,ℓ,dt)−s j in the partial fraction form

∑
k2
j=1 ∑

s j

q=1 Bq, j,i,ℓ,d(1−λ ∗
j,i,ℓ,dt)−q.

Since (1− ct)−deAt is the mgf of the random variable
X + A, where X has the gamma distribution with shape
parameter d and scale parameter 1/c, we readily obtain
from the above expression the tail probability of the MLE

θ̂1 as

P ( θ̂1 > b) =
r−1

∑
d=0

1

P(ℓ1,r ≤ Mr ≤ ℓ2,r|D = d)




ℓ2,r

∑
ℓ=ℓ1,r

∑ ...∑
zr∈Q∗

1ℓ

d

∑
i=0

Cℓ,rci,d(ad)

θ ℓ
1θ r−ℓ

2 ωℓ,d

e−δi,ℓ,dT

×
k1

∑
j=1

r j

∑
q=1

Aq, j,i,ℓ,d

(q− 1)!
Γ

(
q,

1

λ j,i,ℓ,d
〈b−αi,ℓ,d〉

)}

+
N

∑
d=r

1

P(ℓ1,d ≤ Md ≤ ℓ2,d|D = d)




ℓ2,d

∑
ℓ=ℓ1,d

∑ ...∑
zd∈Q∗

2ℓ

d

∑
i=0

C∗
ℓ,dci,d(ad)

θ ℓ
1θ d−ℓ

2

e
−δ ∗

i,ℓ,dT

×
k2

∑
j=1

s j

∑
q=1

Bq, j,i,ℓ,d

(q− 1)!
Γ

(
q,

1

λ ∗
j,i,ℓ,d

〈b−α∗
i,ℓ,d〉

)}
, (23)

where 〈x〉 = max{x,0} and Γ (a,z) =
∫ ∞

z ta−1e−tdt is the
incomplete gamma function.

3.1 The exact conditional distribution of θ̂2

Because of the symmetry between θ̂1 and θ̂2, we may write

down the following results for θ̂2 without proof from the

preceding results for θ̂1.
Theorem 8. Conditional on the event A, the mgf of the

MLE θ̂2 is given by

Mθ̂2
(t) =

r−1

∑
d=0

1

P(ℓ1,r ≤ Mr ≤ ℓ2,r|D = d)

ℓ2,r

∑
ℓ=ℓ1,r

∑ ...∑
zr∈Q∗

1ℓ

d

∑
i=0

Cℓ,rci,d(ad)

θ ℓ
1 θ r−ℓ

2 ωℓ,d

i

∏
j=1

(1−φ∗
j,i,ℓ,dt)−1

×
d−i

∏
j=1

(1−ψ∗
j,i,ℓ,dt)−1

r−d

∏
j=1

(1− χ∗
j,i,ℓ,dt)−1e−(1−ξi,ℓ,dt)δi,ℓ,d T

+
N

∑
d=r

1

P(ℓ1,d ≤ Md ≤ ℓ2,d|D = d)

ℓ2,d

∑
ℓ=ℓ1,d

∑ ...∑
zd∈Q∗

2ℓ

d

∑
i=0

C∗
ℓ,dci,d(ad)

θ ℓ
1θ d−ℓ

2

i

∏
j=1

(1−Φ j,i,ℓ,dt)−1

×
d−i

∏
j=1

(1−Ψj,i,ℓ,dt)−1e
−(1−ξ ∗

i,ℓ,dt)δ ∗
i,ℓ,d T , (24)

where

φ∗
j,i,ℓ,d =

∑
d−i+ j

k=d−i+1(1− zk)

(r− ℓ)∑
d−i+ j

k=d−i+1 ak

, ψ∗
j,i,ℓ,d =

∑d−i
k= j(1− zk)

(r− ℓ)∑d−i
k= j ak

,

Φ j,i,ℓ,d =
∑

d−i+ j

k=d−i+1(1− zk)

(d− ℓ)∑
d−i+ j

k=d−i+1 ak

, Ψj,i,ℓ,d =
∑d−i

k= j(1− zk)

(d− ℓ)∑d−i
k= j ak

,

ξ ∗
i,ℓ,d =

n− d+ ℓ+∑d
k=d−i+1(1− zk)

(d − ℓ)δ ∗
i,ℓ,d

,

ξi,ℓ,d =
n− r+ ℓ+∑r

k=d−i+1(1− zk)

(r− ℓ)δi,ℓ,d
,

χ∗
j,i,ℓ,d =

n− r+ ℓ+∑
j
k=1(1− zr−k+1)

(r− ℓ)(m−ℓ
θ1

+ n−r+ℓ
θ2

+
j

∑
k=1

ar−k+1)

.

Theorem 9. Conditional on the event A, the density of the

MLE θ̂2 is given by

fθ̂2
(x) =

r−1

∑
d=0

1

P(ℓ1,r ≤ Mr ≤ ℓ2,r|D = d)




ℓ2,r

∑
ℓ=ℓ1,r

∑ ...∑
zr∈Q∗

1ℓ

d

∑
i=0

Cℓ,rci,d(ad)

θ ℓ
1θ r−ℓ

2 ωℓ,d

e−δi,ℓ,dT gYi,ℓ,d
(x)





+
N

∑
d=r

1

P(ℓ1,d ≤ Md ≤ ℓ2,d|D = d)




ℓ2,d

∑
ℓ=ℓ1,d

∑ ...∑
zd∈Q∗

2ℓ

d

∑
i=0

C∗
ℓ,dci,d(ad)

θ ℓ
1θ d−ℓ

2

e
−δ ∗

i,ℓ,dT
hY∗

i,ℓ,d
(x)



 . (25)

where Yi,ℓ,d
d
= Y1i,ℓ,d

+ Y2i,ℓ,d
+ Y3i,ℓ,d

+ Y4i,ℓ,d
, with

Y1i,ℓ,d
= ∑i

j1=1 Y1 j1 , Y2i,ℓ,d
= ∑d−i

j2=1Y2 j2 and

Y3i,ℓ,d
= ∑r−d

j3=1 Y3 j3 , with Y1 j1 ( j1 = 1, ..., i), Y2 j2

( j2 = 1, ...,d − i) and Y3 j3 ( j3 = 1, ...,r − d) being
independent random variables having exponential
distributions with scale parameters φ∗

j1,i,ℓ,d
, ψ∗

j2,i,ℓ,d
and

χ∗
j3,i,ℓ,d

, respectively, and Y4i,ℓ,d
being a random variable

distributed as degenerate localized at a point ξi,ℓ,dδi,ℓ,dT,

and Y ∗
i,ℓ,d

d
= Y ∗

1i,ℓ,d
+Y ∗

2i,ℓ,d
+Y∗

3i,ℓ,d
, with Y ∗

1i,ℓ,d
= ∑i

j1=1 Y ∗
1 j1

,

Y ∗
2i,ℓ,d

= ∑d−i
j2=1 Y ∗

2 j2
, with Y ∗

1 j1
( j1 = 1, ..., i), and Y ∗

2 j2

( j2 = 1, ...,d − i) being independent random variables
having exponential distributions with scale parameters
Φ j1,i,ℓ,d and Ψj2,i,ℓ,d , respectively, and Y ∗

3i,ℓ,d
being a

random variable distributed as degenerate localized at a
point ξ ∗

i,ℓ,dδ ∗
i,ℓ,dT .
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Corollary 10. From (25), we immediately obtain

E(θ̂2) =
r−1

∑
d=0

1

P(ℓ1,r ≤ Mr ≤ ℓ2,r|D = d)

ℓ2,r

∑
ℓ=ℓ1,r

∑ ...∑
zr∈Q∗

1ℓ

d

∑
i=0

Cℓ,rci,d(ad)

θ ℓ
1θ r−ℓ

2 ωℓ,d

e−δi,ℓ,dT

{
i

∑
j=1

φ∗
j,i,ℓ,d

+
d−i

∑
j=1

ψ∗
j,i,ℓ,d +

r−d

∑
j=1

χ∗
j,i,ℓ,d + ξi,ℓ,dδi,ℓ,dT

}

+
N

∑
d=r

1

P(ℓ1,d ≤ Md ≤ ℓ2,d|D = d)

ℓ2,d

∑
ℓ=ℓ1,d

∑ ...∑
zd∈Q∗

2ℓ

d

∑
i=0

C∗
ℓ,dci,d(ad)

θ ℓ
1θ d−ℓ

2

e
−δ ∗

i,ℓ,dT

{
i

∑
j=1

Φ j,i,ℓ,d

+
d−i

∑
j=1

Ψj,i,ℓ,d + ξ ∗
i,ℓ,dδ ∗

i,ℓ,dT

}
(26)

and

E(θ̂ 2
2 ) =

r−1

∑
d=0

1

P(ℓ1,r ≤ Mr ≤ ℓ2,r|D = d)

ℓ2,r

∑
ℓ=ℓ1,r

∑ ...∑
zr∈Q∗

1ℓ

d

∑
i=0

Cℓ,rci,d(ad)

θ ℓ
1 θ r−ℓ

2 ωℓ,d

e−δi,ℓ,dT

×

{
i

∑
j=1

φ∗2
j,i,ℓ,d +

d−i

∑
j=1

ψ∗2
j,i,ℓ,d +

r−d

∑
j=1

χ∗2
j,i,ℓ,d + ξ 2

i,ℓ,dδ 2
i,ℓ,dT 2

+
i

∑
j=1

i

∑
k=1

φ∗
j,i,ℓ,dφ∗

k,i,ℓ,d +
d−i

∑
j=1

d−i

∑
k=1

ψ∗
j,i,ℓ,dψ∗

k,i,ℓ,d

+
r−d

∑
j=1

r−d

∑
k=1

χ∗
j,i,ℓ,d χ∗

k,i,ℓ,d + 2
i

∑
j=1

d−i

∑
k=1

φ∗
j,i,ℓ,dψ∗

k,i,ℓ,d

+ 2
i

∑
j=1

r−d

∑
k=1

φ∗
j,i,ℓ,dχ∗

k,i,ℓ,d + 2
d−i

∑
j=1

r−d

∑
k=1

ψ∗
j,i,ℓ,d χ∗

k,i,ℓ,d

+ 2ξi,ℓ,dδi,ℓ,dT (
i

∑
j=1

φ∗
j,i,ℓ,d +

d−i

∑
j=1

ψ∗
j,i,ℓ,d +

r−d

∑
j=1

χ∗
j,i,ℓ,d)

}

+
N

∑
d=r

1

P(ℓ1,d ≤ Md ≤ ℓ2,d|D = d)

ℓ2,d

∑
ℓ=ℓ1,d

∑ ...∑
zd∈Q∗

2ℓ

d

∑
i=0

C∗
ℓ,dci,d(ad)

θ ℓ
1 θ d−ℓ

2

e
−δ ∗

i,ℓ,dT

×

{
i

∑
j=1

Φ2
j,i,ℓ,d +

d−i

∑
j=1

Ψ2
j,i,ℓ,d +

i

∑
j=1

i

∑
k=1

Φ j,i,ℓ,dΦk,i,ℓ,d

+
d−i

∑
j=1

d−i

∑
k=1

Ψj,i,ℓ,dΨk,i,ℓ,d + 2
i

∑
j=1

d−i

∑
k=1

Φ j,i,ℓ,dΨk,i,ℓ,d

+ ξ ∗2
i,ℓ,dδ ∗2

i,ℓ,dT 2 + 2ξ ∗
i,ℓ,dδ ∗

i,ℓ,dT (
i

∑
j=1

Φ j,i,ℓ,d +
d−i

∑
j=1

Ψj,i,ℓ,d)

}
.

(27)

Then, using these two expressions, Var(θ̂2) and MSE(θ̂2)
may be easily derived.

Corollary 11. The tail probability of the MLE θ̂2 is
calculated as follows:

P(θ̂2 > b) =
r−1

∑
d=0

1

P(ℓ1,r ≤ Mr ≤ ℓ2,r|D = d)




ℓ2,r

∑
ℓ=ℓ1,r

∑ ...∑
zr∈Q∗

1ℓ

d

∑
i=0

Cℓ,rci,d(ad)

θ ℓ
1 θ r−ℓ

2 ωℓ,d

e−δi,ℓ,dT

×
k1

∑
j=1

r j

∑
q=1

A∗
q, j,i,ℓ,d

(q− 1)!
Γ (q,

1

ρ j,i,ℓ,d
〈b−βi,ℓ,d〉)

}

+
N

∑
d=r

1

P(ℓ1,d ≤ Md ≤ ℓ2,d|D = d)




ℓ2,d

∑
ℓ=ℓ1,d

∑ ...∑
zd∈Q∗

2ℓ

d

∑
i=0

C∗
ℓ,dci,d(ad)

θ ℓ
1θ d−ℓ

2

e
−δ ∗

i,ℓ,dT

×
k2

∑
j=1

s j

∑
q=1

B∗
q, j,i,ℓ,d

(q− 1)!
Γ (q,

1

ρ∗
j,i,ℓ,d

〈b−β ∗
i,ℓ,d〉)

}
, (28)

where ρ1,i,ℓ,d, . . . ,ρk1,i,ℓ,d are the distinct values of
{φ∗

1,i,ℓ,d, . . . ,φ
∗
i,i,ℓ,d ,ψ

∗
1,i,ℓ,d , . . . ,ψ

∗
d−i,i,ℓ,d,χ

∗
1,i,ℓ,d , . . . ,

χ∗
r−d,i,ℓ,d} with frequencies r1, . . . ,rk1

, respectively, such

that r1 + · · · + rk1
= r, and ρ∗

1,i,ℓ,d, . . . ,ρ
∗
k2,i,ℓ,d

are the

distinct values of {Φ1,i,ℓ,d . . .Φi,i,ℓ,d ,Ψ1,i,ℓ,d . . .Ψd−i,i,ℓ,d}
with frequencies s1, . . . ,sk2

, respectively, such that
s1 + · · · + sk2

= d, βi,ℓ,d = ξi,ℓ,dδi,ℓ,dT and
β ∗

i,ℓ,d = ξ ∗
i,ℓ,dδ ∗

i,ℓ,dT , and A∗
q, j,i,ℓ,d’s are the coefficients

obtained by writing the product ∏
k1
j=1(1− ρ j,i,ℓ,dt)−r j in

the partial fraction form

∑
k1
j=1 ∑

r j

q=1 A∗
q, j,i,ℓ,d(1 − ρ j,i,ℓ,dt)−q, and B∗

q, j,i,ℓ,d’s are the

coefficients obtained by writing the product

∏
k2
j=1(1 − ρ∗

j,i,ℓ,dt)−s j in the partial fraction form

∑
k2
j=1 ∑

s j

q=1 B∗
q, j,i,ℓ,d(1−ρ∗

j,i,ℓ,dt)−q.

3.2 The exact conditional joint distribution of

(θ̂1, θ̂2)

We can obtain the conditional joint mgf of (θ̂1, θ̂2) by
using the same steps as we did for conditional marginal
distributions.
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Theorem 12. Conditional on the event A, the joint mgf of

(θ̂1, θ̂2) is given by

Mθ̂1,θ̂2
(t1, t2) =

r−1

∑
d=0

1

P(ℓ1,r ≤ Mr ≤ ℓ2,r|D = d)

ℓ2,r

∑
ℓ=ℓ1,r

∑ ...∑
zr∈Q∗

1ℓ

d

∑
i=0

Cℓ,rci,d(ad)

θ ℓ
1θ r−ℓ

2 ωℓ,d

e−(1−{γi,ℓ,dt1+ξi,ℓ,dt2})δi,ℓ,dT

×
i

∏
j=1

(1−{φ j,i,ℓ,dt1 +φ∗
j,i,ℓ,dt2})

−1

×
d−i

∏
j=1

(1−{ψ j,i,ℓ,dt1 +ψ∗
j,i,ℓ,dt2})

−1

×
r−d

∏
j=1

(1−{χ j,i,ℓ,dt1 + χ∗
j,i,ℓ,dt2})

−1

+
N

∑
d=r

1

P(ℓ1,d ≤ Md ≤ ℓ2,d|D = d)

ℓ2,d

∑
ℓ=ℓ1,d

∑ ...∑
zd∈Q∗

2ℓ

d

∑
i=0

C∗
ℓ,dci,d(ad)

θ ℓ
1 θ d−ℓ

2

e
−(1−{γ∗i,ℓ,dt1+ξ ∗

i,ℓ,dt2})δ
∗
i,ℓ,dT

×
i

∏
j=1

(1−{φ j,i,ℓ,dt1 +Φ j,i,ℓ,dt2})
−1

×
d−i

∏
j=1

(1−{ψ j,i,ℓ,dt1 +Ψj,i,ℓ,dt2})
−1. (29)

Corollary 13. From (29), we can readily obtain

E(θ̂1θ̂2) =
r−1

∑
d=0

1

P(ℓ1,r ≤ Mr ≤ ℓ2,r|D = d)

ℓ2,r

∑
ℓ=ℓ1,r

∑ ...∑
zr∈Q∗

1ℓ

d

∑
i=0

Cℓ,rci,d(ad)

θ ℓ
1 θ r−ℓ

2 ωℓ,d

e−δi,ℓ,dT

×

{
i

∑
j=1

φ j,i,ℓ,dφ∗
j,i,ℓ,d +

d−i

∑
j=1

ψ j,i,ℓ,dψ∗
j,i,ℓ,d

+
r−d

∑
j=1

χ j,i,ℓ,dχ∗
j,i,ℓ,d +

i

∑
j=1

φ j,i,ℓ,d

(
i

∑
k=1

φ∗
k,i,ℓ,d

+
d−i

∑
k=1

ψ∗
k,i,ℓ,d +

r−d

∑
k=1

χ∗
k,i,ℓ,d + ξi,ℓ,dδi,ℓ,dT

)

+
d−i

∑
j=1

ψ j,i,ℓ,d(
i

∑
k=1

φ∗
k,i,ℓ,d +

d−i

∑
k=1

ψ∗
k,i,ℓ,d +

r−d

∑
k=1

χ∗
k,i,ℓ,d

+ ξi,ℓ,dδi,ℓ,dT )+
r−d

∑
j=1

χ j,i,ℓ,d(
i

∑
k=1

φ∗
k,i,ℓ,d +

d−i

∑
k=1

ψ∗
k,i,ℓ,d

+
r−d

∑
k=1

χ∗
k,i,ℓ,d + ξi,ℓ,dδi,ℓ,dT )+ γi,ℓ,dδi,ℓ,dT (

i

∑
k=1

φ∗
k,i,ℓ,d

+
d−i

∑
k=1

ψ∗
k,i,ℓ,d +

r−d

∑
k=1

χ∗
k,i,ℓ,d + ξi,ℓ,dδi,ℓ,dT )

}

+
N

∑
d=r

1

P(ℓ1,d ≤ Md ≤ ℓ2,d |D = d)

ℓ2,d

∑
ℓ=ℓ1,d

∑ ...∑
zd∈Q∗

2ℓ

d

∑
i=0

C∗
ℓ,dci,d(ad)

θ ℓ
1 θ d−ℓ

2

e
−δ ∗

i,ℓ,dT

×

{
i

∑
j=1

φ j,i,ℓ,dΦ j,i,ℓ,d +
d−i

∑
j=1

ψ j,i,ℓ,dΨj,i,ℓ,d

+
i

∑
j=1

φ j,i,ℓ,d(
i

∑
k=1

Φk,i,ℓ,d +
d−i

∑
k=1

Ψk,i,ℓ,d + ξ ∗
i,ℓ,dδ ∗

i,ℓ,dT )

+
d−i

∑
j=1

ψ j,i,ℓ,d(
i

∑
k=1

Φk,i,ℓ,d +
d−i

∑
k=1

Ψk,i,ℓ,d + ξ ∗
i,ℓ,dδ ∗

i,ℓ,dT )

+ γ∗i,ℓ,dδ ∗
i,ℓ,dT (

i

∑
k=1

Φk,i,ℓ,d +
d−i

∑
k=1

Ψk,i,ℓ,d + ξ ∗
i,ℓ,dδ ∗

i,ℓ,dT )

}
,

(30)

from which the covariance and correlation coefficient
between the MLEs θ̂1 and θ̂2 can also be readily obtained.

3.3 Confidence intervals

We discuss various approaches for forming CIs for the
unknown parameters θ1 and θ2 in this subsection. We
derive the exact CIs for θ1 and θ2 using (23) and (28),
respectively. We also provide the approximate CIs for θ1

and θ2 for larger sample sizes. Finally, we construct
credible CIs for θ1 and θ2 using the Bayesian technique.

3.3.1 Exact confidence intervals

To guarantee the invertibility for the parameters θ1 and

θ2, we assume that the tail probabilities of θ̂1 and θ̂2

presented in (23) and (28) are increasing functions of θ1

and θ2, respectively. This approach has been utilised in
other works, including [8] and [15], to create the exact CI
in different contexts. We then have a 100(1 − α)%
confidence interval for θ1 is (θ1L, θ1U ), where θ1L and
θ1U are such that Pθ1L

(θ̂1 > θ̂1obs) = α
2

and

Pθ1U
(θ̂1 > θ̂1obs) = 1− α

2
with θ̂1obs being the observed

values of θ̂1. Also, we have a 100(1− α)% confidence
interval for θ2 is (θ2L, θ2U ), where θ2L and θ2U are such
that Pθ2L

(θ̂2 > θ̂2obs) =
α
2

and Pθ2U
(θ̂1 > θ̂2obs) = 1− α

2

with θ̂2obs being the observed values of θ̂2.

3.3.2 Approximate confidence intervals

For large m and n, the Fisher information matrix of θ1 and
θ2 is

I(θ1,θ2) =

[
I11(θ1,θ2) Î12(θ1,θ2)
I21(θ1,θ2) Î22(θ1,θ2)

]
, (31)
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where

Ii j(θ1,θ2) =−E

{
∂ 2lnL(θ1,θ2,z,w)

∂θi∂θ j

}
, i, j = 1,2.

From the likelihood function L(θ1,θ2,z,w) in (3), it is
simply to get I12(θ1,θ2) = I21(θ1,θ2) = 0, and the
observed Fisher information matrix of θ1 and θ2 is then
given by

I(θ1,θ2) =


−∂ 2lnL(θ1,θ2,z,w)

∂θ 2
1

0

0
−∂ 2lnL(θ1,θ2,z,w)

∂θ 2
2

)




θ1=θ̂1,θ2=θ̂2

(32)

where
∂ 2lnL(θ1,θ2,z,w)

∂θ 2
1

=
mr∗

θ 2
1

−
2u1

θ 3
1

and
∂ 2lnL(θ1,θ2,z,w)

∂θ 2
2

=
nr∗

θ 2
2

−
2u2

θ 3
2

.

Then, by using the asymptotic normality of the MLEs,
we can express the two-sided 100(1−α)% approximate
CI for θ1 and θ2 as

θ̂1 ±Zα/2

r∗

∑
i=1

ziwi +(m−mr∗)T
∗

√
{

r∗

∑
i=1

zi}3

and

θ̂2 ±Zα/2

r∗

∑
i=1

(1− zi)wi +(n− nr∗)T
∗

√
{

r∗

∑
i=1

(1− zi)}3

,

where Zα/2 is the upper α/2 percentile of the standard
normal distribution.

3.3.3 Bayes credible confidence intervals

From a Bayesian perspective, the prior distributions of θ1

and θ2 can be viewed as independent inverse gamma prior
distributions, namely IG(a1,b1) and IG(a2,b2),
respectively. The joint prior function of θ1 and θ2 is then

π(θ1,θ2) ∝
1

θ a1+1
1 θ a2+1

2

e−(b1/θ1+b2/θ2). (33)

From the likelihood function in (3) and the joint prior
function in (33), we have posterior joint density function
as

π(θ1,θ2|x) =
(u1 + b1)

mr∗+a1(u2 + b2)
nr∗+a2

Γ (mr∗ + a1)Γ (nr∗ + a2)

×
1

θ
mr∗+a1+1

1

e−(u1+b1)/θ1
1

θ
nr∗+a2+1

2

e−(u2+b2)/θ2 . (34)

We can see from (34) that the joint posterior density
function of (θ1, θ2) is a product of two independent
density functions, and so the marginal posterior density
functions of θ1 and θ2, given the data, are
IG(mr∗ + a1,u1 + b1) and IG(nr∗ + a2,u2 + b2),
respectively. As a result, the Bayes estimators for θ1 and
θ2 under the squared error loss function are

θ̂1 =
u1 + b1

mr∗ + a1 − 1
and θ̂2 =

u2 + b2

nr∗ + a2 − 1
. (35)

Let V1 =
2(u1+b1)

θ1
and V2 =

2(u2+b2)
θ2

. Evidently, the pivots

V1 and V2 follow χ2
2(mr∗+a1)

and χ2
2(nr∗+a2)

distributions,

respectively, provided 2(mr∗ + a1) and 2(nr∗ + a2) are
positive integers. In this case, the 100(1 − α)% Bayes
credible intervals for θ1 and θ2 are

(
2(u1 + b1)

χ2
2(mr∗+a1),1−α/2

,
2(u1 + b1)

χ2
2(mr∗+a1),α/2

)

and

(
2(u2 + b2)

χ2
2(nr∗+a2),1−α/2

,
2(u2 + b2)

χ2
2(nr∗+a2),α/2

). (36)

4 Results and discussion

In this section, we analyse the performance of the two
estimation methods as well as the three confidence
intervals using Monte Carlo simulation. There are also
some numerical results that are based on real data.

4.1 Monte Carlo simulation

To evaluate the performance of the conditional ML and
Bayesian estimates, as well as the three confidence
intervals stated in the prior sections, a simulation study
was done. We evaluated using five different sample sizes
(m, n) and several choices for r and T . We also chose (2,
5) and (1, 3) as the exponential scale parameters (θ1, θ2).
We then calculated conditional ML and Bayesian
estimates of θ1 and θ2 for each of these cases. In addition,
for θ1 and θ2, we calculated the 95% exact, approximate
and Bayes credible confidence intervals.

We calculated the means θ̂1 and θ̂2 of the conditional
ML and Bayesian estimates, as well as their mean square
errors (MSE) and the average widths (AW) of 95%
confidence intervals and the associated coverage
probabilities (CP), by repeating the process 1000 times.
Table 1 shows the means and mean square errors of
conditional ML and Bayesian estimates for θ1 = 2 and
θ2 = 5. When θ1 = 1 and θ2 = 3, the means and mean
square errors of the conditional ML and Bayesian
estimates are provided in Table 2. Table 3 shows the
average widths and coverage probability of 95%
confidence intervals for θ1 = 2 and θ2 = 5. When θ1 = 1
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Table 1: The average values and the mean square errors of the

conditional ML and Bayesian estimates when θ1 = 2 and θ2 = 5,

for different choices of m, n, r and T .

θ1 θ2

ML Bayesian ML Bayesian

(m,n) r T θ̂1 MSE1 θ̂1 MSE1 θ̂2 MSE2 θ̂2 MSE2

(6,6) 6 4 2.235 2.017 2.137 0.839 6.572 26.256 5.613 7.291

6 2.117 1.081 2.098 0.715 6.018 19.336 5.497 6.819

8 2.077 0.937 2.072 0.628 5.651 11.042 5.377 5.163

10 2.054 0.832 2.054 0.572 5.414 7.215 5.292 4.742

20 2.042 0.795 2.044 0.539 5.156 4.840 5.079 3.154

(10,8) 9 4 2.125 0.977 2.094 0.829 6.073 19.185 5.621 7.310

6 2.078 0.547 2.052 0.417 5.594 8.998 5.430 5.668

8 2.058 0.494 2.038 0.383 5.404 7.133 5.294 4.575

10 2.052 0.477 2.035 0.378 5.316 5.971 5.260 4.348

20 2.042 0.444 2.026 0.356 5.132 3.632 5.058 2.936

(12,12) 12 4 2.075 0.520 2.072 0.393 5.727 8.284 5.491 4.733

6 2.051 0.426 2.048 0.345 5.423 4.971 5.296 3.399

8 2.033 0.366 2.030 0.306 5.267 3.487 5.188 2.675

10 2.030 0.357 2.027 0.301 5.225 3.115 5.157 2.491

20 2.028 0.345 2.023 0.295 5.094 2.398 5.044 1.944

(15,12) 15 4 2.089 0.371 2.085 0.326 5.645 10.614 5.448 5.569

6 2.064 0.320 2.059 0.286 5.316 4.546 5.224 3.670

8 2.048 0.296 2.044 0.266 5.189 3.337 5.118 2.777

10 2.041 0.285 2.038 0.259 5.149 3.123 5.096 2.643

20 2.035 0.279 2.033 0.251 5.008 2.268 5.004 2.034

(15,15) 18 4 2.057 0.362 2.037 0.300 5.602 6.494 5.502 4.429

6 2.035 0.316 2.018 0.269 5.363 3.856 5.329 3.062

8 2.020 0.286 2.006 0.249 5.260 2.874 5.254 2.429

10 2.014 0.275 2.002 0.238 5.225 2.513 5.223 2.210

20 2.011 0.274 2.001 0.235 5.190 1.842 5.113 1.662

and θ2 = 3, the average widths and coverage probabilities
of 95% confidence intervals are reported in Table 4.

We can see from the results in Tables 1 and 2 that the
estimate of θ1 is highly consistent even for smaller T ,
whereas the estimate of θ2 only becomes stable for
greater T . This is to be predicted because when θ1 is
smaller than θ2, when T is small, the exponential
population with parameter θ1 would have caused the
majority of the failures seen, whereas the exponential
population with parameter θ2 would have caused very few
failures. As one would predict, when T is increased, the
biases and mean square errors of the Bayesian estimates
are also fewer than those of the ML estimates for all
various choices of m, n, r, and T . Furthermore, even for
small m and n, all estimates’ biases and mean square
errors diminish as T increases.

Tables 3 and 4 show that the exact conditional method
always has a roughly 95% coverage probability, whereas
the approximate method is not at all adequate (as low as
88% in some cases). We also notice that the Bayesian
technique has relatively consistent coverage probabilities
(near to the nominal level of 95%); nevertheless, when m

and n are both small, all of these methods have reduced
coverage probability. As a result, even for small m and n,
the average widths of all confidence intervals diminish as
T is increased.

Table 2: The average values and the mean square errors of the

conditional ML and Bayesian estimates when θ1 = 1 and θ2 = 3,

for different choices of m, n, r and T .

θ1 θ2

ML Bayesian ML Bayesian

(m,n) r T θ̂1 MSE1 θ̂1 MSE1 θ̂2 MSE2 θ̂2 MSE2

(6,6) 6 2 1.119 0.507 1.069 0.210 4.037 9.232 3.380 2.605

3 1.059 0.271 1.050 0.179 3.715 7.373 3.323 2.493

4 1.037 0.234 1.036 0.157 3.503 5.576 3.265 2.262

5 1.028 0.208 1.027 0.143 3.376 3.958 3.223 1.878

10 1.021 0.199 1.021 0.135 3.115 1.823 3.064 1.216

(10,8) 9 2 1.063 0.170 1.047 0.133 3.813 8.333 3.419 2.890

3 1.039 0.137 1.026 0.104 3.505 5.569 3.323 2.526

4 1.029 0.123 1.019 0.096 3.311 3.044 3.228 1.907

5 1.026 0.119 1.017 0.095 3.232 2.536 3.177 1.689

10 1.021 0.111 1.013 0.089 3.142 1.392 3.054 1.120

(12,12) 12 2 1.038 0.130 1.035 0.098 3.543 3.521 3.364 2.101

3 1.021 0.107 1.024 0.086 3.324 2.295 3.219 1.377

4 1.009 0.091 1.014 0.076 3.215 1.515 3.156 1.156

5 1.007 0.089 1.013 0.075 3.159 1.263 3.113 0.959

10 1.004 0.086 1.011 0.074 3.065 0.887 3.034 0.719

(15,12) 15 2 1.042 0.093 1.042 0.081 3.499 4.662 3.329 2.456

3 1.029 0.080 1.029 0.071 3.265 2.165 3.194 1.565

4 1.022 0.074 1.022 0.066 3.159 1.490 3.111 1.192

5 1.019 0.071 1.019 0.065 3.110 1.198 3.068 0.998

10 1.017 0.070 1.016 0.063 3.021 0.877 3.008 0.769

(15,15) 18 2 1.028 0.090 1.018 0.070 3.471 3.154 3.363 1.945

3 1.018 0.079 1.009 0.067 3.279 1.925 3.245 1.363

4 1.010 0.072 1.003 0.062 3.199 1.231 3.179 0.992

5 1.007 0.069 1.002 0.059 3.154 1.013 3.152 0.859

10 1.005 0.068 1.001 0.058 3.069 0.700 3.083 0.645

Table 3: The average widths and the coverage probabilities of

95% confidence intervals when θ1 = 2 and θ2 = 5, for different

choices of m, n and T .

θ1 θ2

Exact Approx. Bayesian Exact Approx. Bayesian

(m,n) r T CP AW CP AW CP AW CP AW CP AW CP AW

(6,6) 6 4 94.8 4.53 87.7 4.17 95.3 3.67 93.9 20.67 88.7 17.75 91.7 10.77

6 94.8 4.12 87.6 3.57 94.7 3.39 94.3 15.81 89.9 13.39 91.9 9.54

8 95.1 3.85 87.6 3.39 94.9 3.26 94.5 13.34 88.2 11.00 91.5 8.68

10 94.9 3.73 87.6 3.30 95.0 3.19 94.1 11.92 88.1 9.75 91.0 8.17

20 94.8 3.51 87.6 3.25 95.2 3.15 94.4 9.82 88.0 8.38 91.3 7.20

(10,8) 9 4 94.2 3.65 90.5 2.93 93.0 2.80 95.3 16.90 89.2 13.61 93.1 9.83

6 94.7 3.25 90.8 2.68 93.6 2.58 94.7 12.51 88.3 10.17 92.4 8.41

8 94.6 3.15 90.7 2.59 93.6 2.51 94.5 10.63 87.9 8.93 91.5 7.60

10 94.5 3.01 90.7 2.56 93.8 2.49 94.4 9.82 87.1 8.30 91.3 7.25

20 94.8 2.93 90.7 2.53 93.8 2.46 94.5 8.54 87.3 7.08 91.5 6.39

(12,12) 12 4 95.3 3.43 90.6 2.59 94.8 2.53 95.2 11.93 91.5 9.71 93.3 8.02

6 94.6 3.09 90.3 2.40 94.3 2.36 94.6 9.69 92.0 7.78 93.0 6.79

8 94.7 3.00 90.3 2.31 94.6 2.29 94.5 8.75 92.3 6.90 92.3 6.18

10 95.2 2.92 90.2 2.29 94.9 2.27 94.3 7.87 91.7 6.52 92.1 5.90

20 95.2 2.85 90.3 2.27 94.8 2.25 94.1 7.26 91.5 5.85 92.0 5.36

(15,12) 15 4 94.7 3.24 93.5 2.31 95.9 2.28 94.0 10.84 90.7 9.67 92.2 7.99

6 94.8 2.97 93.1 2.16 95.9 2.13 94.3 9.06 91.4 7.58 92.3 6.69

8 95.3 2.92 93.1 2.10 95.5 2.07 93.8 8.16 91.2 6.78 90.9 6.08

10 94.8 2.88 93.1 2.07 95.5 2.05 94.1 7.40 90.2 6.42 91.1 5.82

20 94.9 2.81 93.1 2.06 95.1 2.03 93.9 7.00 90.6 5.74 91.0 5.30

(15,15) 18 4 95.2 3.01 93.1 2.28 95.9 2.22 95.2 9.81 92.9 8.34 94.3 7.32

6 94.8 2.91 92.7 2.13 94.8 2.08 94.6 8.06 92.8 6.81 93.8 6.21

8 94.6 2.89 92.6 2.07 94.8 2.03 95.3 7.53 92.9 6.14 94.1 5.69

10 94.7 2.82 92.6 2.05 95.4 2.10 94.7 7.01 93.7 5.80 93.8 5.42

20 94.4 2.75 92.5 2.04 95.2 2.00 94.5 6.55 93.4 5.22 93.5 4.92

4.2 Numerical example

We will use the data in [1] (Table 4.1, p. 462) to illustrate
all of the inferential results established for the exponential
distribution. The original data was 60 times to breakdown
of an insulating fluid subjected to high-voltage stress. The
data set is divided into 6 groups, each containing 10
insulating fluids. The two groups 1 and 4 are considered
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Table 4: The average widths and the coverage probabilities of

95% confidence intervals when θ1 = 1 and θ2 = 3, for different

choices of m, n and T .
θ1 θ2

Exact Approx. Bayesian Exact Approx. Bayesian

(m,n) r T CP AW CP AW CP AW CP AW CP AW CP AW

(6,6) 6 2 94.8 2.34 87.8 2.09 95.2 1.84 93.5 12.84 90.7 11.78 91.5 6.76

3 95.3 2.22 87.5 1.79 94.7 1.69 93.8 9.81 89.0 8.92 92.6 6.02

4 94.8 2.17 87.6 1.70 94.9 1.63 93.7 8.87 89.1 7.39 91.8 5.51

5 95.1 2.10 87.6 1.65 95.0 1.59 93.4 7.12 88.2 6.51 91.1 5.16

10 94.9 1.98 87.6 1.63 95.2 1.57 93.5 6.74 88.0 5.15 91.2 4.40

(10,8) 9 2 94.4 1.50 90.3 1.46 93.0 1.40 95.2 10.21 89.9 9.41 94.4 6.33

3 94.7 1.41 90.4 1.34 93.6 1.29 94.3 8.90 90.0 7.04 92.9 5.47

4 94.7 1.34 90.4 1.29 93.6 1.26 93.7 6.87 87.9 5.78 91.9 4.86

5 94.8 1.31 90.4 1.28 93.8 1.24 93.5 6.51 87.7 5.27 91.1 4.53

10 94.8 1.29 90.4 1.26 93.8 1.23 93.3 5.22 87.3 4.33 91.2 3.91

(12,12) 12 2 95.2 1.33 90.6 1.29 94.8 1.26 94.6 7.05 91.2 6.53 93.4 5.26

3 94.8 1.28 90.2 1.20 94.3 1.18 94.7 6.14 91.8 5.10 93.9 4.35

4 94.1 1.27 90.2 1.15 94.6 1.14 93.8 5.26 91.4 4.43 92.7 3.94

5 95.0 1.20 90.2 1.14 94.9 1.13 94.5 5.01 91.8 4.09 92.2 3.68

10 94.9 1.19 90.2 1.13 94.8 1.13 95.5 4.35 91.5 3.55 92.3 3.25

(15,12) 15 2 94.8 1.18 93.5 1.16 95.9 1.14 95.3 6.49 91.3 6.06 93.5 5.23

3 95.2 1.11 93.1 1.08 95.9 1.06 94.5 5.45 91.1 5.00 92.4 4.33

4 94.6 1.09 93.1 1.05 95.5 1.03 94.2 5.07 90.7 4.35 91.6 3.87

5 94.6 1.07 93.1 1.04 95.5 1.02 94.1 4.81 90.9 4.03 91.2 3.62

10 94.5 1.05 93.1 1.03 95.3 1.02 94.5 4.05 90.7 3.51 91.3 3.23

(15,15) 18 2 94.8 1.16 93.1 1.14 95.2 1.11 95.3 6.01 92.4 5.66 94.5 4.80

3 95.3 1.09 92.7 1.07 94.8 1.04 94.5 5.10 93.1 4.46 93.9 4.00

4 95.2 1.07 92.6 1.04 94.8 1.01 94.4 4.72 93.3 3.93 93.6 3.60

5 94.9 1.04 92.6 1.02 95.4 1.00 94.8 4.12 92.9 3.65 94.1 3.38

10 94.9 1.03 92.5 1.02 95.2 1.00 94.7 3.86 93.4 3.18 93.3 3.00

here, and the associated failure times data are shown in
Table 5.

Table 5: Groups 1 and 4 of the times to breakdown of insulating

fluids from Nelson (1982).

Group 1 1.89 4.03 1.54 0.31 0.66 1.70 2.17 1.82 9.99 2.24

Group 4 1.17 3.87 2.80 0.70 3.82 0.02 0.50 3.72 0.06 3.57

We assume these data come from two exponential
populations, each having a mean of 2.6 and 2. Assume
that, on groups 1 and 4, joint Type-II hybrid censoring
with r = 5 and T as 1, 2, 3, 4, and 7 occurred. The
conditional ML estimates of θ1 and θ2, as well as the
estimates of their standard deviations and mean square
errors, were then computed for all T choices. In addition,
we computed Bayesian estimates of θ1 and θ2 using an
informative prior with (a1,b1,a2,b2) = (2,2,2,3), and
the results are shown in Table 6. For all choices of T , the
95% exact, approximate, and Bayes credible confidence
intervals for θ1 and θ2 are calculated and reported in
Table 7.

Table 6 shows that the biases and mean square errors
of the Bayesian estimates are fewer than those of the ML
estimates for all different choices of T . We also notice that
when T increases, the biases and mean square errors of all
estimations reduce.

We can see from Tables 7 that the approximate
confidence intervals are not as efficient as the exact
conditional confidence intervals obtained from Section 2
results. We also see that Bayesian approaches produce

Table 6: The Bayesian and ML estimates of θ1 and θ2 and

the corresponding standard deviations, mean square errors, and

correlation coefficient based on groups 1 and 4.

T θ̂1ML θ̂1B SDθ̂1
MSEθ̂1

θ̂2ML θ̂2B SDθ̂2
MSEθ̂2

ρ(θ̂1, θ̂2)

1 4.49 3.66 1.74 3.71 1.82 1.86 4.53 22.14 -0.10

2 2.65 2.56 1.53 3.35 2.49 2.41 4.26 20.38 -0.05

3 2.29 2.26 1.43 2.89 2.88 2.75 3.82 19.16 0.06

4 2.54 2.48 1.36 2.18 2.02 2.03 3.20 18.55 0.08

7 2.60 2.54 1.21 1.91 2.03 2.02 2.99 17.84 0.11

Table 7: The 95% exact, approximate and Bayes credible

confidence intervals for θ1 and θ2 for different choices of T based

on groups 1 and 4.
θ1 θ2

T Exact Approx. Bayesian Exact Approx. Bayesian

1 (0.00, 8.43) (0.000, 10.67) (1.25, 10.07) (0.52, 2.94) (0.05, 3.60) (0.80, 3.76)

2 (0.65, 3.01) (0.541, 4.76) (1.24, 5.19) (0.62, 3.97) (0.32, 4.66) (1.11, 4.78)

3 (0.87, 2.93) (0.711, 3.87) (1.19, 4.24) (0.81, 4.70) (0.59, 5.16) (1.34, 5.28)

4 (0.95, 3.54) (0.789, 4.29) (1.31, 4.66) (1.02, 2.82) (0.78, 3.27) (1.12, 3.43)

7 (1.00, 3.73) (0.908, 4.28) (1.38, 4.62) (1.12, 2.81) (0.78, 3.27) (1.13, 3.42)

findings that are quite close to exact confidence intervals.
As a result, we see that the widths of all confidence
intervals shrink as T increases.

5 Conclusions

The issue of deriving the exact distributions of maximum
likelihood estimators when Type-II hybrid censoring is
used on two samples from two exponential populations in
a combined manner was discussed in this paper. The
conditional maximum likelihood and Bayesian estimators
of the two unknown exponential mean parameters were
first calculated. The conditional moment generating
functions and conditional exact distributions of the
maximum likelihood estimators were then calculated. We
also calculated the exact, approximation, and Bayes
credible confidence intervals for the two unknown
parameters. Finally, using real data, we provided a Monte
Carlo simulation study as well as some numerical results.
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