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Abstract: When Type-II hybrid censoring is used on two samples in a combined manner, the exact inference for two exponential
populations is developed in this paper. The two unknown exponential mean parameters’ conditional maximum likelihood and Bayesian
estimators are determined. The maximum likelihood estimators’ conditional moment generating functions and conditional exact
distributions are then calculated. For the unknown parameters, the exact, approximate, and Bayes credible confidence intervals are
also constructed. In addition, a Monte Carlo simulation study is carried out to evaluate the performance of the two estimation methods
and also the three confidence intervals. Finally, using a real data set, some numerical results are presented.
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1 Introduction

Due to a variety of factors, the experimenter may choose
to end the experiment before failing all units on the test in
reliability analysis. Censored data refers to the results of
such experiments. There are numerous different types of
censoring schemes, with Type-I and Type-II being the
most frequent. The experimenter terminates the life
testing experiment at a pre-determined time 7 in the
Type-1 censoring scheme, whereas the experimenter
terminates the life testing experiment at the time of the 7"
failure in the Type-II censoring method. Surveys of
censorship schemes can be found in papers [1,2,3,4,5].
Epstein [6] proposed the Type-I hybrid censoring
scheme (Type-I HCS), in which the life testing
experiment is ended after a pre-determined number r out
of n items fails or a pre-determined time 7 on test is
reached. MIL-STD-781 C [7] has employed the Type-I
HCS as a reliability acceptance test. However, the Type-I
HCS may result in the data having too few observations.
As a result, Childs et al. [8] presented the Type-II hybrid
censoring scheme (Type-II HCS), in which the life-testing
experiment ends when one of the aforementioned two
termination rules is achieved. It is better to employ
Type-II HCS since it guarantees that the number of
observations in the data is at least r, resulting in more

efficient inferential processes than Type-I HCS. The
literature on hybrid censoring and associated inferential
approaches is vast; see, for example, [9,10,11]. The new
discussion paper [12] provides an in-depth review of
different developments in hybrid censoring approach and
its applications.

We can utilise the joint Type-II censoring scheme to
perform comparative life-tests of items from different
lines of manufacturing. Assume two independent samples
of sizes m and n are chosen from two product lines and
placed on a life-testing experiment at the same time.
Under the joint Type-II censoring scheme, the experiment
is ended after a pre-specified number of failures are
recorded. Balakrishnan and Rasouli [13] studied the exact
inference using a joint Type-II censored sample from two
exponential  populations. They established exact
inferential methods based on maximum likelihood (ML)
estimators and compared their performance to that of
other approaches such as Bayesian and bootstrap; for a
generalization of their results to progressive Type-II
censoring, see paper [14]. In this paper, we extend these
findings to the scenario where the two samples are
censored using a joint Type-II hybrid censoring scheme.

The following is a description of this model. Assume
that X1, ..., X, are the lifetimes of m specimens of product
A and they are independent and identically distributed
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(iid) random variables derived from the distribution
function F(x) and density function f(x). Assume that
Y1,...,Y, are the lifetimes of n specimens of product B and
they are iid random variables derived from the
distribution function G(x) and the density function g(x).
Assume that W) < ... < Wy denote the order statistics of
the combined sample of N = m + n random variables
{Xi1,..s Xm;Y1,..., Y}, and the experiment ends at time
T* = max{W,,T}, where | <r <N and T € (0, o) are
pre-determined.

Let D represent the total number of failures up to 7.
Then D is a discrete random variable with the following
probability mass function

minf,d) (m) ( n ) L
= pitq™
k=max(0,d—n) k d—k

pzdiqunid‘%k, d:07]7"')N) (])

F(T), p = G(T) and g, =

P(D=d)

where p; = F(T), ¢ = 1—
1-G(T).

Therefore, under the joint Type-II hybrid censoring
scheme described above, the observable data consist of
(Z,W) where Z = (Z,....,Z+) and W = (W},...,W;+)
with

« | it T*=W,, D=0,1,...,r—1,
"D, if T*=T, D=rr+1,..,N,

and Z; = 1 or 0 according as W; is from an X- or Y -failure.
The likelihood function of (Z,W) is given by

m!n! Hf W)’

(m—mp ) (n—np)

gwi) " TE (T e {G(T

L(91,92,Z,W) =

}f’l*nr*
@)

- - r*
where F =1—-F, G=1—-G, M+ = Y Z; is the number
i=1

of X-failures in W and N, = Z (1—

=1
Y-failures in W.

The content of this work is arranged in the following
manner. In Section 2, we consider the case of two
exponential distributions based on joint Type-II hybrid
censored data and compute the ML estimators of the two
scale parameters, after which we generate the exact
conditional moment generating function of the ML
estimators and then use them to obtain the means,
variances, and mean squared errors of these estimators.
The exact, approximate, and Bayesian techniques of
forming confidence intervals (CIs) for unknown
parameters are discussed in Section 3. Finally, in Section
4, Monte Carlo simulation and numerical results are
provided to illustrate all of the inferential approaches
presented here.

Z;) is the number of

2 Methods

The conditional ML estimators of the unknown
parameters are calculated in this section, followed by the
conditional moment generating functions and conditional
exact distributions of the ML estimators. Assume the
distributions of the two populations are exponential with
the following survival functions

F(x)= e % and G(x) = e % x>0,6, >0,6 >0.

In this case, the likelihood function of (Z,W) in (2)
simplifies to

m!n! {JLIJLZ]
L(61,6,,z,w) = —rel ot %l
(81,6, ) (m—my)!(n—n)10,"" 65"

(3)
where
up = ZZ{W{‘F(I’I’L*mr*)T*
i=1

and

~
%

(1 —zi)wi+ (n—n,*)T*.
1

u; =
I

From this likelihood function, we readily obtain the MLEs
of 6, and 6, as

6, = 4
my*
.
mL(ZZ,Wl—l—(m—mr)wr), D=0,1,..,r—1,
_ "=l (4)
=1, 2
ao (L ziwi+(m—mp)T), D=r,r+1,..,N,
i=1
and
6, — 2

(X (I=z)wi+ (n—n)w,), D=0,1,.,r—1,

14
D
L():, (1 —z))wi+(n—np)T), D=rr+1,..,N.

(&)

Remark 1. From the ML estimators in (4) and (5), it can
be seen immediately that if 7 < W, and M, = 0 (or r),
then él (or éz) doesA not gxist. Also, if W, < T and

p = 0 (or D), then 6; (or 8,) does not exist. Hence, the
ML estimators in (4) and (5) are only conditional ML
estimators, conditioned on

max{l,r—n} <M, < min{r—1,m}

or
max{1,D—n} <Mp <min{D— 1,m},

corresponding to 7 < W, or W, < T, respectively.
Therefore, we need to discuss the sampling distributions
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and other properties of the ML estimators only
conditional on the event A = A| UA; where

Ay = (max{1,r—n} <M, <min{r—1,m})
and
Ay = (max{1,D —n} < Mp < min{D — 1,m}).

The primary findings described in the subsequent
theorems will be developed using the following Lemma.
Lemma 2. Leta; > 0, for j = 1,2,...,s. Then, we have

/ / / Lt 9% dwy ...dw,— 1 dws
- th s(ag)e bis aS)T, ©)
where a; = (ay,as, ...,as),
(=1

C,'!X(as) = P i (7)
< n x ak> < Imx ak)
j=lk=s—i+1 J=lk=j

= Y a (8)

and

0
in which we adopt the usual conventions that []d; =1

and ):d =

For a proof of this result and some generalizations of
it, one may refer to paper [15].

Theorem 3.
1.Conditional on D =d, d = 0,1,...,r — 1, the joint
probability mass function of Z, = (Z1,...,Z,) is

C
Glm’GZ”’P(D = d)

r
{bralag) t G I T 4T
j=d+1

P( Z, =1|D=d)=

zd: cid(agq) e
r—d

e a0
j=1
for Oy ={z, = (z1,....,2+) 1 2j = 0 or 1}, where C, =

(mfm’r’gl!’(’iknr)!, and c; 4(ag) and b; 4(a,) as in (7) and

(8), respectively, with s = d and a; = 61 + 62 for
j=1,..r

;)

2.Conditional on D =d, d = r,r +1,...,N, the joint
probability mass function of Z; = (Z1,...,Z4) is
Ca
Pl Z,=24\D=d)= 57—
(Zs=2D=d) 0760 P(D = d)
d _{p. m—md | n—nd
Y cialag)e V@R T (10)
i=0

for O» = {z4 = (21,...,24) : 2j = 0 or 1}, where C; =
(mfm;’;!!’(’ilfnd)!, and c,’d(ad) and bl’d(ad) as in (7) and

(8), respectively, with s = d and a; = 61 + 62 for
j=1,...d;

3.Thence, conditional on D =d, d =0,1,...,r — 1, the
probability mass function of M, = Y Z;, for
j=1
{=0,1,...,r,1s
C
P(M,=(D=d) = ——F " ——
0 92’7 P(D=d)
Y. Yy el s )
z,€ Q* i=0 (Dg
for 07, ={z, = (z1,....,2:) :z;=00r 1, ¥ z; = {},
j=1
n!
where Cor = W
red m—/{ n—r4/0 J
wg,d = H](O_l + o + kzlar7k+l)’ and
J: =
Siva=biaa) + 5t + 24+ ¥ a
! S SRS
4. Thence, conditional on D =d, d = r,r+1,...,N, the
d
probability mass function of M; = Y Z;, for
j=1
{=0,1,....d,is
PMy;={¢D=d)

Céd T
TP T— M T3 cualane T (12
6,65 "P(D=d) Z0c0s, =0

d
for 05, = {za = (21,.-,24) :2j =00r 1, ¥ z; = {},
j=1
B3 n!
where Cla =0 n—aT0)! Z)”E”” 0 and

5&"1 :bi,d(ad) 4 om=t m Z By d+£'

Proof. Since, for d = 0,1,..,r — 1, the conditional joint
density function of (Wy,...,W,;Z,), given D = d, is given
by

fwi,.,wez,|D=d) =

G ot
7P(D:d)gf(Wi) ig(w

C, —{ .Zlajwj+(m6_]’"r+%)w,}

e e J=
91’"’(-)2”’P(D Zd) ’
O<w <o <y <T <wgqg <...<wp< oo

DR (o)} Glw)
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Then, we obtain the joint probability mass function of
Z,=(Z,...,7,) as

raceoma [ [ f

Fwi,.ywe, 2, |D = d)dwy..dwadw,..dwg

= elmr ezan(D _ d) i;ocl,d(ad)

Jj=d+1 "

r
7{b,-7d(ad)+m5—l'"r+%+ ) a,}T
e

; 13)

r—d

J
I (52 452+ % 0y )
Jj= —

as presented in (9).

2. Since, ford = r,r+1,.., N, the conditional joint density
function of (Wy,...,W;;Z,), given D = d, is given by

Cy

f(Wl,..,Wd,Zd|D = d) = m

d

x [T/ wi)ig(wi) ' F(T) =" {G(T) )"

i=1
Cd 7{ Z a]W] (ms;'nd+ng;ld)7-}
6,"10)P(D = d)° ’
O<w <...<wy<T.

Then, we obtain the joint probability mass function of
Zd = (Zl,...,Zd) as

P(Z;=14|D=d)

T "W )
= / / / f(wl,..,wd,zd|D:d)dwl..dwd,]dwd
Jo JO 0

C d
d Y cia(ag)e

_ {btd ad +m md+n nd }T
ef"deg’dP(D =d) =

(14)

as presented in (10).

3. From (9), the formula P(M,
easily.

=/¢|D=d) in (11) follows

4. From (10), the formula P(M; = ¢|D = d) in (12) follows
easily.

3 The exact conditional distribution of 51

Theorem 4. Conditional on Athe event A, the moment
generating function (mgf) of 6 is given by

r—1 1
. (1) =
61( ) dgop(fl,rSMrSEZ,rlD:d)

£2r

Y Y. zzc“cl”d

Lr—1t
Zzl,r ZrEQ 99 a)d

H(1 —¢jivat)”"

j=1

( thidt H I_XJlfdt ]e(]yi‘é'dt)gi‘é'dr}
j=1

1
Pl g<Mg<tl4|D=d)

/—M E

U

—i

~.
Il
-

+

M=

d=r

by

IR Ity

(d—t
(= Zld ZdEQN i=0 9 9 j=1

(1— Wj,i,é,dl‘)le(lﬁ“‘[l)é&‘dr} )

CZ dC, d ad

—¢jivat)”!

/—/A

QU

—i

s)
1

~.
I

where (1 , = max{1,r —n}, >, = min{r — 1,m}, £, 4 =

max{1,d —n}, lr 4 = min{d — 1,m},
0 Zk d- z+1Zk w T ]Zk
jild = YT ild = )
g ]1+l k g):k jak
m_£+Z£ 1Zr7k+l
Xjild = )

a%¥+"”*+2armu

m—C+Yi g 1% .

d
om—=L+ Y g%
20%, ? T .

05,14

Yitd =

Proof. Conditioning on the event A, we have

M, (1) =E(¢*|A)
r—1

=Y E( (@D =d,l,, <M, <l,)P(D=d)
d=0

N N
+Y E(e®|D=d b, ,<M; < l4)P(D=d).
d=r

(16)
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First, ford =0,1,..,r — 1, we have
E(®|D = dty, <M, <0,)
(2r

— Y E(%D=d,M =1)
1=ty ,

X ( r:£|D:d glr<Mr§£2r)

(2r

=Y Z ZE @D =d M, =07, =1,)

(={y ;zy=0
xH,:LW:¢M:@
XP(Mr:aD:d,f],rSMrSEQ’r)
1
- P(gl,rSMrSKQ,AD:d)P(D:d)

£2r
, Cé,r oo oo T %)
) Z'"Zefe;f/r //O -

=ty ZrEQ?[

r

—( X Aje(t)wj+Be,(t)wr)

e /=1 dwi...dwgdwy...dwg,y,
where A/ (t) = a; — 2711‘ for j = 1,...,r, and
_ m={ —r4l —
B[‘r(t) — '7191 + n 67”2 o ’71€ t

After completing the necessary integration and
applying Lemma 2, we now have
E(®D=d t,, <M, <0,
1
Py, <M, <l,|D=4d)
by

YCy e _
DI ZZ eiecrdpad I_Il(]_(bj,i,é,dt) !

1=l , zreQ i=0 d j=

P(D=d)

d—i —

H]_szédt H

=1 j=1

=1 ,—(1=%0.4t) 0.aT
— Xjicat) e~ (1=%a)80aT

~.

a7
Next, ford =r,r+1,..
E(@MD=d t14 <My <lrg)

,N, we have

loa

= Y E ¢OD=d,M;=0)

(=l 4

XP( :le:d eldSMdSEZd)
b

=Y Z ZE (€% |D=d My=10,Z,=1,)

(=l 424=0 21=0
P(Zqg=124|D =d, My =1)
XP(Mg =D =d,lyq<Mg<ly)

1
P(EI,d <M; < €2,d|D =d)P(D=d)
b C* T rwy W
l.d
X
L XYoL

=l g 24€05,

(Z&AWﬁ&Am

e 7! dwy...dwy_1dwy,

where A% ,(t) = a; — %t, for j = 1,..,d, and
¢ dil _ m—(
B, (1) = mel +I
After completing the necessary integration and
applying Lemma 2, we now have

E(etél |D: d,gl,d < Md < EQ,d)
1
P(lyg <My <l4|D=d)P(D=d)

bya P
l.d ld d )
R ZZ 6/~ H(1*¢j,i,e,dt) !
(=l 4 24€0;, i= =
d—i
<10 = iicar) )l UV OnaT | (18)

j=1

We can get the formula in (15) by substituting (17) and
(18) into (16).
Remark 5.

1. (1 —ct)~" is the mgf of the exponential distribution
with scale parameter c;

2. ¢“ is the mgf of the degenerate distribution localized
at a point c.

Theorem 6. Conditional on the event A, the density of the
MLE 0, is given by

=l 1
fo, ) Z P(t1, <M, <,|D=d)
[Zr

Crrcia(ay)
Y Y.yy e,

=Ly, zreQ4 i=0

- i’é‘dTgXi,z‘d (x)

N 1

* 2:: P(li g <My <t4|D=d)

tra CZ dCid ad

L XYY —oraT

,E*Zdrhx ( )
(=01 4 ZdEQN i=0 616

19)

d .
where, Xjoq = Xi,,, + X0, + X3, + X4, ,, with
Xtipa = ):l =1 X, Xy, ij 1X212 and

X3téd = Z]S IX3]37 with Xl}l (]1 = ],...,i), X2j2
(o =1,....,d —i) and X35, (j3 = 1,....,r —d) being
independent random variables having exponential

distributions with scale parameters ¢;, ;¢s4, V,,ira and
Xjs.itd> respectively, Xy, being a random variable
dlstrlbuted as degenerate localized at a point ¥; gydﬁl-yg,dT,
X1 wa X204 +X* a with X* v being a
random varlable distributed as degenerate locallzed at a
point 7/*( d , -

Proof. The conditional mgf of 8 in (15) and Remark 5
instantly lead to this result.

and XIM
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Corollary 7. From (19), we can obtain Then, using these two expressions, Var(6;) and MSE (6;)
may be easily derived.
i 1 The mgf of 6, in (15) may be rewritten as
P(¢, F<M. <0 r|D d)

r—1
1
) =
o (1) E P(ly, <M, <l,|D=d)

(2r

Cyprciqla s
Y L. L et o

= er ZrGQ[ i=0 £2r C
/ 0rCid ad —8 T
L.
i d—i r—d ; ). ZZ £ 000 '
r S
X Y Ojicat Y, Viita+ Y Xjird + VieadiedT r €0,
j=1 j=1 j=1 ky

1 < [T =2 0at)™" 6’“’““"}

+Z P(lrg <My < 60D = d)

iy !
¢
f y. ZZ Ci 4cia(aq) o80T =Pl g <My <l4|D=d)
(=l14 27605 =0 ofo5 boa 4 Cjcia(aq) _go
i d—i e;e" ZZ;) ’eéedfé e
XY 9jicat Y ViitatYiadioal (20) ~hd €0y 20 T2
= = b .
< [T =A% 0at) ea"é'dt} :
=1
r—1 1

where Aii¢4,..., A ica are the distinct values of

E(6Y) =Y
(1) d;P(EI,rSMrSEZ,r'D:d) . . . . . .
{01 ilds - Oiiods W1itds s Wd—iitds X1 ,itd> --v%rfd,z,[,d}

by, Crrciaag) _s. 1 with  frequencies ry,..,7;,, respectively, such that
ZW whd r+4..+r, =r and ll*iid""’lk*ziéd are the distinct
e ~a ol X
=he me0y, values  of {@10a--PiivasViivd- - WYaiica} With
i frequencies  sq,...,8,, respectively, such  that
Z jz£d+Zsz£d+ijzid+y2£d idT st + o+ s, = d, Gigg = Yiea0ieqaT and
— * _ *
- 0 q=Yipa00al
i d-id—i Then, by using partial fractions method, we can
+) Z] jit.dPhitd+ Zlkz VjitdWeitd express the mgf of 6 as
j=1k= J
r—dr—d i d—i ot 1
M" =
2:: Z%},l,f dXkitd+2 2:: Z 0jitdVkitd 61 ®) dg’ Py, <M, </l,|D=d)
i r—d d—ir— Oy C
(,rCid (ad) 5,7
Z Z J’Adxhl}f,d—" Z Z ViitdXkild Z Z ZZ eiérl 7 ild
o o | =lk=1 (=1, z,€0,
i d—i r—d
+2%0a0ieaT | Y, Ojiva+ Y, Viicd+ Y Xjitd X Z Z Agjivd(l=Aj;0qt) Te%itd
Jj=1 Jj=1 j=1 j= lq
1 1
+
£2 d CZ dC, d ad fzd

Y Y Iy

(= Zld ZdEQQ[ i=0

e SiedT e C ycia(aq) s
eied T alpd—l td {_Zl%,z,é,d Z Z ZZ ‘3(;’1; 50T

= Z]d ZdGQZ[ =0

d—i i
2 2 §%2 T2
+ =y 0% T ; —gq af,
j; W],t,@,d %f&d il.d j; ; Jol Z,d¢k,l,£,d % Z Z qu i id ] : Z,dt) qear.é,d[} . (22)
1
d—id—i i d—i mras
+Z leijij’de,[,&d‘i’ Z Z OjitaVitd where A, ;i 4’s are the coefficients obtained by writing
J=lk=1 j=lk=1 the product Hlj‘.‘:l(l — Ajieqt)”"7 in the partial fraction
k rj _
formY'L Y Ay iica(l=Ajieqt) 9, and By j;oq’s are
429 T vd+ 0d 21) j=1g=17¢]),it.d oty > q,J:i,¢,
y”[d M <Z Oii Z Vi, the coefficients obtained by writing the product
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2, (1
21;2:1 Z;’zl By jita(l=27 0 4t)"1

Since (1 —ct)~%eM is the mgf of the random variable
X + A, where X has the gamma distribution with shape
parameter d and scale parameter 1/c, we readily obtain
from the above expression the tail probability of the MLE
0, as

— Afipqt)”" in the partial fraction form

— 1
9 >b)=
! Z glrSM <€2r|D d)
[2r
Z Z chérczd a) e—Oieal
=0, eQi, i 5610, ‘@
ky Tj A . 1
% q,J,i,l,d r <q, <b* a'(d>>
j;lq; (g—1)! Ajitd "
1
+Z P(lyg <My <t4D=d)
12
I
(=014 74e0y, =0 959‘1 !
J qjlfd 1
X Z Z )L* <b_ aiff,d) , (23)
j=1g= l i l,d
where (x) = max{x,0} and I'(a,z) = ["t*"'e~"dt is the

incomplete gamma function.

3.1 The exact conditional distribution of 6,

Because of the symmetry between 8, and 6», we may write
down the following results for 6, without proof from the
preceding results for 0.
Theorem 8. Conditional on the event A, the mgf of the
MLE 6, is given by

r—1 1

M, (t) =
(1) dE P(l1, <M, </lr,|D=d)

£2r

Cp Ciqla * —
ir. zzeegz,'iwj n<1f¢,,,-,[,dt> 1

=ty , ZrEQI[ i=0 d j=1
' U —(1—&  4)8; 4T
* —1 ,—(1=&0.41)5;
— i ieat) " [T =2 par) e oo
=1

1
E]d<Md<f2d|D d)

Mz u:&

fzd d C* ¢
0,a€id (aq) _1
Z YY) olod " H(lfqu,i,&df)
[1 d ZdEQ* i=0 j*]
d— l ) 5
X W, oat) le*(“éi,z‘d’) ieal (24)
j:]

where
o Zk d— z+1(1 %) v Z (I_Zk)
0d = y Viivd = 7,,
T (r— )ZZ ;ﬂw a " (r *K)Z: a
o, - Tean1-%) o il -2
JoLtd — s Ljild — 77 5
(d— 0L a (d—O) X a
nfdJrﬁJer d— H»l(lfzk)
5i7€,d: (d 6)6* )
il,d
n O g (1)
gi,f,d: B
(F*£)5i,e,d
Vv = n—r+l+¥ l(1fzr7k+1)
Jiitd —

(r—f)(m £+n r+i+ Zar k+l)

Theorem 9. Conditional on the event A, the density of the
MLE 6, is given by

r—1 1
T, Z P(t, <M, <p,|D=d)
ZZr
Cor s
Y Y-Yh e g
=y, z,€Qj,
+Z !

Eld<Md<€2d|D d)

2a C[dC,d ad

¥ Y.yy et

(= flyd ZdGQZ[ i=0

e %edlhy, (x) 3. (25)

where Y g =
Y,

Yli‘[,d + YZ,[d + Y3i‘£,d + Y4i‘£,d7 with
=1V, 1 Y4 ¥, and

ild il.d ja=1
Y31[d = J% IY313’ with Y1]1 (]1 = ],...,i), Y2j2
(o =1,..,d —1i) and Y3j, (j3 = 1,....,r —d) being
independent random variables having exponential

distributions with scale parameters ¢J’f] ild W;’;,i,é, 4 and
%;3,1147 4> respectively, and Yy, , , being a random variable
distributed as degenerate localized at a point ‘g’,}gydﬁl-yg’dT,
d o * * : * _\i *

2t itd + Yzi‘f,d + Y3i,é‘d’ with Yli,é‘d =Yj-1 Y,

* _ vd—i yx : * s . *
Yzij,d = Y54 Y5, with Y (ji = 1,..,i), and Y
(jo = 1,...,d — i) being independent random variables
having exponential distributions with scale parameters
D iea and V¥, 04, respectively, and Y;;M being a
random variable distributed as degenerate localized at a
point & ;87 4T

*
and Yl 1d=
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Corollary 10. From (25), we immediately obtain

r—1 1

E(6

(&) « P((1, <M, < {,|D=d)

Oy [

- Cércld(ad) ~8 44T ! "
ZZZZHZ;EQZZ T ]:Zl i

71 r7
+Y Vivat Y Xivat ‘:i,é,d&',i,dT}
P P

+Z
32d

IPNDNY

= f|d ZdGng i=0

1
Eld<Md<£2d|D d)

76*[‘1 { Z J,il,d

C[dC,d ad
959‘1 T plpd—0
d—

+Z%M+§m 0aT (26)

and
> r—1 1
P(El,r S Mr S gZ,r|D - d)

Cg Cdad
ZZN;Z

=% 0aT
=ty zreQ

{Z¢,zid+ijz£d+Z%Jz£d+5wd raT’

d—id—

Z Z jz£d¢k1id+z ijzédll’kzid
Z

Jj=lk=
i d—i

* * *
itdXiieat2 Y Y O v aViisa
j:l =1

— —ir—d

Z, Z, jzid%kz£d+22 Z‘I’,zid%kzid

Jj=lk=

T \.
g —_

HM

~

i d—i r—
+ 280a6i0aT(Y, 0Fivat Y Viivat Y, x;,i,é,d)}
= = =

+ Z ]

Eld<Md<€2d|D d)

ZZ Yy el

(= f|d ZdGQZ[ i=0

i
{Z jtid+z lZd
=1 J

Ci dCl d ad

e iedT
eéed l

1

i
Z ]t@d(pklfd

d—id—i i d—i
+ ZZlP’[dqlkl[d—" ZZ Djivahira
J=lk= j=1k=1

+ & 7a8 T + 2811 4650 4T ( Z¢jzfd+2'f’]14d }

27)

Then, using these two expressions, Var(6,) and MSE (6,)
may be easily derived.

Corollary 11. The tail probability of the MLE 6, is
calculated as follows:

r—1 1

P(6, >b) =
©>0)=Y s =i <6 D=d

[2r

Y Y. zz%@fd*wr
=0, meoi, =0 016,
1

X q”id (b—Bira))

]Zlqzl ‘ Pj,i,f,d v
+Z :

P(l1 g <My <tlr4D=d)
fad 4 Cj ycia(aa) ST

L XYY T

= [ld Zd€Q2 i=0

XZZ q]tZd g, —

J=lq= l pj,i,f-,d

eéed L

1

{b— ﬁife,ﬁ)} ; (28)

where py¢4,...,Pk.i¢a are the distinct values of
{00 0w 9 i0a Viiva - Visijoa Xl iodr

X;—aiva) With frequencies rq,...,r,, respectively, such
that ry + -+, = r, and p]*,l.j’d,...,p,jz,i,[’d are the
distinct values of {q)l,i.[,d---¢i,i,f,daqll,i,£,d---lﬂifi,i.[,d}
with frequencies si,...,5,, respectively, such that
si+ o+ sk, = d, Pia &itadivaT  and
Bira = ézid6zidT and A} ., ,'s are the coefficients
obtained by writing the product [] j:l( —Pjicat)”"

the partial fraction form
Z Z qjl[d( 7pj7i7€,dt)7q’ and B;,j,i.[,d’s are the
coefﬁments obtained by writing the product
Hlj‘.z:l(l — Pjigqt)”" in the partial fraction form

k2 S _
Y X1 Byieal = Pjigat) ™

3.2 The exact conditional joint distribution of
(61, 62)

We can obtain the conditional joint mgf of (6;,86,) by
using the same steps as we did for conditional marginal
distributions.
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Theorem 12. Conditional on the event A, the joint mgf of
(61,6,) is given by
r—1 1
My 5 (t1,12) =
0.6, (11:12) ; P(t1, <M, <b,|D=d)

0oy

chfrczd 3d
{nr Z

AT e 50 616 o,

—(1={¥ a1 +&i.0.a2 )i 0.aT

i

< [T ={@jieatr + 0} pat2}) "

=1

&\..A

X (1*{‘//jlfdtl+wjzidt2})

T
QU —_—

x|
J

—{Xjieat1 + X;,i,z,dtz}yl

+i !
P(l1qg <Mg < lr4|D=d)

fzd

LYYy i

= [ld ZdEQZ[ i=0

C * %
4 CyCia ad — (=t + & a2 DS T
0lo7

i
< [T = {0001 + Pjivat2}) ™
=1
d—i
<[]

=]

~A{Wieat +¥iieatr}) " (29)

Corollary 13. From (29), we can readily obtain
A r—1 1
B P(fl,rSMrSEZ,AD:d)

Zcérczde(ad) ~8 04T
{nr
=0, z,eQ* =0 016,

d—i
X { Zl Ojid®;ivat Zl ViitdViica
J= J=
r—d i i
+ Z XjitdXjivat Z 0jitd (Z Piva
= =1 =1
d—i r—d
+ Y Viivat Y Xiivat fi,e,d@',e,dT)
=1 =1
d—i i di r—d
+ Y Wiiea(Y Oivat+ Y Wivat Y, Xiiva
Jj=1 k=1 k=1 k=1
r—d i d—i
+ &i0aGival)+ Y. Xjiva( Y Oiva+ Y. Wiiva
= =1 =1
r—d i
+ Y Xiiva+t&ieaSieaT)+ Yieabieal (Y, 0iva
=1 =1

d—i r—d
+ Y Wivat Y Xiivat 5i,€,d5i,€,dT)}
=1

k=1

1
€1d<Md<€2d|D d)

+Z

%1 Z Zicz,dciﬁd(ad) =80T
T plpd—0 N
(=14 24€05, i=0 0163

d—i
X {Z PjiedPjied+ Z Viitd¥ied
+ Z¢jtid Z¢k12d+qulcz£d+‘§z(d i0al)
+ Z‘I/]zed ZCDkdeJF Z‘merézd it.al)

+ Yea0iral ( Z¢k:id+2‘f’k1id+§,ed edT)}

(30)

from which the cqvariange and correlation coefficient
between the MLEs 6; and 6, can also be readily obtained.

3.3 Confidence intervals

We discuss various approaches for forming ClIs for the
unknown parameters 8; and 6, in this subsection. We
derive the exact CIs for 6; and 6, using (23) and (28),
respectively. We also provide the approximate CIs for 6,
and 6, for larger sample sizes. Finally, we construct
credible CIs for 6; and 6, using the Bayesian technique.

3.3.1 Exact confidence intervals

To guarantee the invertibility for the parameters 6; and
6,, we assume that the tail probabilities of él and éz
presented in (23) and (28) are increasing functions of 6;
and 0,, respectively. This approach has been utilised in
other works, including [8] and [15], to create the exact CI
in different contexts. We then have a 100(1 — a)%
confidence interval for 0; is (QIL, 9111), where 0;; and

61y are such that Py, (61 > 6Oip) = § and
PglU(él > élabs) =1— 9§ with 61,55 being the observed
values of 6;. Also, we have a 100(1 — &)% confidence
interval for 6 is (621, 62p), where 6,1, and 6,y are such

that P92L(92 > Gzoby) = g and PQZU(Q] > Gzoby) = 17 5>
with 65, being the observed values of 6.

3.3.2 Approximate confidence intervals

For large m and n, the Fisher information matrix of 6; and
92 is

I(61, 92)
L1(61,6:) b

2(61,62)

0.6 GV

1(91,92) =
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where

8zlnL((-)1,92,z,w) ii=1.2
96,06, IS

From the likelihood function L(8;, 6,,z,w) in (3), it is
simply to get [12(0,,6,) = L(601,6,) = 0, and the
observed Fisher information matrix of 6; and 6, is then
given by

1;j(61,6,) = —E{

1(6,6,) =
—9%InL(6,,6,.,2,w) 0
267 (32)
0 7azll’lL(9] ,92,Z,W)
2 ~ ~
a92 0,=0,,0,=6,
where
8zlnL(91,62,z,w) My 2141
06?2 0 6
and

9%InL(6y,6,,2,w) ne  2up
962 02 o
Then, by using the asymptotic normality of the MLEs,

we can express the two-sided 100(1 — @)% approximate
CI for 6 and 6, as

r*
Y ziwi+ (m—m)T*

b iZoz/zl:l
r*
\/ {.lei}3
i=

Y (I—z)wi+(n—nm)T*
éziza/zl l ;

(E(-a)

and

~
%

where Z 5 is the upper o /2 percentile of the standard
normal distribution.

3.3.3 Bayes credible confidence intervals

From a Bayesian perspective, the prior distributions of 6,
and 6, can be viewed as independent inverse gamma prior
distributions, namely IG(a;,b;) and IG(az,by),
respectively. The joint prior function of 8; and 6, is then

1 —(b1/61+b2/0
n(e],GQ)“WE ( 1/ 1 2/ 2). (33)
From the likelihood function in (3) and the joint prior
function in (33), we have posterior joint density function
as

(ul + bl)m’* +aj (uz + bz)”'* +ay

We can see from (34) that the joint posterior density
function of (8;, 6,) is a product of two independent
density functions, and so the marginal posterior density
functions of 6; and 6,, given the data, are
IG(my + aj,uy + b1) and IG(ny + az,ur + bo),
respectively. As a result, the Bayes estimators for 6; and
6, under the squared error loss function are

A uy + by A uy+ by
6 =—— d 6=—"—". 35
! my+a;—1 an 2 ne+ap — 1 (35)
LetV, = M"‘G—Tb‘) and V, = 2("%—?2). Evidently, the pivots
V, and V, follow xzz(m .+ ay) and Xzz(,, . +ay) distributions,

respectively, provided 2(m, 4+ a;) and 2(n,- + ay) are
positive integers. In this case, the 100(1 — o)% Bayes
credible intervals for 6; and 6, are

2(u1+b1) 2(M|+b])
(= ) )
Xa(mys+ar)1—aj2 X2(mp+ay),o)2
and
2(uy +b) 2(uy +b2)

( ). (36)

2 ? 2
Xa(nptar)1—a)2 Xa(ntas),a)2

4 Results and discussion

In this section, we analyse the performance of the two
estimation methods as well as the three confidence
intervals using Monte Carlo simulation. There are also
some numerical results that are based on real data.

4.1 Monte Carlo simulation

To evaluate the performance of the conditional ML and
Bayesian estimates, as well as the three confidence
intervals stated in the prior sections, a simulation study
was done. We evaluated using five different sample sizes
(m, n) and several choices for  and 7. We also chose (2,
5) and (1, 3) as the exponential scale parameters (6;, 65).
We then -calculated conditional ML and Bayesian
estimates of 0; and 6, for each of these cases. In addition,
for 0; and 6,, we calculated the 95% exact, approximate
and Bayes credible confidence intervals.

We calculated the means él and éz of the conditional
ML and Bayesian estimates, as well as their mean square
errors (MSE) and the average widths (AW) of 95%
confidence intervals and the associated coverage
probabilities (CP), by repeating the process 1000 times.
Table 1 shows the means and mean square errors of
conditional ML and Bayesian estimates for 6; = 2 and
6, = 5. When 6; = 1 and 6, = 3, the means and mean
square errors of the conditional ML and Bayesian
estimates are provided in Table 2. Table 3 shows the
average widths and coverage probability of 95%
confidence intervals for ) =2 and 6, = 5. When 6; = 1

n(6,,6,|x) =
O &) = e e M (e + )
1 1
_ —(u1+b1)/0 —(up+b3)/6
Xein,*+a1+l e (uy 1)/ ]enr*+a2+l e (u2 2)/ 2 (34)
1 2
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Table 1: The average values and the mean square errors of the
conditional ML and Bayesian estimates when 6 =2 and 6, =5,
for different choices of m, n, rand T'.

Table 2: The average values and the mean square errors of the
conditional ML and Bayesian estimates when 6; = 1 and 6, =3,
for different choices of m, n, r and T'.

01 6, 0 0
ML Bayesian ML Bayesian ML Bayesian ML Bayesian
(mn) r T 6 MSE, 6, MSE, 6, MSE, 6, MSE, (m,n) r T 6, MSE, 6, MSE, 6, MSE, 6, MSE,
(6,6) 6 4 22352017 2.137 0.839 6.572 26.256 5.613 7.291 (6,6) 6 2 1.119 0.507 1.069 0.210 4.037 9.232 3.380 2.605
6 2.117 1.081 2.098 0.715 6.018 19.336 5.497 6.819 3 1.059 0271 1.050 0.179 3.715 7.373 3.323 2.493
8 2.077 0937 2.072 0.628 5.651 11.042 5.377 5.163 4 1.037 0.234 1.036 0.157 3.503 5.576 3.265 2.262
10 2.054 0.832 2.054 0.572 5.414 7.215 5.292 4.742 5 1.028 0.208 1.027 0.143 3.376 3.958 3.223 1.878
20 2.042 0.795 2.044 0.539 5.156 4.840 5.079 3.154 10 1.021 0.199 1.021 0.135 3.115 1.823 3.064 1.216
(10,8) 9 4 2125 0977 2.094 0.829 6.073 19.185 5.621 7.310 (10,8) 9 2 1.063 0.170 1.047 0.133 3.813 8.333 3.419 2.890
6 2.078 0.547 2.052 0.417 5.594 8.998 5.430 5.668 3 1.039 0.137 1.026 0.104 3.505 5.569 3.323 2.526
8 2.058 0.494 2.038 0.383 5.404 7.133 5.294 4.575 4 1.029 0.123 1.019 0.096 3.311 3.044 3.228 1.907
10 2.052 0.477 2.035 0.378 5316 5.971 5.260 4.348 5 1.026 0.119 1.017 0.095 3.232 2.536 3.177 1.689
20 2.042 0.444 2.026 0.356 5.132 3.632 5.058 2.936 10 1.021 0.111 1.013 0.089 3.142 1.392 3.054 1.120
(12,12) 12 4 2.075 0.520 2.072 0.393 5.727 8.284 5.491 4.733 (12,12) 12 2 1.038 0.130 1.035 0.098 3.543 3.521 3.364 2.101
6 2.051 0426 2.048 0.345 5423 4971 5.296 3.399 3 1.021 0.107 1.024 0.086 3.324 2.295 3.219 1.377
8 2.033 0.366 2.030 0.306 5.267 3.487 5.188 2.675 4 1.009 0.091 1.014 0.076 3.215 1.515 3.156 1.156
10 2.030 0.357 2.027 0.301 5.225 3.115 5.157 2.491 5 1.007 0.089 1.013 0.075 3.159 1.263 3.113 0.959
20 2.028 0.345 2.023 0.295 5.094 2.398 5.044 1.944 10 1.004 0.086 1.011 0.074 3.065 0.887 3.034 0.719
(15,12) 15 4 2.089 0.371 2.085 0.326 5.645 10.614 5.448 5.569 (15,12) 15 2 1.042 0.093 1.042 0.081 3.499 4.662 3.329 2.456
6 2.064 0320 2.059 0.286 5.316 4.546 5.224 3.670 3 1.029 0.080 1.029 0.071 3.265 2.165 3.194 1.565
8 2.048 0.296 2.044 0.266 5.189 3.337 5.118 2.777 4 1.022 0.074 1.022 0.066 3.159 1.490 3.111 1.192
10 2.041 0.285 2.038 0.259 5.149 3.123 5.096 2.643 5 1.019 0.071 1.019 0.065 3.110 1.198 3.068 0.998
20 2.035 0.279 2.033 0.251 5.008 2.268 5.004 2.034 10 1.017 0.070 1.016 0.063 3.021 0.877 3.008 0.769
(15,15) 18 4 2.057 0.362 2.037 0.300 5.602 6.494 5.502 4.429 (15,15) 18 2 1.028 0.090 1.018 0.070 3.471 3.154 3.363 1.945
6 2.035 0316 2.018 0269 5.363 3.856 5.329 3.062 3 1.018 0.079 1.009 0.067 3.279 1.925 3.245 1.363
8 2.020 0.286 2.006 0.249 5260 2.874 5254 2.429 4 1.010 0.072 1.003 0.062 3.199 1.231 3.179 0.992
10 2.014 0.275 2.002 0.238 5.225 2.513 5.223 2.210 5 1.007 0.069 1.002 0.059 3.154 1.013 3.152 0.859
20 2.011 0.274 2.001 0.235 5.190 1.842 5.113 1.662 10 1.005 0.068 1.001 0.058 3.069 0.700 3.083 0.645

and 6, = 3, the average widths and coverage probabilities
of 95% confidence intervals are reported in Table 4.

We can see from the results in Tables 1 and 2 that the
estimate of O is highly consistent even for smaller 7,
whereas the estimate of 6, only becomes stable for
greater T. This is to be predicted because when 0; is
smaller than 6,, when T is small, the exponential
population with parameter 6; would have caused the
majority of the failures seen, whereas the exponential
population with parameter 8, would have caused very few
failures. As one would predict, when 7 is increased, the
biases and mean square errors of the Bayesian estimates
are also fewer than those of the ML estimates for all
various choices of m, n, r, and 7. Furthermore, even for
small m and n, all estimates’ biases and mean square
errors diminish as 7" increases.

Tables 3 and 4 show that the exact conditional method
always has a roughly 95% coverage probability, whereas
the approximate method is not at all adequate (as low as
88% in some cases). We also notice that the Bayesian
technique has relatively consistent coverage probabilities
(near to the nominal level of 95%); nevertheless, when m
and n are both small, all of these methods have reduced
coverage probability. As a result, even for small m and n,
the average widths of all confidence intervals diminish as
T is increased.

Table 3: The average widths and the coverage probabilities of
95% confidence intervals when 6 =2 and 6, = 5, for different
choices of m,nand T'.

0 6

Exact Approx. Bayesian Exact Approx. Bayesian

(mmn) r T CP_AW ~CP_AW_ "CP_AW_ CP__AW CP_AW CP__AW
(6,6) 6 4 948 453 87.7 4.17 953 3.67 93.9 20.67 88.7 17.75 91.7 10.77
6 948 4.12 87.6 3.57 94.7 339 94.3 1581 89.9 13.39 91.9 9.54

8 951 3.85 87.6 3.39 949 3.26 945 13.34 88.2 11.00 91.5 8.68

10 949 3.73 87.6 3.30 95.0 3.19 94.1 11.92 88.1 9.75 91.0 8.17

20 948 3.51 87.6 3.25 95.2 3.15 944 9.82 88.0 8.38 91.3  7.20

(10,8) 9 4 942 3.65 90.5 2.93 93.0 2.80 953 16.90 89.2 13.61 93.1 9.83
6 947 325 90.8 2.68 93.6 2.58 947 1251 88.3 10.17 924 8.41

8 946 3.15 90.7 2.59 93.6 251 94.5 10.63 87.9 893 91.5  7.60

10 945 3.01 90.7 2.56 93.8 2.49 944 9.82 87.1 8.30 913 7.25

20 948 293 90.7 2.53 93.8 2.46 945 8.54 87.3 7.08 91.5 6.39

(12,12) 12 4 953 343 90.6 2.59 94.8 2.53 95.2 11.93 91.5 9.71 93.3 8.02
6 946 3.09 90.3 2.40 943 236 94.6  9.69 92.0 7.78 93.0 6.79

8 947 3.00 90.3 231 94.6 229 945 8.5 923  6.90 923 6.18

10 952 292 90.2 2.29 949 2.27 943 1787 91.7 6.52 92.1 590

20 952 285 90.3 2.27 948 2.25 94.1 726 91.5 5.85 92.0 5.36

(15,12) 15 4 947 324 93.5 231 959 2.28 94.0 10.84 90.7 9.67 922 7.99
6 948 297 93.1 2.16 959 2.13 94.3  9.06 91.4 7.58 923  6.69

8 953 292 93.1 2.10 95.5 2.07 93.8 8.16 91.2 6.78 90.9 6.08

10 948 2.88 93.1 2.07 95.5 2.05 94.1 7.40 90.2 6.42 9.1 582

20 949 281 93.1 2.06 95.1 2.03 93.9 7.00 90.6 5.74 91.0 5.30

(15,15) 18 4 952 3.01 93.1 2.28 959 222 952 981 929 8.34 943 732
6 948 291 92.7 213 94.8 2.08 94.6 8.06 92.8 6.81 93.8 6.21

8 946 2.89 92.6 2.07 94.8 2.03 953 753 929 6.14 94.1 5.69

10 947 2.82 92.6 2.05 954 2.10 947 7.01 93.7 5.80 93.8 542

20 944 275 92.5 2.04 95.2 2.00 945 6.55 934 522 93.5 492

4.2 Numerical example

We will use the data in [1] (Table 4.1, p. 462) to illustrate
all of the inferential results established for the exponential
distribution. The original data was 60 times to breakdown
of an insulating fluid subjected to high-voltage stress. The
data set is divided into 6 groups, each containing 10
insulating fluids. The two groups 1 and 4 are considered
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Table 4: The average widths and the coverage probabilities of

95% confidence intervals when 6; = 1 and 6, = 3, for different
choices of m, nand T'.
0, 6

Exact Approx.  Bayesian Exact Approx.  Bayesian
CP AW CP AW CP AW CP AW CP AW CP AW
94.8 2.34 87.8 2.09 95.2 1.84 93.5 12.84 90.7 11.78 91.5 6.76
95.3 222 87.5 1.79 94.7 1.69 93.8 9.81 89.0 892 92.6 6.02
94.8 2.17 87.6 1.70 949 1.63 93.7 8.87 89.1 7.39 91.8 5.51
95.1 2.10 87.6 1.65 95.0 1.59 934 7.12 882 6.51 91.1 5.16
949 1.98 87.6 1.63 952 1.57 935 6.74 88.0 5.15 91.2 440
944 1.50 90.3 1.46 93.0 1.40 952 10.21 89.9 941 944 6.33
94.7 1.41 904 1.34 93.6 1.29 943 890 90.0 7.04 929 547
94.7 1.34 904 1.29 93.6 1.26 93.7 6.87 879 578 91.9 4.86
94.8 1.31 90.4 1.28 93.8 1.24 935 6.51 87.7 527 91.1 453
94.8 1.29 90.4 1.26 93.8 1.23 93.3 522 873 433 91.2 391
95.2 1.33 90.6 1.29 94.8 1.26 94.6 7.05 912 6.53 93.4 526
94.8 1.28 90.2 1.20 94.3 1.18 94.7 6.14 91.8 5.10 939 4.35
94.1 1.27 90.2 1.15 94.6 1.14 93.8 526 91.4 443 927 3.94
95.0 1.20 90.2 1.14 949 1.13 94.5 501 91.8 4.09 92.2 3.68
949 1.19 90.2 1.13 94.8 1.13 955 435 91.5 3.55 923 325
94.8 1.18 935 1.16 959 1.14 953 6.49 913 6.06 935523
95.2 1.11 93.1 1.08 959 1.06 94.5 545 91.1 5.00 92.4 433
94.6 1.09 93.1 1.05 955 1.03 942 507 90.7 435 91.6 3.87
94.6 1.07 93.1 1.04 955 1.02 94.1 481 909 4.03 91.2 3.62

10 945 1.05 93.1 1.03 953 1.02 945 4.05 90.7 3.51 91.3 3.23
(15,15) 18 2 948 1.16 93.1 1.14 952 1.11 953 6.01 924 566 94.5 4.80
3 953 1.09 92.7 1.07 94.8 1.04 945 5.10 93.1 446 93.9 4.00
4 952 1.07 92.6 1.04 948 1.01 944 472 933 393 93.6 3.60
5 949 1.04 926 1.02 954 1.00 948 4.12 929 3.65 94.1 3.38
10 949 1.03 925 1.02 952 1.00 94.7 3.86 93.4 3.18 93.3 3.00

(m,n) r
6,6) 6

(10,8) 9

(12,12) 12

(15,12) 15

NEWNZSTNEWRNZSUELRNZS AL

here, and the associated failure times data are shown in
Table 5.

Table 5: Groups 1 and 4 of the times to breakdown of insulating
fluids from Nelson (1982).

1.89 4.03 1.54 031 0.66 1.70 2.17 1.82 9.99 2.24
1.17 3.87 2.80 0.70 3.82 0.02 0.50 3.72 0.06 3.57

Group 1
Group 4

We assume these data come from two exponential
populations, each having a mean of 2.6 and 2. Assume
that, on groups 1 and 4, joint Type-II hybrid censoring
with r =5 and T as 1, 2, 3, 4, and 7 occurred. The
conditional ML estimates of 6; and 6,, as well as the
estimates of their standard deviations and mean square
errors, were then computed for all 7 choices. In addition,
we computed Bayesian estimates of 6; and 6, using an
informative prior with (ay,by,a2,b2) = (2,2,2,3), and
the results are shown in Table 6. For all choices of T, the
95% exact, approximate, and Bayes credible confidence
intervals for 6; and 6, are calculated and reported in
Table 7.

Table 6 shows that the biases and mean square errors
of the Bayesian estimates are fewer than those of the ML
estimates for all different choices of 7. We also notice that
when T increases, the biases and mean square errors of all
estimations reduce.

We can see from Tables 7 that the approximate
confidence intervals are not as efficient as the exact
conditional confidence intervals obtained from Section 2
results. We also see that Bayesian approaches produce

Table 6: The Bayesian and ML estimates of 6; and 6, and
the corresponding standard deviations, mean square errors, and
correlation coefficient based on groups 1 and 4.

T O 6ip SDy MSEs by 6 SDy MSEy p(6:1,6)
449 3.66 1.74 371 1.82 1.86 4.53 22.14 -0.10
2,65 2.56 1.53 335 249 241 426 2038  -0.05
229 226 143 289 288 275 3.82 19.16 0.06
2.54 248 136 218 2.02 203 320 18.55 0.08
2.60 254 121 191 203 2.02 299 17.84 0.11

~N B W =

Table 7: The 95% exact, approximate and Bayes credible
confidence intervals for 81 and 6, for different choices of 7 based
on groups 1 and 4.

01 0,

T Exact Approx. Bayesian Exact Approx.

1 (0.00, 8.43) (0.000, 10.67) (1.25, 10.07) (0.52,2.94) (0.05, 3.60) (0.80, 3.76)
2 (0.65,3.01) (0.541,4.76) (1.24,5.19) (0.62,3.97) (0.32,4.66) (1.11,4.78)
3 (0.87,2.93) (0.711,3.87) (1.19,4.24) (0.81,4.70) (0.59,5.16) (1.34,5.28)
4
7

Bayesian

(0.95,3.54) (0.789,4.29) (1.31,4.66) (1.02,2.82) (0.78,3.27) (1.12,3.43)
(1.00,3.73) (0.908,4.28) (1.38,4.62) (1.12,2.81) (0.78,3.27) (1.13,3.42)

findings that are quite close to exact confidence intervals.
As a result, we see that the widths of all confidence
intervals shrink as 7" increases.

5 Conclusions

The issue of deriving the exact distributions of maximum
likelihood estimators when Type-II hybrid censoring is
used on two samples from two exponential populations in
a combined manner was discussed in this paper. The
conditional maximum likelihood and Bayesian estimators
of the two unknown exponential mean parameters were
first calculated. The conditional moment generating
functions and conditional exact distributions of the
maximum likelihood estimators were then calculated. We
also calculated the exact, approximation, and Bayes
credible confidence intervals for the two unknown
parameters. Finally, using real data, we provided a Monte
Carlo simulation study as well as some numerical results.
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