
Appl. Math. Inf. Sci. 7, No. 3, 877-879 (2013) 877

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Conservation laws of the Bretherton Equation
A. H. Kara1, Houria Triki2 and Anjan Biswas3

1 School of Mathematics, University of the Witwatersrand, Wits 2050, Johannesburg, South Africa
2 Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, Algeria
3 Department of Mathematical Sciences, Delaware State University, Dover, DE 19901-2277, U.S.A.

Received: 1 Oct. 2012, Revised: 2 Jan. 2013, Accepted: 15 Jan. 2013
Published online: 1 May 2013

Abstract: This paper obtains the conservation laws of the Bretherton equation that is considered with dual-power law nonlinearity.
The multiplier approach is used to extract several conserved densities of this equation. Finally, the conserved quantities are computed
by using the 1-soliton solution that has been obtained earlier.
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1 Introduction

The study of nonlinear evolution equations (NLEEs) is
vital in the areas of applied mathematics and theoretical
physics [1-11]. Particularly, in theoretical physics NLEEs
serve as a backbone to further research enhancement. The
main focus of NLEE appears in nonlinear optics, fluid
dynamics, nuclear physics, plasma physics, mathematical
biosciences, mathematical chemistry and several other
areas [2,11]. The research results, in such applied areas,
resonate the scientific development in the remaining
branches of science and technology.

One of the primary focus of the NLEEs in nonlinear
dynamics is its conservation laws. These conservation
laws determine physical quantities that stay invariant with
the wave dynamics. These conserved quantities also
describe the dynamics of the waves and helps to
comprehend it better. Some of these conserved quantities
are typically the mass, linear and/or angular momentum,
energy, Hamiltonian and many other physical features.
This paper will approach the study of the conservation
laws of the Bretherton equation (BE) that appears in the
context of resonant interaction of water waves.

2 Governing equation and soliton solution

The dimensionless form of the BE is given by

qtt − k2qxx + aqxxxx + bqm + cqn = 0, (1)

where k, a, b and c are constants and the exponents m, n
represent the power law nonlinearities. Here q(x, t)
represents the wave profile. The 1-soliton solution to (1)
is given by [10]

q(x, t) = A sech
2

m−1 [B(x− vt)]

= A sech
4

n−1 [B(x− vt)]
(2)

where the amplitude (A) of the solitary wave is given by

A =

{
−b (3m− 1)

2mc

} 1
n−m

(3)

and the inverse width (B) is given by

B =
m− 1

2

[
− 2b

a (m+ 1)m2

{
−b (3m− 1)

2mc

}m−1
n−m

] 1
4

(4)

while the velocity is
v =k2 − a

√
− 2b

a (m+ 1)m2

{
−b (3m− 1)

2mc

} m−1
(n−m)


1
2

(5)

These lead to the constraint conditions
ab < 0 (6)

bc < 0 (7)

k >
√
a (8)

2m = n+ 1 (9)

m > 1, n > 1 (10)
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3 Conservation laws

In order to determine conserved densities and fluxes, we
resort to the invariance and multiplier approach based on
the well known result that the Euler-Lagrange operator
annihilates a total divergence (see [6]). Firstly, if (T t, T x)
is a conserved vector corresponding to a conservation law,
then

DtT
t +DxT

x = 0 (11)

along the solutions of the differential equation (de = 0).

Moreover, if there exists a nontrivial differential function
Q, called a ‘multiplier’, such that

Eq[Q(qtt − k2qxx + aqxxxx + bqm + cqn)] = 0, (12)

then Q(qtt − k2qxx + aqxxxx + bqm + cqn) is a total
divergence, i.e.,

Q(qtt − k2qxx + aqxxxx + bqm + cqn)
= DtT

t +DxT
x,

(13)

for some (conserved) vector (T t, T x) and Eq is the
respective Euler-Lagrange operator. Thus, a knowledge of
each multiplier Q leads to a conserved vector determined
by, inter alia, a Homotopy operator. See details and
references in [6, 7]. If t is the time variable, T t is the
conserved density from which the conserved quantity is
determined. When Q is chosen to be up to second order in
derivatives, i.e., Q = Q(t, x, u, ux, ut, uxx, uxt, utt), we
obtain two solutions leading to two nontrivial conserved
vectors given below.

(i) Q1 = qx:

T x
1 = bq1+m

1+m + cq1+n

1+n + 1
2qqtt −

1
2k

2qx
2 − qxx

2

2 + qxqxxx,

T t
1 = 1

2 (qtqx − qqxt) .

and
(ii) Q2 = qt:

T x
2 = 1

2 (−qxtqxx + qxqxxt + qt
(
−k2qx + qxxx

)
+q

(
k2qxt − qxxxt

)
),

T t
2 = 1

2

(
qt

2 + q
(

2bqm

1+m + 2cqn

1+n − k2qxx + qxxxx

))
.

Therefore the conserved quantities are given by

I1 =

∫ ∞

−∞
T t
1dx =

1

2

∫ ∞

−∞
(qtqx − qqxt) dx

=

∫ ∞

−∞
qtqxdx

=
16vA2B

(n− 1)(n+ 7)

Γ
(

4
n−1

)
Γ
(
1
2

)
Γ
(

4
n−1 + 1

2

) (14)

and

I2 =

∫ ∞

−∞
T t
2dx =

1

2

∫ ∞

−∞{
q2t +

2bqm+1

m+ 1
+

2cqn+1

n+ 1
− k2qqxx + qqxxxx

}
dx

=
1

2

∫ ∞

−∞

{(
v2 + k2

)
q2x +

2bqm+1

m+ 1

+
2cqn+1

n+ 1
+ cq2xx

}
dx

=
8A2B

(n− 1)2(n+ 7)(3n+ 5)
{(n− 1)(3n+ 5)

(
v2 + k2

)
+ 16(n+ 2)cB2}

Γ
(

4
n−1

)
Γ
(
1
2

)
Γ
(

4
n−1 + 1

2

)
+

2bA
n+3
2

(n+ 3)B

Γ
(

n+3
n−1

)
Γ
(
1
2

)
Γ
(

n+3
n−1 + 1

2

)
+

cAn+1

(n+ 1)B

Γ
(

2n+2
n−1

)
Γ
(
1
2

)
Γ
(

2n+2
n−1 + 1

2

) (15)

These conserved quantities are computed using the
1-soliton solution that is given by (2) and additionally, the
relation (9) is used to write these conserved quantities in
terms of the single power law parameter n.

4 Conclusion

This paper obtains the conservation laws of the
Bretherton equation with dual power law nonlinearity.
The multiplier method using the Lie symmetry approach
is utilized to compute these conserved densities and
finally the 1-soliton solution, obtained earlier, leads to the
values of the conserved quantities. These conserved
quantities are very precious results that will, in future,
lead to further research. The modified conserved
quantities will be computed and subsequently the soliton
perturbation theory will be adopted to obtain the adiabatic
parameter dynamics of the soliton parameters [2]. The
stochastic perturbation terms will also be taken into
account and the mean free value of the soliton parameter
will be determined. These results will be reported in
future publications.
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