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Abstract: This paper deals with the application of a novel variable-order and constant-order fractional derivatives in the Newton’s

law of cooling. The variable-order fractional derivative can be set as a smooth function, bounded on (0,1], while the constant-order

fractional derivative can be set as a fractional equation, bounded on (0,1]. We solved analytically the fractional equations using the

Laplace transform. Numerical simulations were performed for different values of fractional order. The integer-order classical model

is recovered when the order of the fractional derivative is equal to 1. Based upon the results obtained, the efficiency rates of the

fractional-order operators with non-singular kernel are higher than that of the existing fractional model with singular kernel.
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1 Introduction

Fractional calculus is a subject of interest for the last two decades. A physical interpretation of equations with fractional
derivatives with respect to time is connected with the memory effects. The fractional derivative includes an integral
operator of which kernel function is a memory function that involves non-local interaction. It is very useful tool for
describing the evolution of system with memory, which typically are dissipative and complex[1,2,3].

The fractional derivatives with power law kernel have disadvantage that their kernel has a singularity, this kernel
includes memory effects and therefore these definitions cannot accurately describe these effects [4]. Due to this
inconvenience, Caputo and Fabrizio [5] present a new definition of fractional operator with exponential kernel.
Properties and applications of this fractional operator are given in [6,7]. Atangana and Baleanu [8] introduced fractional
operators with Mittag-Leffler kernel. This kernel considered is non local, non singular and have all benefits of the
fractional operators with power law kernel and exponential kernel. Fractional derivative operators without singular kernel
have been applied to different systems in [9,10]. Alkahtani et al. [11] introduced fractional variable order derivative with
non singular kernel. Interesting applications of fractional variable order derivative with non singular kernel can be found
in [12,13,14]. The generalized Caputo fractional derivative is introduced by Katungampola [15]. Sene and
Gómez-Aguilar [16] has studied the analytical solutions of the electric circuits described by Caputo generalized
fractional derivatives. Sene [17] have obtained an analytic solution and numerical solution of certain generalized
fractional diffusion equations. Recently, Bhangale and Kachhia studied fractional electromagnetic waves in plasma and
dielectric media with Caputo generalized fractional derivative [18].

Newton’s law of cooling states that the rate of change of temperature of the body is proportional to the difference
between the temperature of the body and that of the surrounding medium [19]

dT (t)

dt
= λ (T (t)−Te), T (0) = T0, (1.1)
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where T (t) is the temperature of the body at any time t, Te is the environment temperature, T0 is the initial temperature
and λ is the cooling coefficient (or convective) defined as

λ =
αA

mC
, (1.2)

where α is the heat transfer coefficient for convection, A is the heat transfer surface area, m is the mass of the body, C is
the specific heat. The coefficient λ is measured in inverse unity of time, s−1. Equation (1.1) predicts that the difference
between the initial temperature T0 and surrounding medium temperature Te drops exponentially.

T (t) = Te +(T0 −Te)exp(λ t). (1.3)

Newton’s law of cooling is appeared in a many situations in applied science such as, in materials science, high
temperature superconductivity and atmospheric physics [20].

1.1 Overview of fractional calculus

Definition 1A real valued function f (t), t > 0 is said to be in the space Cµ ,µ ∈R if there exist a real number ρ(> µ) such

that f (t) = tρ f1(t), where f1 ∈C[0,∞), and is said to be in the space Cm
µ if f m ∈Cµ ,m ∈N∪{0}.

Definition 2The Caputo fractional derivative of order α of f , f ∈Cm
−1,m ∈ N∪{0} defined as [21]

CDα
t ( f (t)) =











1

Γ (m−α)

t
∫

0

f m(τ)

(t − τ)α+1−m
dτ,

dm f (t)

dtm
, if α = m,

(1.4)

where m− 1 < α < m, m ∈ N and
dm f (t)

dtm is the m-th derivative of the function f (t) with respect to t.

Definition 3The Caputo-Fabrizio Fractional derivative operator with order ν > 0 is defined as follows [5]:

CFCDν
t ( f (t)) =

M(ν)

m−ν

∫ t

0

dm

dtm
( f (τ))exp

(

−
ν(t − τ)

1−ν

)

dτ, m− 1 < ν < m, (1.5)

where M(ν) is a normalization function such that M(0) = M(1) = 1.

The Laplace transform for the Caputo - Fabrizio fractional derivative (1.5) is given by

L[CFCDν
t ( f (t))] =

sm+1L[ f (t)]− sm f (0)− sm−1 f ′(0)− ...− f (m)(0)

s+ν(1− s)
. (1.6)

Definition 4The Atangana-Baleanu fractional derivative with order (ν > 0) is defined as follows [8]:

ABCDν
t ( f (t)) =

M(ν)

1−ν

∫ t

0

dn

dxn
( f (τ)) Eν

[

−ν
(t − τ)ν

n−ν

]

dτ, m− 1 < ν < m, (1.7)

where M(ν) is a normalization function such that M(0) = M(1) = 1 and Mittag-Leffler function Eν(z) is defined as [22]

Eν(z) =
∞

∑
k=0

zk

Γ (νk+ 1)
,ν ∈C,R(ν) > 0. (1.8)

The Laplace transform for the Atangana - Baleanu fractional derivative (1.7) is given by [23]

L[ABCDν
t ( f (t))] =

M(ν)

1−ν

[

sνL[ f (t)]− sν−1 f (0)

sν + ν
1−ν

]

, 0 < ν < 1. (1.9)
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Definition 5The generalized Mittag-Leffler function Eλ
δ ,ν(z) is defined as follows [24]

Eλ
δ ,ν(z) =

∞

∑
n=0

(λ )nzn

Γ (δn+ν)n!
, (δ ,ν,λ ∈ C,R(δ )> 0,R(ν)> 0,R(λ )> 0),

where (λ )n is the Pochhammer symbol

(λ )n =
Γ (λ + n)

Γ (λ )
, (λ )0 = 1, (λ )n =

n

∏
k=1

(λ + k− 1),n ≥ 1.

Definition 6The generalized fractional integral of order ν of a continuous function

f : [0,+∞]→ R is defined in [25] as

(Iν,ρ f )(t) =
1

Γ (ν)

t
∫

0

(

tρ − sρ

ρ

)ν−1
f (s)ds

s1−ρ
, (1.10)

where Γ (·) denotes the gamma function, ρ > 0, t > 0 and 0 < ν < 1.

Definition 7The Caputo generalized fractional derivative of order α of a continuous function f : [0,+∞]→ R is defined

in [25] as

(

GCDν,ρ f
)

(t) =
1

Γ (1−ν)

t
∫

0

(

tρ − sρ

ρ

)−ν

γ f (s)
ds

s1−ρ
, (1.11)

where ρ > 0, t > 0,γ = t1−ρ d
dt

and 0 < ν < 1.

Definition 8The ρ−Laplace transform of a continuous function f : [0,+∞]→R is defined in [25] as

Lρ{ f (t)}(s) =

∞
∫

0

e
−s tρ

ρ f (t)
dt

t1−ρ
. (1.12)

The ρ−Laplace transform of the Caputo generalized fractional derivative of a continuous function f is given in [25] as

Lρ{(D
ν,ρ f ) (t)}= sνLρ{ f (t)}−

n−1

∑
k=0

sν−k−1 (Iν,ρ γn f ) (0). (1.13)

Definition 9The generalized Atangana-Koca fractional derivative with order ν > 0 is defined as [26]:

AKCDν
t ( f (t)) =

1

g(ν)

∫ t

0
f ′(τ)Eν

ν,ν (−g(ν)(t − τ)ν)dτ, 0 < ν < 1, (1.14)

where the function g(ν) is defined such that

lim
ν→0

1

g(ν)

∫ t

0
f ′(x)Eν

ν,ν (−g(ν)(t − x)ν)dx =
∫ t

0

d f (x)

dt
= f (t)− f (0).

The Laplace transform for the Atangana Koca fractional derivative (1.14) is given by [26]

L[AKDν
t f (t)] =

1

g(ν)
(sL[ f (t)]− f (0))

sνn−1

(1− g(ν))ν
. (1.15)

Definition 10For α,β ∈C with R(α)> 0 and R(β )> 0, the two parameter Mittag-Leffler function is defined as [27]:

Eα ,β (z) =
∞

∑
k=0

zk

Γ (αk+β )
. (1.16)
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Considering α > 0 and β > 0, the Laplace transform of the function tβ−1Eα ,β (t
α) is given by [23]:

L[tβ−1Eα ,β (t
α)] =

sα−β

sα − 1
, R(s)> 1. (1.17)

Definition 11Let g(x) ∈ C1(a,b),b > a, ν ∈ [0,1] and f (x) a differential function in an open interval I then Atangana-

Koca Fractional variable order derivative is defined as [11]:

AKV D
g(x)
t ( f (t)) =

M(ν)

1−ν

∫ t

a
f ′(τ) exp(−g(x)(t − τ))dτ. (1.18)

The Laplace transform for the Atangana-Koca Fractional variable order derivative (1.18) is given by([11])

L[AKV D
g(ν)
t ( f (t))] =

sL[ f (t)]− f (0)

s+ g(ν)
. (1.19)

2 Newton’s law of cooling with various fractional derivative operators

In this section, we solve Equation (1.1) with various fractional derivative operators using Laplace transform method.
We consider the Newton’s law of cooling (1.1) with Caputo fractional derivative [28]

CDν
t (T (t)) = λ (T (t)−Te). (2.1)

The solution of (2.1) is given by [28]
T (t) = Te +(T0 −Te)Eν,1(λ tν). (2.2)

To maintain the fractional differential equation dimensionality, we using the procedure described in [29]. The dimension
mismatch can be mathematically corrected considering a parameter σ with the dimension of seconds (this parameter is
needed on the left-hand side of the equations to maintain a consistent set of units). The auxiliary parameter σ is associated
with the temporal components in the system (these components change the time constant of the system) [29].

For the fractional derivative with constant order, we have

d

dt
→

1

σ1−ν
Dν

t . (2.3)

For the fractional derivative with variable order, we have

d

dt
→

1

σ1−g(ν)
D

g(ν)
t . (2.4)

2.1 Caputo Fabrizio fractional order derivative

Let us consider (1.1) via Caputo Fabrizio fractional derivative (1.5) in the following way

(

1

σ1−ν

)

CFCDν
0 (T (t)) = λ1(T (t)−Te), (2.5)

where 0 < ν < 1.

CFCDν
0 (T (t)) = λ (T (t)−Te).

Here we have

λ = λ1σ1−ν

Applying Laplace transform (1.6) to (2.5) and considering T (0) = T0, yields

sL[(T (t))]−T (0)

s+ν(1− s)
= λ L[T (t)]−

λ Te

s
.
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After simplification, we get

L[T (t)] =
1

1−λ +νλ





T0

s− νλ
1−λ+νλ

−
λ Te(1−ν)

s− νλ
1−λ+νλ

−
λ Teν

s
(

s− νλ
1−λ+νλ

)



. (2.6)

Applying the inverse Laplace transform in (2.6) and using partial fraction, we get

T (t) =
T0 −λ Te(1−ν)−Te

1−λ +νλ
exp

(

λ νt

1−λ +νλ

)

+Te. (2.7)
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Fig. 1: Comparison of CF solution with experimental cooling

curve for 40 ml water. The trial with fractional order derivative

ν = 0.49.
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Fig. 2: Comparison of CF solution with experimental cooling

curve for Oil. The trial with fractional order derivative ν = 0.45.
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Table 1: Comparison of the experimental data with numerical values obtain under CF and Classical derivative for 40ml water.

t Experiment CF Classical

0 92.7508 93.934 92.5

5 71.5597 78.1971 63.6509

10 59.6864 66.1111 47.336

15 52.7337 56.8288 38.1095

20 47.8517 49.7 32.8917

25 44.0043 44.225 29.9409

30 40.9361 40.0202 28.2721

35 38.1243 36.7908 27.3284

40 36.8658 34.3106 26.7947

45 35.61 32.4058 26.4929

Error - 10.7755 36.2225

Table 2: Comparison of the experimental data with numerical values obtain under CF and Classical derivative for Oil.

t Experiment CF Classical

0 105.29 106.392 105

5 82.4516 88.4649 69.3167

10 68.5161 74.4103 49.2376

15 59.2258 63.3916 37.9389

20 51.871 54.7531 31.5811

25 46.4516 47.9805 28.0036

30 41.0323 42.6709 25.9904

35 38.3226 38.5082 24.8577

40 35.228 35.2447 24.2202

45 33.6774 32.6861 23.8615

50 32.129 30.6802 23.6597

55 30.9677 29.1076 23.5461

Error - 10.45826 50.01306

Figure-1 and Figure-2 shows the typical experimental cooling curves obtained with 40ml water and oil respectively,
and these are compared with the results obtained using the classical integer solution and Caputo-Fabrizio solution. It is
clear that the integer order solution fails to fit experimental data, whereas a very good fit is obtained using
Caputo-Fabrizio with the fractional order of time derivative ν = 0.49 and 0.45 for 40ml and oil respectively. We have
checked the sensitivity of the fit to variations in the ν value for Caputo-Fabrizio solution. The Table-1 and Table-2 shows
the numerical values of the experimental data and the values obtained through simulation for Caputo-Fabrizio fractional
derivative. The error norms supports the facts for better performance of the fractional-order models with Caputo-Fabrizio
derivative for ν = 0.49 and 0.45 for 40ml water and oil respectively. Figure-3 shows that as ν decreases the steady state
solution is reached at longer times.

2.2 Atangana - Baleanu fractional order derivative

Consider (1.1) via Atangana Baleanu fractional derivative (1.7) in the following way

(

1

σ1−ν

)

ABCDν
0 (T (t)) = λ1(T (t)−Te), (2.8)

where 0 < ν < 1.

ABCDν
0 (T (t)) = λ (T (t)−Te)

c© 2022 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 8, No. 2, 275-287 (2022) / www.naturalspublishing.com/Journals.asp 281

and

λ = λ1σ1−ν
.

Applying Laplace transform (1.9) to (2.8) and considering T (0) = T0, yields

B(ν)

(1−ν)

sν L[T (t)]

sν + ν
1−ν

−
B(ν)

(1−ν)

sν−1T (0)

sν + ν
ν−1

= λ L[T (t)]−
λ Te

s
.

After simplification, we get

L[T (t)] =
1

B(ν)−λ (1−ν)

[

(B(ν)T0 − (1−ν)λ Te)s
ν−1

sν − λ ν
B(ν)λ (1−ν)

−
λ Teνs−1

sν − λ ν
B(ν)−λ (1−ν)

]

. (2.9)

Applying the inverse Laplace transform in (2.9) and using partial fraction, we get

T (t) =
1

B(ν)−λ (1−ν)
[(B(ν)T0 − (1−ν)λ Te)Eν,1 (Φ)−λ Teνtν Eν,ν+1 (Φ)] , (2.10)

where Φ = λ νtν

B(ν)−λ (1−ν) .
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Fig. 4: Comparison of AB solution with experimental cooling

curve for 40 ml water.The trial with fractional order derivative

ν = 0.84.
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Fig. 5: Comparison of AB solution with experimental cooling

curve for Oil. The trial with fractional order derivative ν = 0.82.
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Table 3: Comparison of the experimental data with numerical values obtain under AB and Classical derivative for 40ml water.

t Experiment AB Classical

0 92.7508 91.31055 92.5

5 71.5597 71.017 63.6509

10 59.6864 60.1872 47.336

15 52.7337 52.949 38.1095

20 47.8517 47.8056 32.8917

25 44.0043 44.0144 29.9409

30 40.9361 41.1451 28.2721

35 38.1243 38.9274 27.3284

40 36.8658 37.183 26.7947

45 35.61 35.7897 26.4929

Error - 1.859433 36.2225

Table 4: Comparison of the experimental data with numerical values obtain under AB and Classical derivative for Oil.

t Experiment AB Classical

0 105.29 103.3451 105

5 82.4516 79.4058 69.3167

10 68.5161 66.8311 49.2376

15 59.2258 58.3414 37.9389

20 51.871 52.221 31.5811

25 46.4516 47.6365 28.0036

30 41.0323 44.1084 25.9904

35 38.3226 41.3356 24.8577

40 35.228 39.1184 24.2202

45 33.6774 37.3191 23.8615

50 32.129 35.8401 23.6597

55 30.9677 34.6103 23.5461

Error - 9.601502 50.01306

Figure-4 and Figure-5 shows the typical experimental cooling curves obtained with 40ml water and oil respectively,
and these are compared with the results obtained using the classical integer solution and Atangana-Baleanu solution. It is
clear that the integer order solution fails to fit experimental data, whereas a very good fit is obtained using
Atangana-Baleanu with the fractional order of time derivative ν = 0.84 and ν = 0.82 for 40ml water and oil respectively.
We have checked in Figure-6 the sensitivity of the fit to variations in the ν value for Atangana-Baleanu solution. The
Table-3 and Table-4 shows the numerical values of the experimental data and the values obtained through simulation for
Atangana-Baleanu fractional derivative. The error norms supports the facts for better performance of the
Atangana-Baleanu fractional-order models with ν = 0.84 and ν = 0.82.

2.3 Caputo generalized fractional order derivative

Consider (1.1) via Generalized Caputo fractional derivative (7) in the following way

(

1

σ1−ν

)

GCDν
0 (T (t)) = λ1(T (t)−Te), (2.11)

where 0 < ν < 1.

GCDν
0 (T (t)) = λ (T (t)−Te),
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where,

λ = λ1σ1−ν

Applying ρ−Laplace transform (1.13) to (2.11) and considering T (0) = T0, yields

sν Lρ [T (t)]− sν−1T0 = λ Lρ(T (t)−Te).

After simplification, we get

Lρ(T (t)) = (T0 −Te)
sν−1

sν −λ
+

Te

s
. (2.12)

As derived in [16], (2.12) gives

T (t) = (T0 −Te)Eν

(

λ

(

tρ

ρ

)ν)

+Te. (2.13)
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Fig. 7: Comparison of GC solution with experimental cooling

curve for 40 ml water. The trial with fractional order derivative

ν = 0.60,ρ = 1.55.

0 10 20 30 40 50 60
20

30

40

50

60

70

80

90

100

110

t

T
(t

)

Oil for ν = 0.60, ρ=1.55

 

 

Experimental

GC

Classical

Fig. 8: Comparison of GC solution with experimental cooling

curve for Oil. The trial with fractional order derivative ν =
0.60,ρ = 1.55.

Table 5: Comparison of the experimental data with numerical values obtain under Caputo generalized fractional derivative and Classical

derivative for 40ml water.

t Experiment GC Classical

0 92.7508 92.5 92.5

5 71.5597 70.7029 63.6509

10 59.6864 59.1521 47.336

15 52.7337 51.9656 38.1095

20 47.8517 47.1504 32.8917

25 44.0043 43.747 29.9409

30 40.9361 41.2392 28.2721

35 38.1243 39.3281 27.3284

40 36.8658 37.8307 26.7947

45 35.61 36.6301 26.4929

Error - 2.396482 36.2225
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Table 6: Comparison of the experimental data with numerical values obtain under Caputo generalized fractional derivative and Classical

derivative for Oil.

t Experiment GC Classical

0 105.29 105 105

5 82.4516 78.0403 69.3167

10 68.5161 63.8129 49.2376

15 59.2258 54.9865 37.9389

20 51.871 49.0849 31.5811

25 46.4516 44.9202 28.0036

30 41.0323 41.8549 25.9904

35 38.3226 39.5209 24.8577

40 35.228 35.0315 24.2202

45 33.6774 36.2287 23.8615

50 32.129 35.0315 23.6597

55 30.9677 34.0363 23.5461

Error - 9.8104 50.01306

Figure-7 and Figure-8 shows the typical experimental cooling curves obtained with 40ml water and oil respectively,
and these are compared with the results obtained using the classical integer solution and Caputo generalized solution. It
is clear that the integer order solution fails to fit experimental data, whereas a very good fit is obtained using Caputo
generalized with the fractional order of time derivative ν = 0.60,ρ = 1.55 for both 40ml water and oil. The Table-5 and
Table-6 shows the numerical values of the experimental data and the values obtained through simulation for Caputo
generalized fractional derivative. The error norms supports the facts for better performance of the Caputo generalized
fractional-order models with ν = 0.60,ρ = 1.55.

2.4 Atangana - Koca fractional order derivative

Consider (1.1) via Atangana Koca fractional derivative (1.14) in the following way

(

1

σ1−ν

)

AKCDν
0 (T (t)) = λ1(T (t)−Te), (2.14)

where 0 < ν < 1.

AKCDν
0 (T (t)) = λ (T (t)−Te).

where,

λ = λ1σ1−ν
.

Applying Laplace transform (1.15) to (2.14) and considering T (0) = T0, yields

L[T (t)]s−nν −T0s−nν−1

g(ν)(1− g(ν))ν
= λ L[T (t)]−

λ Te

s
.

After simplification, we get

L[(t)] =−
T0s−1

λ g(ν)(1− g(ν))ν [snν − 1
λ g(ν)(1−g(ν))ν ]

+
Tesnν−1

snν − 1
λ g(ν)(1−g(ν))ν

. (2.15)

Applying the inverse Laplace transform in (2.15) and using partial fraction, we get

T (t) =−
tnνT0

λ g(ν)(1− g(ν))ν
Enν,nν+1

(

tnν

λ g(ν)(1− g(ν))ν

)

+TeEnν,1

(

tnν

λ g(ν)(1− g(ν))ν

)

(2.16)
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2.5 Atangana - Koca fractional variable order derivative

Consider (1.1) via Atangana Koca fractional variable order derivative (1.18) in the following way

(

1

σ1−g(ν)

)

AKV D
g(ν)
0 (T (t)) = λ1(T (t)−Te), (2.17)

AKV Dν
0 (T (t)) = λ (T (t)−Te),

where,

λ = λ1σ1−g(ν)

Applying Laplace transform (1.19) to (2.17) and considering T (0) = T0, yields

(

s

s+ g(ν)
−λ

)

L[T (t)] =
T0

s+ g(ν)
−

λ Te

s
.

After simplification, we get

L[(t)] =
T0

(1−λ )
[

s− λ g(ν)
1−λ

] −
λ Te

(1−λ )
[

s− λ g(ν)
1−λ

] −
λ Teg(ν)

(1−λ )s
[

s− λ g(ν)
1−λ

] . (2.18)

Applying the inverse Laplace transform in (2.18) and using partial fraction, we get

T (t) =

(

T0 −λ Te

1−λ

)

exp

(

λ g(ν)t

1−λ

)

−
λ Teg(ν)

1−λ
E1,2

(

λ g(ν)t

1−λ

)

. (2.19)
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Fig. 9: Newton’s law of cooling involving the Atangana-Koca fractional derivative with variable order.

Numerical solutions of (2.19) have been depicted in figure-9, for different values of the fractional order g(ν). The
numerical results indicate that the fractional order has an important influence on the temperature and the general solution
of the fractional equations depends on the parameter ν and when the order is a function rather than a constant of arbitrary
order g(ν), respectively. These solutions represent a new family of solutions for the Newton’s law of cooling, which
allows for the possibility of multiple solutions that are not observed in experiments.

3 Conclusion

We aimed to study behaviour of solution of Newton’s law of cooling using fractional operator. For this purpose, we
compare the various fractional derivative results with experimental results given in [28] for Newton’s law of cooling. The
experimental cooling curves obtained with 40ml water and oil and these are compared with the results obtained using
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constant and variable order fractional derivative. To test the accuracy of the model with various fractional derivative an
experiment was carried out. With a Borosil beaker filled with 40ml of water and oil heated to a specific temperature. Its
cooling data were then noted with time, the results obtained can be viewed in [28].

Based on experimental data, our aim is to test several fractional differential equations with various fractional
derivative operators and see which ones better describe the problems using method given in [30].

We also calculated the error norms which supports the facts for better performance of operators. In the solution
obtain using Caputo Fabrizio observed that an order ν = 0.49 and ν = 0.45 are best fit compared to experiment for 40ml
water and oil respectively. Also in the solution obtain using Atangana Baleanu the best fit noted for an order ν = 0.84
and ν = 0.82 for 40ml water and oil respectively. In the solution using Caputo generalised fractional derivative best fit as
a minimum error observed for an order ν = 0.60,ρ = 1.55 for both 40ml water and oil.

Among all derivatives Caputo Fabrizio, Atangana Baleanu and Caputo generalised fractional derivative, we observed
the Atangana Baleanu fractional derivative is best fit for these experiments as it has minimum error norm. The
Mittag-Leffler and exponential decay laws can capture both Gaussian and non-Gaussian aspects due to their associated
density distribution. The model based on the classical differentiation cannot capture such phenomena due to its
Markovian property.

The experimental data presented a distribution similar to non-Gaussian distribution. The comparison of experimental
data and mathematical models in particular those with non-local differential operators are in good agreement. This can
be explained with the fact that the power-law kernel possess density distribution that is non-Gaussian as the per the
probability distribution which in statistics does not have good statistical properties. We also obtained the solution of
Newton’s law of cooling for variable orders. It may help in future research work.
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