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The aim of this paper is to study a nondifferentiable multiobjective programming prob-
lem with inequality constraints. In this paper we introduce the concept of type-I α-
invex, weak strictly pseudo-quasi type-I α-invex, strong pseudo-quasi type-I α-invex,
weak quasi-strictly-pseudo type-I α-invex and weak strictly-pseudo type-I α-invex
functions. By utilizing these new notions we derive a Fritz John type sufficient op-
timality condition and establish Mond-Weir type and general Mond-Weir type duality
results for the nondifferentiable multiobjective programming problem.
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1 Introduction

Convexity plays a vital role in many aspects of mathematical programming (see, for
example, Bazaraa et al. [3] and Mangasarian [12]). In order to study the optimization
problems in a wider context various useful generalizations of the notion of convexity have
been introduced. Hanson [8] introduced the class of invex functions. Later, Hanson and
Mond [9] defined two new classes of functions called type-I and type-II functions. This
concept was extended by Rueda and Hanson [29] to pseudo-type-I and quasi-type-I func-
tions. Univex functions were introduced and studied by Bector et al. [4]. Rueda et al. [30]
studied optimality and duality results for several mathematical programs by combining

∗Present Address: Department of Mathematics, Faculty of Science, Banaras Hindu University, Varanasi 221
005, India
†Present Address: Department of Mathematics, Faculty of Applied Sciences and Humanities, Echelon Institute

of Technology, Faridabad 121 101, India
Corresponding Author: sky dreamz@rediffmail.com



318 S. K. Mishra et al.

the concept of type-I and univex functions. Kaul et al. [11] considered a multiple objec-
tive problem with type-I functions and obtained some results on optimality and duality.
Mishra [15] studied a multiple objective nonlinear programming problem by combining
the cocept of type-I, pseudo-type-I, quasi-type-I, quasi-pseudo-type-I, pseudo-quasi-type-I
and univex functions. More details on type-I functions can be found in Ye [33], Suneja
and Srivastava [31], Mishra et al. [19, 21, 22] and Mishra et al. [23, 24]. Aghezzaf and
Hachimi [1] introduced new class of generalized type-I vector valued functions and de-
rived various duality results for a nonlinear multiobjective programming problem.

Theoretical problems of differentiable programming can be solved by substituting in-
vexity for convexity e.g. Hanson [8], Craven [5], Egudo and Hanson [7], and Jayakumar
and Mond [10]. But corresponding conclusion can not be obtained in nondifferentiable
programming with the aid of invexity introduced by Hanson [8] because the existence of a
derivative is required in the definition of invexity.

Generalization of invexity to locally Lipschitz functions, with derivative replaced by
Clarke generalized gradient has been considered by Craven [6], Reiland [28], Mishra and
Mukherjee [17], Mishra [13, 14], and Mishra and Giorgi [16]. However, Antczak [2] used
directional derivative, in association with a hypothesis of an invex kind, following Ye [33].

Noor [26] and Mishra and Noor [18] have studied some properties of the α-preinvex
functions and their differentials. Recently Mishra, Pant and Rautela [20] and Pant and
Rautela [27] introduced the concepts of strict pseudo α-invex, quasi α-invex, weak strictly
pseudo quasi α-invex, strong pseudo quasi α-invex, weak quasi strictly pseudo α-invex and
weak strictly pseudo α-invex functions.

In the present paper, as an application of the new classes of type-I α-invex functions we
consider a nondifferentiable multiobjective programming problem and derive Fritz John
type sufficient optimality conditions for a (weakly) Pareto efficient solution to the prob-
lem. Further the Mond-Weir type and general Mond-Weir type of duality results are also
obtained.

2 Preliminaries

Throughout this paper, we will use the following conventions for vectors in Rn:

x = y ⇔ xi = yi, i = 1, . . . , n;

x > y ⇔ xi > yi, i = 1, . . . , n;

x≥y ⇔ xi≥yi, i = 1, . . . , n;

x ≥ y ⇔ xi≥yi, i = 1, . . . , n but x 6= y.

Let X be a nonempty subset of Rn, η : X × X → Rn is an n-dimensional vector
valued function and α(x, y) : X × X → R+\0 be a bifunction. First, we recall some
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known results and concepts.

Definition 2.1. A subset X ⊆ Rn is said to be α-invex set, if there exist η : X ×X → Rn

and α(x, u) : X ×X → R+ such that for all x ∈ X

u + λα(x, u)η(x, u) ∈ X, ∀ x, u ∈ X, λ ∈ [0, 1].

Note that α-invex set need not to be convex set.

The following example from Noor (2004) shows that α-invex set need not to be convex
set.

Example 2.1. The set X = R\(−1/2, 1/2) is an invex set with respect to α(x, u) = 1 and
η, where

η =





x− u, for x > 0, u > 0

u− x, for x < 0, u > 0.

It is clear that X is not a convex set.

From now onward we assume that the set X is a nonempty α-invex set with respect to
α(·, ·) and η(·, ·) unless otherwise specified.

Definition 2.2. The function f : X ⊆ Rn → Rk on the α-invex set is said to be α-preinvex
function if there exist η : X × X → Rn and α(x, u) : X × X → R+ such that for all
x ∈ X

f(x + λα(x, u)η(x, u)) ≤ (1− λ)f(u) + λf(x), ∀ x, u ∈ X, λ ∈ [0, 1].

We consider the following mathematical programming problem:

(P) Minimize f(x), subject to g(x) ≤ 0, x ∈ X , where f : X ⊆ Rn → Rk and
g : X ⊆ Rn → Rm are functions on a set X ⊆ Rn (a nonempty α-invex set).

Throughout this paper we use the notation

α(x, u)f ′(u, η(x, u)) = lim
λ→0+

f(u + λα(x, u)η(x, u))− f(u)
λ

,

and a similar notation for α(x, u)g′(u, η(x, u)).
Let D be a nonempty α-invex set such that D = {x ∈ X : g(x)≤0} is the set of all

the feasible solutions for (P) and denote I = {1, . . . , k}, M = {1, . . . ,m}, J(x) = {j ∈
M : gj(x) = 0} and J(x) = {j ∈ M : gj(x) < 0}. This implies J(x) ∪ J(x) = M .

Now, we introduce the concept of type-I α-invex, weak strictly pseudo-quasi type-I α-
invex, strong pseudo-quasi type-I α-invex, weak quasi-strictly-pseudo type-I α-invex and
weak strictly-pseudo type-I α-invex functions.
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Definition 2.3. The pair (f, g) is said to be type-I α-invex with respect to α and η at u ∈ X ,
if there exist functions α(x, u) : X ×X → R+ and η : X ×X → Rn such that

f(x)− f(u)≥α(x, u)f ′(u, η(x, u)), ∀ x, u ∈ X;

−g(u)≥α(x, u)g′(u, η(x, u)), ∀ x, u ∈ X.

Definition 2.4. The pair (f, g) is said to be weak strictly pseudo-quasi type-I α-invex with
respect to α and η at u ∈ X , if there exist functions α(x, u) : X × X → R+ and
η : X ×X → Rn such that

f(x)− f(u) ≤ 0 ⇒ α(x, u)f ′(u, η(x, u)) < 0, ∀ x, u ∈ X;

−g(u)≤0 ⇒ α(x, u)g′(u, η(x, u))≤0, ∀ x, u ∈ X.

Definition 2.5. The pair (f, g) is said to be strong pseudo-quasi type-I α-invex with respect
to α and η at u ∈ X , if there exist functions α(x, u) : X×X → R+ and η : X×X → Rn

such that

f(x)− f(u) ≤ 0 ⇒ α(x, u)f ′(u, η(x, u)) ≤ 0, ∀ x, u ∈ X;

−g(u)≤0 ⇒ α(x, u)g′(u, η(x, u))≤0, ∀ x, u ∈ X.

Example 2.2. Consider the function f = (f1, f2) : [−1, 4) → R defined by

f1 =





x3, −1 ≤ x ≤ 2

8, 2 ≤ x ≤ 4,

f2 =





0, −1 ≤ x ≤ 2

2x2 − 8, 2 ≤ x ≤ 4

and the function g = (g1, g2) : [−1, 4) → R defined by

g1 =




−x2, −1 ≤ x ≤ 2

−4, 2 ≤ x ≤ 4,

g2 =





5x, −1 ≤ x ≤ 2

x4 − 6, 2 ≤ x ≤ 4.

Clearly, f1, f2, g1 and g2 are not differentiable functions at x = 2. The feasible region is
nonempty. Let α(x, x) = 1, η(x, x) = x2(x− x)/2 and x = 2.

(i) If x ∈ [−1, 2) and f1(x) + f2(x) ≤ f1(2) + f2(2), then it implies that x ≤ 2,
which further implies that α(x, x)f ′1(x, η(x, x))+α(x, x)f ′2(x, η(x, x)) = 6x2(x−
2) ≤ 0 and −g1(x) − g2(x) ≤ 0, which implies that α(x, x)g′1(x, η(x, x)) +
α(x, x)g′2(x, η(x, x)) ≤ 0.
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(ii) The case x ∈ [2, 4) can be verified similarly.

Thus (f, g) is strong pseudo-quasi type-I α-invex with respect to α and η at x = 2. How-
ever, (f, g) is not type-I α-invex with respect to same α and η at x = 2.

Definition 2.6. The pair (f, g) is said to be weak quasi-strictly-pseudo type-I α-invex with
respect to α and η at u ∈ X , if there exist functions α(x, u) : X × X → R+ and
η : X ×X → Rn such that

f(x)− f(u) ≤ 0 ⇒ α(x, u)f ′(u, η(x, u))≤0, ∀ x, u ∈ X;

−g(u)≤0 ⇒ α(x, u)g′(u, η(x, u)) ≤ 0, ∀ x, u ∈ X.

Definition 2.7. The pair (f, g) is said to be weak strictly-pseudo type-I α-invex with respect
to α and η at u ∈ X , if there exist functions α(x, u) : X×X → R+ and η : X×X → Rn

such that

f(x)− f(u) ≤ 0 ⇒ α(x, u)f ′(u, η(x, u)) < 0, ∀ x, u ∈ X;

−g(u)≤0 ⇒ α(x, u)g′(u, η(x, u)) < 0, ∀ x, u ∈ X.

Definition 2.8. A point x ∈ D is said to be a weak Pareto efficient solution for (P) if the
relation f(x) < f(x) holds for all x ∈ D.

Definition 2.9. A point x ∈ D is said to be a locally weak Pareto efficient solution for (P) if
there is a neighborhood N(x) around x such that f(x) < f(x), holds for all x ∈ N(x)∩D.

The following results from Antczak (2002) and Weir and Mond (1988) type will be
needed in the next section.

Lemma 2.1. If x is a locally weak Pareto or a weak Pareto efficient solution of (P) and if
gj is continuous at x for j ∈ J(x), then the following system of inequalities

f ′(x, η(x, x)) < 0,

g′J(x)(x, η(x, x)) < 0,

has no solution for x ∈ X .

Definition 2.10. Function g is said to satisfy the generalized Slaters constraint qualification
at x ∈ D if g is α-invex at x, and there exist x ∈ D such that gj(x) < 0, j ∈ J(x).

Lemma 2.2 (Fritz John type necessary optimality condition). Let x be a weak Parato
efficient solution for (P). Moreover we assume that gj is continuous for j ∈ J(x), f and
g are directionally differentiable at x with f ′(x, η(x, x)) and g′J(x)(x, η(x, x)) α-preinvex
functions of x on X . Moreover, we assume that g satisfies the generalized Slaters constraint
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qualification at x. Then there exist ξ ∈ Rk
+, µ ∈ Rm

+ , such that (x, ξ, µ) satisfies the
following conditions:

ξ
T
f ′(x, η(x, x)) + µT g′J(x)(x, η(x, x)) ≥ 0,∀x ∈ X, (2.1)

µT g(x) = 0, (2.2)

g(x)≤0. (2.3)

3 Sufficient Optimality Conditions

In this section, we establish a Fritz John type sufficient optimality condition.

Theorem 3.1. Let x be a feasible solution for (P) at which conditions (1)-(3) are satisfied.
Moreover, if any one of the following conditions is satisfied:

(a) (ξ
T
f, µT g) is strong pseudo-quasi type-I α-invex at x with respect to some α0, α1

and η;

(b) (ξ
T
f, µT g) is weak strictly pseudo-quasi type-I α-invex at x with respect to some

α0, α1 and η;

(c) (ξ
T
f, µT g) is weak strictly pseudo type-I α-invex at x with respect to some α0, α1

and η;

then x is a weak Pareto efficient solution for (P).

Proof. We prove the theorem by contradiction. Let us assume that x is not a weak Pareto
efficient solution of (P). Then there is a feasible solution x of (P) such that

fi(x) < fi(x) for any i = 1, 2, . . . , k

⇒fi(x)− fi(x) < 0

⇒ξ
T
fi(x)− ξ

T
fi(x) < 0, (since ξ

T
> 0). (3.1)

Now from the feasibility of x and (2.2), we get

µT g(x)− µT g(x) ≤ 0.

If the condition (a) is satisfied, then from the above two inequalities, we get

ξ
T
α0(x, x)f ′(x, η(x, x)) < 0 and µT α1(x, x)g′(x, η(x, x))≤0.

By the positivity of α0 and α1 the above two inequalities reduces to

ξ
T
f ′(x, η(x, x)) < 0 and µT g′(x, η(x, x))≤0.

From above two inequalities, we get
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ξ
T
f ′(x, η(x, x)) + µT g′(x, η(x, x)) < 0.

This contradicts (2.1).
If condition (b) is satisfied, we assume that x is not a weak Pareto efficient solution of

(P). Then there is a feasible solution x of (P) such that

fi(x)− fi(x) < 0

⇒ ξ
T
fi(x)− ξ

T
fi(x) < 0, (since ξ

T
> 0).

Now by condition (b) and (2.2) we get,

ξ
T
α0(x, x)f ′(x, η(x, x)) < 0 and µT α1(x, x)g′(x, η(x, x)) < 0.

By the positivity of α0 and α1 the above two inequalities reduces to

ξ
T
f ′(x, η(x, x)) < 0 and µT g′(x, η(x, x)) < 0.

From the above two inequalities, we get

ξ
T
f ′(x, η(x, x)) + µT g′(x, η(x, x)) < 0.

This is again a contradiction to (2.1).
Now for the part (c), following the similar process, we get

ξ
T
f ′(x, η(x, x)) + µT g′(x, η(x, x)) < 0.

This contradicts (2.1) and complete the proof.

Example 3.1. Consider function f = (f1, f2) defined on X = R, by f1(x) = x2, f2(x) =
x3 and function g defined on X = R, by

g =




−2x2, −1 ≤ x ≤ 2

−x3, 2 ≤ x ≤ 2.5.

Clearly, g is not differentiable at x = 2, but only directionally differentiable at x = 2. The
feasible region is nonempty. Let α(x, x) = 1, η(x, x) = (x− x)/2 and x = 0.

(i) If x ∈ [−1, 2), −g(x) = 0, implies that α(x, x)g′(x, η(x, x)) = 0.

(ii) The case x ∈ [2, 2.5) can be verified similarly.

f(x)≤f(x) ⇒ α(x, x)f ′(x, η(x, x)) = 0, for all x.

Thus (f, g) is strong pseudo-quasi type-I α-invex at x = 0. But (f, g) is not type-I α-invex
at x = 0 with respect to α(x, x) = 1 and η(x, x) = (x− x)/2. Then, by Theorem 3.1(a),
x is a weak Pareto efficient solution for the given multiobjective programming problem.
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4 Mond-Weir Duality

Now in relation to (P) we consider the following dual problem in the format of Mond-
Weir (1981):

(MWD) Maximize f(y) = (f1(y), f2(y), . . . , fk(y)), subject to

(ξT f ′ + µT g′)(y, η(x, y))≥0, for all x ∈ D,

µjgj(y) ≥ 0, j = {1, 2, . . . , m} ,
(4.1)

ξT e = 1, (4.2)

ξ ∈ Rk
+, µ ∈ Rm

+ , (4.3)

where e = (1, 1, . . . , 1) ∈ Rk.
Let

W =





(y, ξ, µ) ∈ X ×Rk ×Rm : ξT f ′(y, η(x, y)) + µT g′(y, η(x, y))≥0,

µjgj(y) ≥ 0, j = 1, 2, . . . ,m, ξ ∈ Rk
+, ξT e = 1, µ ∈ Rm

+





denote the set of all feasible solutions of (MWD). We also denote by prxW the projection
of set W on X .

Theorem 4.1 (Weak Duality). Let x and (y, ξ, µ) be feasible solutions for (P) and (MWD)
respectively. Moreover, we assume that any one of the following conditions holds:

(a) (f, µT g) is strong pseudo-quasi type-I α-invex at y on D ∪ prxW with respect to
some α0, α1 and η;

(b) (f, µT g) is weak strictly pseudo-quasi type-I α-invex at y on D∪prxW with respect
to some α0, α1 and η;

(c) (f, µT g) is weak strictly pseudo type-I α-invex at y on D ∪ prxW with respect to
some α0, α1 and η.

Then the following can not hold:

f(x) ≤ f(y).

Proof. Suppose that

f(x) ≤ f(y), i.e. f(x)− f(y) ≤ 0. (4.4)

Since x is feasible for (P) and (y, ξ, µ) is feasible for (MWD). It follows that

−
m∑

j=1

µjgj(y) ≤ 0. (4.5)



Nondifferentiable Multiobjective Programming 325

If condition (a) is satisfied, (4.4) and (4.5) imply

α0(x, y)f ′(y, η(x, y)) ≤ 0 and
m∑

j=1

µjα1(x, y)g′(y, η(x, y))≤0.

By the positivity of α0 and α1 the above two inequalities reduce to

f ′(y, η(x, y)) ≤ 0 (4.6)

and
m∑

j=1

µjg
′(y, η(x, y))≤0. (4.7)

Since ξ ≥ 0, from (4.6) and (4.7), we get

k∑

i=1

ξif
′
i(y, η(x, y)) +

m∑

j=1

µjg
′
j(y, η(x, y)) < 0. (4.8)

This contradicts (4.1). Hence the assertion.
If the condition (b) is satisfied, from (4.4) and (4.5), we get

α0(x, y)f ′(y, η(x, y)) < 0 and
m∑

j=1

µjα1(x, y)g′(y, η(x, y))≤0.

By the positivity of α0 and α1 the above inequalities reduce to

f ′(y, η(x, y)) < 0 (4.9)
m∑

j=1

µjg
′(y, η(x, y))≤0. (4.10)

Since ξ ≥ 0, (4.9) and (4.10) imply (4.8), again a contradiction to (4.1).
If the condition (c) is satisfied, from (4.4) and (4.5), we get

α0(x, y)f ′(y, η(x, y)) < 0 and
m∑

j=1

µjα1(x, y)g′(y, η(x, y)) < 0.

By the positivity of α0 and α1 the above inequalities reduce to

f ′(y, η(x, y)) < 0 (4.11)
m∑

j=1

µjg
′(y, η(x, y)) < 0. (4.12)

But ξ≥0, (4.11) and (4.12) imply (4.8), which contradicts (4.1). This completes the proof.
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Theorem 4.2 (Strong duality). Let x be a locally weak Pareto efficient solution for (P) at
which the generalized Slaters constraint qualification is satisfied. Let f, g be directionally
differentiable at x with f ′(x, η(x, x)) and g′(x, η(x, x)) are α-preinvex functions on X . Let
gj be continuous for j ∈ J(x), then there exist µ ∈ Rm

+ such that (x, 1, µ) is feasible for
(MWD). If the weak duality between (P) and (MWD) in Theorem 4.1 holds, then (x, 1, µ)
is a locally weak Pareto efficient solution for (MWD).

Proof. Since x satisfies all the conditions of Lemma 2.2, there exist µ ∈ Rm
+ such that

conditions (1)-(3) hold. By (1)-(3), we have (x, 1, µ) is feasible for (MWD). By the weak
duality, it follows that (x, 1, µ) is a locally weak Pareto efficient solution for (MWD).

Theorem 4.3 (Converse duality). Let (y, ξ, µ) be a weak Pareto efficient solution for
(MWD). Moreover we assume that the hypothesis of Theorem 3.1 hold for y in D ∪ prxW ,
then y is a weak Pareto efficient solution for (P).

Proof. We prove the theorem by contradiction. Suppose that (y is not a weak Pareto effi-
cient solution for (P), that is, there exist x ∈ D such that f(x) < f(y). Since condition (a)
of Theorem 4.1 holds, we get

k∑

i=1

ξiα0(x, y)f ′i(y, η(x, y)) < 0.

By the positivity of α0 the above inequality reduce to

k∑

i=1

ξif
′
i(y, η(x, y)) < 0. (4.13)

From the feasibility of x and (y, ξ, µ) for (P) and (MWD) respectively, we have

m∑

j=1

µjgj(y) ≤ 0.

The above inequality in the light of condition (a) of Theorem 4.1, yields
m∑

j=1

µjα1(x, y)g′j(y, η(x, y))≤0.

Since α1 > 0, we get
m∑

j=1

µjg
′
j(y, η(x, y))≤0. (4.14)

By (4.13) and (4.14), we get

k∑

i=1

ξif
′
i(y, η(x, y)) +

m∑

j=1

µjg
′
j(y, η(x, y)) < 0. (4.15)
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This contradicts the dual constraint (4.1).
Similarly by condition (b) in Theorem 4.1, we get

k∑

i=1

ξiα0(x, y)f ′i(y, η(x, y)) < 0 and
m∑

j=1

µjα1(x, y)g′j(y, η(x, y)) ≤ 0.

By the positivity of α0 and α1 the above two inequalities reduce to

k∑

i=1

ξif
′
i(y, η(x, y)) < 0 and

m∑

j=1

µjg
′
j(y, η(x, y)) ≤ 0.

Since ξ ≥ 0, the above two inequalities imply (4.15), which yields contradiction to (4.1).
By condition (c), we have

k∑

i=1

ξiα0(x, y)f ′i(y, η(x, y)) < 0 and
m∑

j=1

µjα1(x, y)g′j(y, η(x, y)) < 0.

By the positivity of α0 and α1 the above two inequalities reduce to

k∑

i=1

ξif
′
i(y, η(x, y)) < 0 and

m∑

j=1

µjg
′
j(y, η(x, y)) < 0.

Since ξ ≥ 0, the above two inequalities imply (4.15), which yields again a contradiction to
(4.1). Hence, the proof is completed.

5 General Mond-Weir Duality

We shall continue our discussion on duality for (P) in the present section by considering
a general Mond-Weir type dual problem and proving weak and strong duality theorem
under the assumption of type-I α-invexity introduced in section 2.

We consider the following general Mond-Weir type dual to (P)

(GMWD) Maximize φ(y, ξ, µ) = f(y) + µT
J0

gJ0(y)e, subject to

(ξT f ′ + µT g′)(y, η(x, y))≥0, for all x ∈ D, (5.1)

µJtgJt(y) ≥ 0, 1≤ t ≤ r, (5.2)

ξT e = 1, (5.3)

ξ ∈ Rk
+, µ ∈ Rm

+ ,

where Jt, 1≤ t ≤ r are partitions of set M and e = (1, 1, . . . , 1) ∈ Rk.
Let

W =





(y, ξ, µ) ∈ X ×Rk ×Rm : ξT f ′(y, η(x, y)) + µT g′(y, η(x, y))≥0,

µjgj(y) ≥ 0, j = 1, 2, . . . ,m, ξ ∈ Rk
+, ξT e = 1, µ ∈ Rm

+




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denote the set of all feasible solutions of (GMWD).

Theorem 5.1 (Weak Duality). Let x and (y, ξ, µ) be a feasible solution for (P) and
(GMWD) respectively. Assume that one of the following condition holds:

(a) ξ > 0 and (f + µJ0gJ0 , µJtgJt) is strong pseudo-quasi type-I α-invex at y on D ∪
prxW with respect to some α0, α1 and η for any t, 1≤ t ≤ r;

(b) (f +µJ0gJ0 , µJtgJt) is weak strictly pseudo-quasi type-I α-invex at y on D∪prxW

with respect to some α0, α1 and η for any t, 1≤ t ≤ r;
(c) (f + µJ0gJ0 , µJt

gJt
) is weak strictly pseudo type-I α-invex at y on D ∪ prxW with

respect to some α0, α1 and η for any t, 1≤ t ≤ r.

Then the following condition can not hold:

f(x) ≤ φ(y, ξ, µ).

Proof. We prove the theorem by contradiction. Suppose

f(x) ≤ φ(y, ξ, µ). (5.4)

Since x is feasible for (P) and µ ≥ 0, (5.4) implies that

f(x) + µT
J0

gJ0(x)e ≤ f(y) + µT
J0

gJ0(y)e

⇒ f(x) + µT
J0

gJ0(x)e− f(y) + µT
J0

gJ0(y)e ≤ 0. (5.5)

From the feasibility of x for (P) and (5.2), we have

−µT
Jt

gJt(y)≤0, for any 1≤ t ≤ r. (5.6)

By condition (a), from (5.5) and (5.6), we have

α0(x, y)f ′(y, η(x, y)) + µJ0α0(x, y)g′J0
(y, η(x, y)) ≤ 0

and

µJtα1(x, y)g′Jt
(y, η(x, y)) ≤ 0, for any 1≤ t ≤ r.

By the positivity of α0 and α1 the above two inequalities reduce to

f ′(y, η(x, y)) + µJ0g
′
J0

(y, η(x, y)) ≤ 0

and

µJtg
′
Jt

(y, η(x, y)) ≤ 0, for any 1≤ t ≤ r.
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Since ξ > 0, the above two inequalities yield

f ′(y, η(x, y)) +
r∑

t=0

µJt
g′Jt

(y, η(x, y)) < 0. (5.7)

Since J0, . . . , Jr are partition of M , (5.7) is equivalent to

f ′(y, η(x, y)) + µT g′(y, η(x, y)) < 0. (5.8)

which contradicts the dual constraint (5.2).
Similarly by condition (b) we have

α0(x, y)f ′(y, η(x, y)) + µJ0α0(x, y)g′J0
(y, η(x, y)) < 0

and

µJtα1(x, y)g′Jt
(y, η(x, y)) ≤ 0, for any 1≤ t ≤ r.

By the positivity of α0 and α1 the above two inequalities reduce to

f ′(y, η(x, y)) + µJ0g
′
J0

(y, η(x, y)) < 0

and

µJtg
′
Jt

(y, η(x, y)) ≤ 0, for any 1≤ t ≤ r.

Since ξ ≥ 0, the above two inequalities yield

f ′(y, η(x, y)) +
r∑

t=0

µJtg
′
Jt

(y, η(x, y)) < 0.

The above inequality leads to (5.8), which contradicts (5.1).
Now for the part (c) following the similar process we get (5.8), which contradicts (5.1).

Hence, the proof is completed.

Theorem 5.2 (Strong duality). Let x be a locally weak Pareto efficient solution for (P) at
which the generalized Slaters constraint qualification is satisfied. Let f, g be directionally
differentiable at x with f ′(x, η(x, x)) and g′(x, η(x, x)) are α-preinvex functions on X . Let
gj be continuous for j ∈ J(x), then there exist µ ∈ Rm

+ such that (x, 1, µ) is feasible for
(GMWD). If the weak duality between (P) and (MWD) in Theorem 5.1 holds, then (x, 1, µ)
is a locally weak Pareto efficient solution for (GMWD).

Proof. The proof of this theorem is similar to the proof of Theorem 4.2.
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