On Nondifferentiable Multiobjective Programming

Involving Type-I α -Invex Functions

S. K. Mishra^{1*}, J. S. Rautela^{2†} and R. P. Pant²

¹ Department of Management Sciences, City University of Hong Kong

83, Tat Chee Avenue, Kowloon, Hong Kong

² Department of Mathematics, Kumaun University, D.S.B. Campus, Nainital, 263002, India

Received February 2, 2008

The aim of this paper is to study a nondifferentiable multiobjective programming problem with inequality constraints. In this paper we introduce the concept of type-I α invex, weak strictly pseudo-quasi type-I α -invex, strong pseudo-quasi type-I α -invex, weak quasi-strictly-pseudo type-I α -invex and weak strictly-pseudo type-I α -invex functions. By utilizing these new notions we derive a Fritz John type sufficient optimality condition and establish Mond-Weir type and general Mond-Weir type duality results for the nondifferentiable multiobjective programming problem.

Keywords: Type-I α -invexity, nondifferentiable multiobjective programming, convexity, duality.

1 Introduction

Convexity plays a vital role in many aspects of mathematical programming (see, for example, Bazaraa *et al.* [3] and Mangasarian [12]). In order to study the optimization problems in a wider context various useful generalizations of the notion of convexity have been introduced. Hanson [8] introduced the class of invex functions. Later, Hanson and Mond [9] defined two new classes of functions called type-I and type-II functions. This concept was extended by Rueda and Hanson [29] to pseudo-type-I and quasi-type-I functions. Univex functions were introduced and studied by Bector *et al.* [4]. Rueda *et al.* [30] studied optimality and duality results for several mathematical programs by combining

^{*}Present Address: Department of Mathematics, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India

[†]Present Address: Department of Mathematics, Faculty of Applied Sciences and Humanities, Echelon Institute of Technology, Faridabad 121 101, India

Corresponding Author: sky_dreamz@rediffmail.com

S. K. Mishra et al.

the concept of type-I and univex functions. Kaul *et al.* [11] considered a multiple objective problem with type-I functions and obtained some results on optimality and duality. Mishra [15] studied a multiple objective nonlinear programming problem by combining the cocept of type-I, pseudo-type-I, quasi-type-I, quasi-pseudo-type-I, pseudo-quasi-type-I and univex functions. More details on type-I functions can be found in Ye [33], Suneja and Srivastava [31], Mishra *et al.* [19, 21, 22] and Mishra *et al.* [23, 24]. Aghezzaf and Hachimi [1] introduced new class of generalized type-I vector valued functions and derived various duality results for a nonlinear multiobjective programming problem.

Theoretical problems of differentiable programming can be solved by substituting invexity for convexity e.g. Hanson [8], Craven [5], Egudo and Hanson [7], and Jayakumar and Mond [10]. But corresponding conclusion can not be obtained in nondifferentiable programming with the aid of invexity introduced by Hanson [8] because the existence of a derivative is required in the definition of invexity.

Generalization of invexity to locally Lipschitz functions, with derivative replaced by Clarke generalized gradient has been considered by Craven [6], Reiland [28], Mishra and Mukherjee [17], Mishra [13, 14], and Mishra and Giorgi [16]. However, Antczak [2] used directional derivative, in association with a hypothesis of an invex kind, following Ye [33].

Noor [26] and Mishra and Noor [18] have studied some properties of the α -preinvex functions and their differentials. Recently Mishra, Pant and Rautela [20] and Pant and Rautela [27] introduced the concepts of strict pseudo α -invex, quasi α -invex, weak strictly pseudo quasi α -invex, strong pseudo quasi α -invex, weak quasi strictly pseudo α -invex and weak strictly pseudo α -invex functions.

In the present paper, as an application of the new classes of type-I α -invex functions we consider a nondifferentiable multiobjective programming problem and derive Fritz John type sufficient optimality conditions for a (weakly) Pareto efficient solution to the problem. Further the Mond-Weir type and general Mond-Weir type of duality results are also obtained.

2 Preliminaries

Throughout this paper, we will use the following conventions for vectors in \mathbb{R}^n :

$$\begin{aligned} x &= y \Leftrightarrow x_i = y_i, \ i = 1, \dots, n; \\ x &> y \Leftrightarrow x_i > y_i, \ i = 1, \dots, n; \\ x &\geq y \Leftrightarrow x_i \geq y_i, \ i = 1, \dots, n; \\ x &\geq y \Leftrightarrow x_i \geq y_i, \ i = 1, \dots, n \text{ but } x \neq y. \end{aligned}$$

Let X be a nonempty subset of \mathbb{R}^n , $\eta : X \times X \to \mathbb{R}^n$ is an n-dimensional vector valued function and $\alpha(x, y) : X \times X \to \mathbb{R}_+ \setminus 0$ be a bifunction. First, we recall some

known results and concepts.

Definition 2.1. A subset $X \subseteq \mathbb{R}^n$ is said to be α -invex set, if there exist $\eta : X \times X \to \mathbb{R}^n$ and $\alpha(x, u) : X \times X \to \mathbb{R}_+$ such that for all $x \in X$

$$u+\lambda\alpha(x,u)\eta(x,u)\in X,\;\forall\;x,u\in X,\;\lambda\in[0,1].$$

Note that α -invex set need not to be convex set.

The following example from Noor (2004) shows that α -invex set need not to be convex set.

Example 2.1. The set $X = R \setminus (-1/2, 1/2)$ is an invex set with respect to $\alpha(x, u) = 1$ and η , where

$$\eta = \begin{cases} x - u, & \text{for } x > 0, \ u > 0\\ u - x, & \text{for } x < 0, \ u > 0. \end{cases}$$

It is clear that X is not a convex set.

From now onward we assume that the set X is a nonempty α -invex set with respect to $\alpha(\cdot, \cdot)$ and $\eta(\cdot, \cdot)$ unless otherwise specified.

Definition 2.2. The function $f : X \subseteq \mathbb{R}^n \to \mathbb{R}^k$ on the α -invex set is said to be α -preinvex function if there exist $\eta : X \times X \to \mathbb{R}^n$ and $\alpha(x, u) : X \times X \to \mathbb{R}_+$ such that for all $x \in X$

$$f(x + \lambda \alpha(x, u)\eta(x, u)) \le (1 - \lambda)f(u) + \lambda f(x), \ \forall x, u \in X, \ \lambda \in [0, 1].$$

We consider the following mathematical programming problem:

(P) Minimize f(x), subject to $g(x) \leq 0$, $x \in X$, where $f : X \subseteq \mathbb{R}^n \to \mathbb{R}^k$ and $g : X \subseteq \mathbb{R}^n \to \mathbb{R}^m$ are functions on a set $X \subseteq \mathbb{R}^n$ (a nonempty α -invex set).

Throughout this paper we use the notation

$$\alpha(x,u)f'(u,\eta(x,u)) = \lim_{\lambda \to 0^+} \frac{f(u + \lambda \alpha(x,u)\eta(x,u)) - f(u)}{\lambda},$$

and a similar notation for $\alpha(x, u)g'(u, \eta(x, u))$.

Let D be a nonempty α -invex set such that $D = \{x \in X : g(x) \leq 0\}$ is the set of all the feasible solutions for (P) and denote $I = \{1, \ldots, k\}, M = \{1, \ldots, m\}, J(x) = \{j \in M : g_j(x) = 0\}$ and $\overline{J}(x) = \{j \in M : g_j(x) < 0\}$. This implies $J(x) \cup \overline{J}(x) = M$.

Now, we introduce the concept of type-I α -invex, weak strictly pseudo-quasi type-I α -invex, strong pseudo-quasi type-I α -invex, weak quasi-strictly-pseudo type-I α -invex and weak strictly-pseudo type-I α -invex functions.

S. K. Mishra et al.

Definition 2.3. The pair (f, g) is said to be *type-I* α -*invex with respect to* α *and* η *at* $u \in X$, if there exist functions $\alpha(x, u) : X \times X \to R_+$ and $\eta : X \times X \to R^n$ such that

$$\begin{split} f(x) - f(u) &\geq \alpha(x, u) f'(u, \eta(x, u)), \; \forall \; x, u \in X; \\ -g(u) &\geq \alpha(x, u) g'(u, \eta(x, u)), \; \forall \; x, u \in X. \end{split}$$

Definition 2.4. The pair (f,g) is said to be *weak strictly pseudo-quasi type-I* α *-invex with respect to* α *and* η *at* $u \in X$, if there exist functions $\alpha(x, u) : X \times X \to R_+$ and $\eta : X \times X \to R^n$ such that

$$f(x) - f(u) \le 0 \Rightarrow \alpha(x, u) f'(u, \eta(x, u)) < 0, \ \forall x, u \in X;$$

$$-g(u) \le 0 \Rightarrow \alpha(x, u) g'(u, \eta(x, u)) \le 0, \ \forall x, u \in X.$$

Definition 2.5. The pair (f, g) is said to be *strong pseudo-quasi type-I* α *-invex with respect to* α *and* η *at* $u \in X$, if there exist functions $\alpha(x, u) : X \times X \to R_+$ and $\eta : X \times X \to R^n$ such that

$$f(x) - f(u) \le 0 \Rightarrow \alpha(x, u) f'(u, \eta(x, u)) \le 0, \ \forall x, u \in X;$$

$$-g(u) \le 0 \Rightarrow \alpha(x, u) g'(u, \eta(x, u)) \le 0, \ \forall x, u \in X.$$

Example 2.2. Consider the function $f = (f_1, f_2) : [-1, 4) \to R$ defined by

$$f_1 = \begin{cases} x^3, & -1 \le x \le 2\\ 8, & 2 \le x \le 4, \end{cases}$$
$$f_2 = \begin{cases} 0, & -1 \le x \le 2\\ 2x^2 - 8, & 2 \le x \le 4 \end{cases}$$

and the function $g = (g_1, g_2) : [-1, 4) \to R$ defined by

$$g_1 = \begin{cases} -x^2, & -1 \le x \le 2\\ -4, & 2 \le x \le 4, \end{cases}$$
$$g_2 = \begin{cases} 5x, & -1 \le x \le 2\\ x^4 - 6, & 2 \le x \le 4. \end{cases}$$

Clearly, f_1 , f_2 , g_1 and g_2 are not differentiable functions at x = 2. The feasible region is nonempty. Let $\alpha(x, \overline{x}) = 1$, $\eta(x, \overline{x}) = x^2(x - \overline{x})/2$ and $\overline{x} = 2$.

(i) If $x \in [-1,2)$ and $f_1(x) + f_2(x) \leq f_1(2) + f_2(2)$, then it implies that $x \leq 2$, which further implies that $\alpha(x,\overline{x})f'_1(\overline{x},\eta(x,\overline{x})) + \alpha(x,\overline{x})f'_2(\overline{x},\eta(x,\overline{x})) = 6x^2(x-2) \leq 0$ and $-g_1(\overline{x}) - g_2(\overline{x}) \leq 0$, which implies that $\alpha(x,\overline{x})g'_1(\overline{x},\eta(x,\overline{x})) + \alpha(x,\overline{x})g'_2(\overline{x},\eta(x,\overline{x})) \leq 0$. (ii) The case $x \in [2, 4)$ can be verified similarly.

Thus (f, g) is strong pseudo-quasi type-I α -invex with respect to α and η at x = 2. However, (f, g) is not type-I α -invex with respect to same α and η at x = 2.

Definition 2.6. The pair (f,g) is said to be *weak quasi-strictly-pseudo type-I* α *-invex with respect to* α *and* η *at* $u \in X$, if there exist functions $\alpha(x, u) : X \times X \to R_+$ and $\eta : X \times X \to R^n$ such that

$$f(x) - f(u) \le 0 \Rightarrow \alpha(x, u) f'(u, \eta(x, u)) \le 0, \ \forall \ x, u \in X;$$
$$-g(u) \le 0 \Rightarrow \alpha(x, u) g'(u, \eta(x, u)) \le 0, \ \forall \ x, u \in X.$$

Definition 2.7. The pair (f, g) is said to be *weak strictly-pseudo type-I* α *-invex with respect to* α *and* η *at* $u \in X$, if there exist functions $\alpha(x, u) : X \times X \to R_+$ and $\eta : X \times X \to R^n$ such that

$$f(x) - f(u) \le 0 \Rightarrow \alpha(x, u) f'(u, \eta(x, u)) < 0, \ \forall x, u \in X;$$

$$-g(u) \le 0 \Rightarrow \alpha(x, u) g'(u, \eta(x, u)) < 0, \ \forall x, u \in X.$$

Definition 2.8. A point $\overline{x} \in D$ is said to be a *weak Pareto efficient solution for* (*P*) if the relation $f(\overline{x}) < f(x)$ holds for all $x \in D$.

Definition 2.9. A point $\overline{x} \in D$ is said to be a *locally weak Pareto efficient solution for* (P) if there is a neighborhood $N(\overline{x})$ around \overline{x} such that $f(\overline{x}) < f(x)$, holds for all $x \in N(\overline{x}) \cap D$.

The following results from Antczak (2002) and Weir and Mond (1988) type will be needed in the next section.

Lemma 2.1. If \overline{x} is a locally weak Pareto or a weak Pareto efficient solution of (P) and if g_j is continuous at \overline{x} for $j \in \overline{J}(\overline{x})$, then the following system of inequalities

$$f'(\overline{x}, \eta(x, \overline{x})) < 0,$$
$$g'_{J(\overline{x})}(\overline{x}, \eta(x, \overline{x})) < 0,$$

has no solution for $x \in X$.

Definition 2.10. Function g is said to satisfy the generalized Slaters constraint qualification at $\overline{x} \in D$ if g is α -invex at \overline{x} , and there exist $\overline{x} \in D$ such that $g_j(\overline{x}) < 0, \ j \in J(\overline{x})$.

Lemma 2.2 (Fritz John type necessary optimality condition). Let x be a weak Parato efficient solution for (P). Moreover we assume that g_j is continuous for $j \in \overline{J}(\overline{x})$, f and g are directionally differentiable at \overline{x} with $f'(\overline{x}, \eta(x, \overline{x}))$ and $g'_{J(\overline{x})}(\overline{x}, \eta(x, \overline{x})) \alpha$ -preinvex functions of x on X. Moreover, we assume that g satisfies the generalized Slaters constraint qualification at \overline{x} . Then there exist $\overline{\xi} \in R_+^k$, $\overline{\mu} \in R_+^m$, such that $(\overline{x}, \overline{\xi}, \overline{\mu})$ satisfies the following conditions:

$$\overline{\xi}^T f'(\overline{x}, \eta(x, \overline{x})) + \overline{\mu}^T g'_{J(\overline{x})}(\overline{x}, \eta(x, \overline{x})) \ge 0, \forall x \in X,$$
(2.1)

$$\overline{\mu}^T g(\overline{x}) = 0, \tag{2.2}$$

$$g(\overline{x}) \leq 0. \tag{2.3}$$

3 Sufficient Optimality Conditions

In this section, we establish a Fritz John type sufficient optimality condition.

Theorem 3.1. Let \overline{x} be a feasible solution for (P) at which conditions (1)-(3) are satisfied. *Moreover, if any one of the following conditions is satisfied:*

- (a) $(\overline{\xi}^T f, \overline{\mu}^T g)$ is strong pseudo-quasi type-I α -invex at \overline{x} with respect to some α_0, α_1 and η ;
- (b) $(\overline{\xi}^T f, \overline{\mu}^T g)$ is weak strictly pseudo-quasi type-I α -invex at \overline{x} with respect to some α_0, α_1 and η ;
- (c) $(\overline{\xi}^T f, \overline{\mu}^T g)$ is weak strictly pseudo type-I α -invex at \overline{x} with respect to some α_0, α_1 and η ;

then \overline{x} is a weak Pareto efficient solution for (P).

Proof. We prove the theorem by contradiction. Let us assume that \overline{x} is not a weak Pareto efficient solution of (P). Then there is a feasible solution x of (P) such that

$$f_i(x) < f_i(\overline{x}) \text{ for any } i = 1, 2, \dots, k$$

$$\Rightarrow f_i(x) - f_i(\overline{x}) < 0$$

$$\Rightarrow \overline{\xi}^T f_i(x) - \overline{\xi}^T f_i(\overline{x}) < 0, \text{ (since } \overline{\xi}^T > 0). \tag{3.1}$$

Now from the feasibility of x and (2.2), we get

$$\overline{\mu}^T g(x) - \overline{\mu}^T g(\overline{x}) \le 0.$$

If the condition (a) is satisfied, then from the above two inequalities, we get

$$\overline{\xi}^T \alpha_0(x,\overline{x}) f'(\overline{x},\eta(x,\overline{x})) < 0 \text{ and } \overline{\mu}^T \alpha_1(x,\overline{x}) g'(\overline{x},\eta(x,\overline{x})) \underline{\leq} 0.$$

By the positivity of α_0 and α_1 the above two inequalities reduces to

$$\overline{\xi}^{I} f'(\overline{x}, \eta(x, \overline{x})) < 0 \text{ and } \overline{\mu}^{T} g'(\overline{x}, \eta(x, \overline{x})) \leq 0.$$

From above two inequalities, we get

Nondifferentiable Multiobjective Programming

$$\overline{\xi}^T f'(\overline{x},\eta(x,\overline{x})) + \overline{\mu}^T g'(\overline{x},\eta(x,\overline{x})) < 0.$$

This contradicts (2.1).

If condition (b) is satisfied, we assume that \overline{x} is not a weak Pareto efficient solution of (P). Then there is a feasible solution x of (P) such that

$$f_i(x) - f_i(\overline{x}) < 0$$

$$\Rightarrow \overline{\xi}^T f_i(x) - \overline{\xi}^T f_i(\overline{x}) < 0, \text{ (since } \overline{\xi}^T > 0).$$

Now by condition (b) and (2.2) we get,

$$\overline{\xi}^T \alpha_0(x,\overline{x}) f'(\overline{x},\eta(x,\overline{x})) < 0 \text{ and } \overline{\mu}^T \alpha_1(x,\overline{x}) g'(\overline{x},\eta(x,\overline{x})) < 0.$$

By the positivity of α_0 and α_1 the above two inequalities reduces to

$$\overline{\xi}^T f'(\overline{x},\eta(x,\overline{x})) < 0 \text{ and } \overline{\mu}^T g'(\overline{x},\eta(x,\overline{x})) < 0.$$

From the above two inequalities, we get

$$\overline{\xi}^T f'(\overline{x}, \eta(x, \overline{x})) + \overline{\mu}^T g'(\overline{x}, \eta(x, \overline{x})) < 0.$$

This is again a contradiction to (2.1).

Now for the part (c), following the similar process, we get

$$\overline{\xi}^T f'(\overline{x}, \eta(x, \overline{x})) + \overline{\mu}^T g'(\overline{x}, \eta(x, \overline{x})) < 0.$$

This contradicts (2.1) and complete the proof.

Example 3.1. Consider function $f = (f_1, f_2)$ defined on X = R, by $f_1(x) = x^2$, $f_2(x) = x^3$ and function g defined on X = R, by

$$g = \begin{cases} -2x^2, & -1 \le x \le 2\\ -x^3, & 2 \le x \le 2.5. \end{cases}$$

Clearly, g is not differentiable at x = 2, but only directionally differentiable at x = 2. The feasible region is nonempty. Let $\alpha(x, \overline{x}) = 1$, $\eta(x, \overline{x}) = (x - \overline{x})/2$ and $\overline{x} = 0$.

(i) If $x \in [-1, 2), -g(\overline{x}) = 0$, implies that $\alpha(x, \overline{x})g'(\overline{x}, \eta(x, \overline{x})) = 0$.

(ii) The case $x \in [2, 2.5)$ can be verified similarly.

$$f(x) \leq f(\overline{x}) \Rightarrow \alpha(x, \overline{x}) f'(\overline{x}, \eta(x, \overline{x})) = 0$$
, for all x .

Thus (f,g) is strong pseudo-quasi type-I α -invex at x = 0. But (f,g) is not type-I α -invex at x = 0 with respect to $\alpha(x,\overline{x}) = 1$ and $\eta(x,\overline{x}) = (x - \overline{x})/2$. Then, by Theorem 3.1(a), \overline{x} is a weak Pareto efficient solution for the given multiobjective programming problem.

4 Mond-Weir Duality

Now in relation to (P) we consider the following dual problem in the format of Mond-Weir (1981):

(MWD) Maximize $f(y) = (f_1(y), f_2(y), \dots, f_k(y))$, subject to

$$(\xi^{T} f' + \mu^{T} g')(y, \eta(x, y)) \geq 0, \text{ for all } x \in D,$$

$$\mu_{j} g_{j}(y) \geq 0, \ j = \{1, 2, \dots, m\},$$
(4.1)

$$\xi^T e = 1, \tag{4.2}$$

$$\xi \in R^k_+, \ \mu \in R^m_+, \tag{4.3}$$

where $e = (1, 1, ..., 1) \in \mathbb{R}^k$.

Let

$$W = \begin{cases} (y,\xi,\mu) \in X \times R^k \times R^m : \xi^T f'(y,\eta(x,y)) + \mu^T g'(y,\eta(x,y)) \ge 0, \\ \mu_j g_j(y) \ge 0, \ j = 1, 2, \dots, m, \ \xi \in R^k_+, \ \xi^T e = 1, \ \mu \in R^m_+ \end{cases}$$

denote the set of all feasible solutions of (MWD). We also denote by pr_xW the projection of set W on X.

Theorem 4.1 (Weak Duality). Let x and (y, ξ, μ) be feasible solutions for (P) and (MWD) respectively. Moreover, we assume that any one of the following conditions holds:

- (a) $(f, \overline{\mu}^T g)$ is strong pseudo-quasi type-I α -invex at y on $D \cup pr_x W$ with respect to some α_0, α_1 and η ;
- (b) (f, μ^Tg) is weak strictly pseudo-quasi type-I α-invex at y on D ∪ pr_xW with respect to some α₀, α₁ and η;
- (c) $(f, \overline{\mu}^T g)$ is weak strictly pseudo type-I α -invex at y on $D \cup pr_x W$ with respect to some α_0, α_1 and η .

Then the following can not hold:

$$f(x) \le f(y).$$

Proof. Suppose that

$$f(x) \le f(y),$$
 i.e. $f(x) - f(y) \le 0.$ (4.4)

Since x is feasible for (P) and (y, ξ, μ) is feasible for (MWD). It follows that

$$-\sum_{j=1}^{m} \mu_j g_j(y) \le 0.$$
(4.5)

If condition (a) is satisfied, (4.4) and (4.5) imply

$$\alpha_0(x,y)f'(y,\eta(x,y)) \leq 0 \text{ and } \sum_{j=1}^m \mu_j \alpha_1(x,y)g'(y,\eta(x,y)) \underline{\leq} 0.$$

By the positivity of α_0 and α_1 the above two inequalities reduce to

$$f'(y,\eta(x,y)) \le 0 \tag{4.6}$$

and

$$\sum_{j=1}^{m} \mu_j g'(y, \eta(x, y)) \le 0.$$
(4.7)

Since $\xi \ge 0$, from (4.6) and (4.7), we get

$$\sum_{i=1}^{k} \xi_i f'_i(y, \eta(x, y)) + \sum_{j=1}^{m} \mu_j g'_j(y, \eta(x, y)) < 0.$$
(4.8)

This contradicts (4.1). Hence the assertion.

If the condition (b) is satisfied, from (4.4) and (4.5), we get

$$\alpha_0(x,y)f'(y,\eta(x,y)) < 0 \text{ and } \sum_{j=1}^m \mu_j \alpha_1(x,y)g'(y,\eta(x,y)) \underline{\leq} 0.$$

By the positivity of α_0 and α_1 the above inequalities reduce to

$$f'(y,\eta(x,y)) < 0$$
 (4.9)

$$\sum_{j=1}^{m} \mu_j g'(y, \eta(x, y)) \le 0.$$
(4.10)

Since $\xi \ge 0$, (4.9) and (4.10) imply (4.8), again a contradiction to (4.1).

If the condition (c) is satisfied, from (4.4) and (4.5), we get

$$\alpha_0(x,y)f'(y,\eta(x,y)) < 0 \text{ and } \sum_{j=1}^m \mu_j \alpha_1(x,y)g'(y,\eta(x,y)) < 0.$$

By the positivity of α_0 and α_1 the above inequalities reduce to

$$f'(y,\eta(x,y)) < 0$$
 (4.11)

$$\sum_{j=1}^{m} \mu_j g'(y, \eta(x, y)) < 0.$$
(4.12)

But $\xi \geq 0$, (4.11) and (4.12) imply (4.8), which contradicts (4.1). This completes the proof.

Theorem 4.2 (Strong duality). Let \overline{x} be a locally weak Pareto efficient solution for (P) at which the generalized Slaters constraint qualification is satisfied. Let f, g be directionally differentiable at \overline{x} with $f'(\overline{x}, \eta(x, \overline{x}))$ and $g'(\overline{x}, \eta(x, \overline{x}))$ are α -preinvex functions on X. Let g_j be continuous for $j \in \overline{J}(\overline{x})$, then there exist $\overline{\mu} \in R^m_+$ such that $(\overline{x}, 1, \overline{\mu})$ is feasible for (MWD). If the weak duality between (P) and (MWD) in Theorem 4.1 holds, then $(\overline{x}, 1, \overline{\mu})$ is a locally weak Pareto efficient solution for (MWD).

Proof. Since \overline{x} satisfies all the conditions of Lemma 2.2, there exist $\overline{\mu} \in R^m_+$ such that conditions (1)-(3) hold. By (1)-(3), we have $(\overline{x}, 1, \overline{\mu})$ is feasible for (MWD). By the weak duality, it follows that $(\overline{x}, 1, \overline{\mu})$ is a locally weak Pareto efficient solution for (MWD). \Box

Theorem 4.3 (Converse duality). Let $(\overline{y}, \overline{\xi}, \overline{\mu})$ be a weak Pareto efficient solution for (MWD). Moreover we assume that the hypothesis of Theorem 3.1 hold for \overline{y} in $D \cup pr_x W$, then \overline{y} is a weak Pareto efficient solution for (P).

Proof. We prove the theorem by contradiction. Suppose that $(\overline{y} \text{ is not a weak Pareto efficient solution for (P), that is, there exist <math>\overline{x} \in D$ such that $f(\overline{x}) < f(\overline{y})$. Since condition (a) of Theorem 4.1 holds, we get

$$\sum_{i=1}^k \overline{\xi}_i \alpha_0(\overline{x},\overline{y}) f_i'(\overline{y},\eta(\overline{x},\overline{y})) < 0.$$

By the positivity of α_0 the above inequality reduce to

$$\sum_{i=1}^{k} \overline{\xi}_i f'_i(\overline{y}, \eta(\overline{x}, \overline{y})) < 0.$$
(4.13)

From the feasibility of \overline{x} and $(\overline{y}, \overline{\xi}, \overline{\mu})$ for (P) and (MWD) respectively, we have

$$\sum_{j=1}^{m} \overline{\mu}_j g_j(\overline{y}) \le 0$$

The above inequality in the light of condition (a) of Theorem 4.1, yields

$$\sum_{j=1}^{m} \overline{\mu}_{j} \alpha_{1}(\overline{x}, \overline{y}) g_{j}'(\overline{y}, \eta(\overline{x}, \overline{y})) \underline{\leq} 0.$$

Since $\alpha_1 > 0$, we get

$$\sum_{j=1}^{m} \overline{\mu}_{j} g_{j}'(\overline{y}, \eta(\overline{x}, \overline{y})) \leq 0.$$
(4.14)

By (4.13) and (4.14), we get

$$\sum_{i=1}^{k} \overline{\xi}_{i} f_{i}'(\overline{y}, \eta(\overline{x}, \overline{y})) + \sum_{j=1}^{m} \overline{\mu}_{j} g_{j}'(\overline{y}, \eta(\overline{x}, \overline{y})) < 0.$$

$$(4.15)$$

This contradicts the dual constraint (4.1).

Similarly by condition (b) in Theorem 4.1, we get

$$\sum_{i=1}^k \overline{\xi}_i \alpha_0(\overline{x},\overline{y}) f_i'(\overline{y},\eta(\overline{x},\overline{y})) < 0 \text{ and } \sum_{j=1}^m \overline{\mu}_j \alpha_1(\overline{x},\overline{y}) g_j'(\overline{y},\eta(\overline{x},\overline{y})) \leq 0.$$

By the positivity of α_0 and α_1 the above two inequalities reduce to

$$\sum_{i=1}^{k} \overline{\xi}_i f_i'(\overline{y}, \eta(\overline{x}, \overline{y})) < 0 \text{ and } \sum_{j=1}^{m} \overline{\mu}_j g_j'(\overline{y}, \eta(\overline{x}, \overline{y})) \leq 0.$$

Since $\xi \ge 0$, the above two inequalities imply (4.15), which yields contradiction to (4.1).

By condition (c), we have

$$\sum_{i=1}^k \overline{\xi}_i \alpha_0(\overline{x},\overline{y}) f_i'(\overline{y},\eta(\overline{x},\overline{y})) < 0 \text{ and } \sum_{j=1}^m \overline{\mu}_j \alpha_1(\overline{x},\overline{y}) g_j'(\overline{y},\eta(\overline{x},\overline{y})) < 0.$$

By the positivity of α_0 and α_1 the above two inequalities reduce to

$$\sum_{i=1}^k \overline{\xi}_i f_i'(\overline{y},\eta(\overline{x},\overline{y})) < 0 \text{ and } \sum_{j=1}^m \overline{\mu}_j g_j'(\overline{y},\eta(\overline{x},\overline{y})) < 0.$$

Since $\xi \ge 0$, the above two inequalities imply (4.15), which yields again a contradiction to (4.1). Hence, the proof is completed.

5 General Mond-Weir Duality

We shall continue our discussion on duality for (P) in the present section by considering a general Mond-Weir type dual problem and proving weak and strong duality theorem under the assumption of type-I α -invexity introduced in section 2.

We consider the following general Mond-Weir type dual to (P)

(GMWD) Maximize $\phi(y,\xi,\mu) = f(y) + \mu_{J_0}^T g_{J_0}(y)e$, subject to

$$(\xi^T f' + \mu^T g')(y, \eta(x, y)) \ge 0, \text{ for all } x \in D,$$
(5.1)

$$\mu_{J_t} g_{J_t}(y) \ge 0, \ 1 \le t \le r, \tag{5.2}$$

$$\xi^T e = 1, \tag{5.3}$$

$$\xi \in R^k_+, \ \mu \in R^m_+,$$

where $J_t, \ 1 \leq t \leq r$ are partitions of set M and $e = (1, 1, ..., 1) \in R^k$. Let

$$W = \begin{cases} (y,\xi,\mu) \in X \times R^k \times R^m : \xi^T f'(y,\eta(x,y)) + \mu^T g'(y,\eta(x,y)) \ge 0, \\ \mu_j g_j(y) \ge 0, \ j = 1, 2, \dots, m, \ \xi \in R^k_+, \ \xi^T e = 1, \ \mu \in R^m_+ \end{cases} \end{cases}$$

denote the set of all feasible solutions of (GMWD).

Theorem 5.1 (Weak Duality). Let x and (y, ξ, μ) be a feasible solution for (P) and (GMWD) respectively. Assume that one of the following condition holds:

- (a) $\xi > 0$ and $(f + \mu_{J_0}g_{J_0}, \mu_{J_t}g_{J_t})$ is strong pseudo-quasi type-I α -invex at y on $D \cup pr_x W$ with respect to some α_0 , α_1 and η for any $t, 1 \le t \le r$;
- (b) $(f + \mu_{J_0}g_{J_0}, \mu_{J_t}g_{J_t})$ is weak strictly pseudo-quasi type-I α -invex at y on $D \cup pr_x W$ with respect to some α_0 , α_1 and η for any $t, 1 \le t \le r$;
- (c) $(f + \mu_{J_0}g_{J_0}, \mu_{J_t}g_{J_t})$ is weak strictly pseudo type-I α -invex at y on $D \cup pr_x W$ with respect to some α_0, α_1 and η for any $t, 1 \le t \le r$.

Then the following condition can not hold:

$$f(x) \le \phi(y, \xi, \mu).$$

Proof. We prove the theorem by contradiction. Suppose

$$f(x) \le \phi(y, \xi, \mu). \tag{5.4}$$

Since x is feasible for (P) and $\mu \ge 0$, (5.4) implies that

$$f(x) + \mu_{J_0}^T g_{J_0}(x) e \le f(y) + \mu_{J_0}^T g_{J_0}(y) e$$

$$\Rightarrow f(x) + \mu_{J_0}^T g_{J_0}(x) e - f(y) + \mu_{J_0}^T g_{J_0}(y) e \le 0.$$
(5.5)

From the feasibility of x for (P) and (5.2), we have

$$-\mu_{J_t}^T g_{J_t}(y) \leq 0, \text{ for any } 1 \leq t \leq r.$$
(5.6)

By condition (a), from (5.5) and (5.6), we have

$$\alpha_0(x,y)f'(y,\eta(x,y)) + \mu_{J_0}\alpha_0(x,y)g'_{J_0}(y,\eta(x,y)) \le 0$$

and

$$\mu_{J_t}\alpha_1(x,y)g'_{J_t}(y,\eta(x,y)) \leq 0$$
, for any $1 \leq t \leq r$.

By the positivity of α_0 and α_1 the above two inequalities reduce to

$$f'(y,\eta(x,y)) + \mu_{J_0}g'_{J_0}(y,\eta(x,y)) \le 0$$

and

$$\mu_{J_t}g'_{J_t}(y,\eta(x,y)) \leq 0$$
, for any $1 \leq t \leq r$.

Since $\xi > 0$, the above two inequalities yield

$$f'(y,\eta(x,y)) + \sum_{t=0}^{r} \mu_{J_t} g'_{J_t}(y,\eta(x,y)) < 0.$$
(5.7)

Since J_0, \ldots, J_r are partition of M, (5.7) is equivalent to

$$f'(y,\eta(x,y)) + \mu^T g'(y,\eta(x,y)) < 0.$$
(5.8)

which contradicts the dual constraint (5.2).

Similarly by condition (b) we have

$$\alpha_0(x,y)f'(y,\eta(x,y)) + \mu_{J_0}\alpha_0(x,y)g'_{J_0}(y,\eta(x,y)) < 0$$

and

$$\mu_{J_t}\alpha_1(x,y)g'_{J_t}(y,\eta(x,y)) \le 0, \text{ for any } 1 \le t \le r.$$

By the positivity of α_0 and α_1 the above two inequalities reduce to

$$f'(y,\eta(x,y)) + \mu_{J_0}g'_{J_0}(y,\eta(x,y)) < 0$$

and

$$\mu_{J_t}g'_{J_t}(y,\eta(x,y)) \leq 0$$
, for any $1 \leq t \leq r$.

Since $\xi \ge 0$, the above two inequalities yield

$$f'(y,\eta(x,y)) + \sum_{t=0}^r \mu_{J_t} g'_{J_t}(y,\eta(x,y)) < 0$$

The above inequality leads to (5.8), which contradicts (5.1).

Now for the part (c) following the similar process we get (5.8), which contradicts (5.1). Hence, the proof is completed. $\hfill \Box$

Theorem 5.2 (Strong duality). Let \overline{x} be a locally weak Pareto efficient solution for (P) at which the generalized Slaters constraint qualification is satisfied. Let f, g be directionally differentiable at \overline{x} with $f'(\overline{x}, \eta(x, \overline{x}))$ and $g'(\overline{x}, \eta(x, \overline{x}))$ are α -preinvex functions on X. Let g_j be continuous for $j \in \overline{J}(\overline{x})$, then there exist $\overline{\mu} \in R^m_+$ such that $(\overline{x}, 1, \overline{\mu})$ is feasible for (GMWD). If the weak duality between (P) and (MWD) in Theorem 5.1 holds, then $(\overline{x}, 1, \overline{\mu})$ is a locally weak Pareto efficient solution for (GMWD).

Proof. The proof of this theorem is similar to the proof of Theorem 4.2.

S. K. Mishra et al.

References

- B. Aghezzaf and M. Hachimi, Generalized invexity and duality in multiobjective programming problems, *Journal of Global Optimization* 18 (2000), 91–101.
- [2] T. Antczak, Multiobjective programming under d-invexity, *European Journal of Operational Research* **137** (2002), 28–36.
- [3] M. S. Bazaraa, H. D. Sherali and C. M. Shetty, *Nonlinear Programming: Theory and Algorithms*, Wiley, New York, 1991.
- [4] C. R. Bector, S. K. Suneja and S. Gupta, Univex functions and univex nonlinear programming, In: *Proceedings of the Administrative Sciences Association of Canada* (1992), pp.115-124.
- [5] B. D. Craven, Invex functions and constrained local minima, *Bulletin of Australian Mathematical Society* 24 (1981), 357–366.
- [6] B. D. Craven, Nondifferentiable optimization by smooth approximation, *Optimization* 17 (1986), 3–17.
- [7] R. R. Egudo and M. A. Hanson, Multi-objective duality with invexity, *Journal of Mathematical Analysis and Applications* 80 (1987), 469–477.
- [8] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, *Journal of Mathemati*cal Analysis and Applications 80 (1981), 545–550.
- [9] M. A. Hanson and B. Mond, Necessary and sufficient conditions in constrained optimization, *Mathematical programming* 37 (1987), 51–58.
- [10] V. Jeyakumar and B. Mond, On generalized convex mathematical programming, *Journal of Australian Mathematical Society Series B* 34 (1992), 43–53.
- [11] R. N. Kaul, S. K. Suneja and M. K. Srivastava, Optimality criteria and duality in multiple objective optimization involving generalized invexity, *Journal of Optimization Theory and Applications* 80 (1994), 465–482.
- [12] O. L. Mangasarian, Nonlinear Programming, McGraw Hill, New York, 1969.
- [13] S. K. Mishra, Lagrange multipliers saddle point and scalarizations in composite multiobjective nonsmooth programming, *Optimization* 38 (1996), 93–105.
- [14] S. K. Mishra, On sufficiency and duality in nonsmooth multiobjective programming, Opsearch 34 (1997), 221–231.
- [15] S. K. Mishra, On multiple objective optimization with generalized univexity, *Journal of Mathematical Analysis and Applications* 224 (1998), 131–148.
- [16] S. K. Mishra and G. Giorgi, Optimality and duality with generalized semi-univexity, *Opsearch* 37 (2000), 340–350.
- [17] S. K. Mishra and R. N. Mukherjee, On generalized convex multiobjective nonsmooth programming, *Journal of Australian Mathematical Society Series B* 38 (1996), 140– 148.
- [18] S. K. Mishra and M. A. Noor, On vector variational-like inequality problems, *Journal of Mathematical Analysis and Applications* **311** (2005), 69–75.

- [19] S. K. Mishra, G. Giorgi and S. Y. Wang, Duality in vector optimization in Banach spaces with generalized convexity, *Journal of Global Optimization* 29 (2004), 415– 424.
- [20] S. K. Mishra, R. P. Pant and J. S. Rautela, Generalized α-invexity and nondifferentiable minimax fractional programming, *Journal of Computational and Applied Mathematics* **206** (2007), 122–135.
- [21] S. K. Mishra, S. Y. Wang and K. K. Lai, Complex minimax programming under generalized convexity, *Journal of Computational and Applied Mathematics* 167 (2004), 59–71.
- [22] S. K. Mishra, S. Y. Wang and K. K. Lai, Optimality and duality in nondifferentiable and multiobjective programming under generalized d-invexity, *Journal of Global Optimization* **29** (2004), 425–438.
- [23] S. K. Mishra, S. Y. Wang and K. K. Lai, Optimality and duality for multiple objective optimization under generalized type-I university, *Journal of Mathematical Analysis* and Applications **303** (2005), 315–326.
- [24] S. K. Mishra, S. Y. Wang and K. K. Lai, Multiple objective fractional programming involving semilocally type-I preinvex and related functions, *Journal of Mathematical Analysis and Applications* **310** (2005), 626–640.
- [25] B. Mond and T. Weir, Generalized concavity and duality. In: Schaible, S. and Ziemba, W.T. (eds.), *Generalized concavity Optimization and Economics*, Academic Press, New York (1981), pp. 263-280.
- [26] M. A. Noor, On generalized preinvex functions and monotonicities, *Journal of Inequalities in Pure and Applied Mathematics* 5 (2004), 1–9.
- [27] R. P. Pant and J. S. Rautela, α -invexity and duality in mathematical programming, Journal of Mathematical Analysis and Approximation Theory **1** (2006), 14–114.
- [28] T. W. Reiland, Nonsmooth invexity, Bulletin of the Australian Mathematical Society 42 (1990), 437–446.
- [29] N. G. Rueda and M. A. Hanson, Optimality criteria in mathematical programming involving generalized invexity, *Journal of Mathematical Analysis and Applications* 130 (1988), 375–385.
- [30] N. G. Rueda, M. A. Hanson and C. Singh, Optimality and duality with generalized convexity, *Journal of Optimization Theory and Applications* **86** (1995) 491–500.
- [31] S. K. Suneja and M. K. Srivastava, Optimality and duality in nondifferentiable multiobjective optimization involving d-type-I and related functions, *Journal of Mathematical Analysis and Applications* 206 (1997), 465–479.
- [32] T. Weir and B. Mond, Preinvex functions in multiple objective optimization, *Journal* of Mathematical Analysis and Applications **136** (1988), 29–38.
- [33] Y. L. Ye, d-invexity and optimality conditions, *Journal of Mathematical Analysis and Applications* **162** (1991), 242–249.