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The aim of this paper is to study a nondifferentiable multiobjective programming prob-
lem with inequality constraints. In this paper we introduce the concept of type-I -
invex, weak strictly pseudo-quasi type-I a-invex, strong pseudo-quasi type-I a-invex,
weak quasi-strictly-pseudo type-I a-invex and weak strictly-pseudo type-I a-invex
functions. By utilizing these new notions we derive a Fritz John type sufficient op-
timality condition and establish Mond-Weir type and general Mond-Weir type duality
results for the nondifferentiable multiobjective programming problem.
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1 Introduction

Convexity plays a vital role in many aspects of mathematical programming (see, for
example, Bazaraa er al. [3] and Mangasarian [12]). In order to study the optimization
problems in a wider context various useful generalizations of the notion of convexity have
been introduced. Hanson [8] introduced the class of invex functions. Later, Hanson and
Mond [9] defined two new classes of functions called type-I and type-II functions. This
concept was extended by Rueda and Hanson [29] to pseudo-type-I and quasi-type-I func-
tions. Univex functions were introduced and studied by Bector et al. [4]. Rueda et al. [30]
studied optimality and duality results for several mathematical programs by combining
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the concept of type-I and univex functions. Kaul et al. [11] considered a multiple objec-
tive problem with type-I functions and obtained some results on optimality and duality.
Mishra [15] studied a multiple objective nonlinear programming problem by combining
the cocept of type-I, pseudo-type-I, quasi-type-I, quasi-pseudo-type-I, pseudo-quasi-type-I
and univex functions. More details on type-I functions can be found in Ye [33], Suneja
and Srivastava [31], Mishra et al. [19,21,22] and Mishra et al. [23,24]. Aghezzaf and
Hachimi [1] introduced new class of generalized type-I vector valued functions and de-
rived various duality results for a nonlinear multiobjective programming problem.

Theoretical problems of differentiable programming can be solved by substituting in-
vexity for convexity e.g. Hanson [8], Craven [5], Egudo and Hanson [7], and Jayakumar
and Mond [10]. But corresponding conclusion can not be obtained in nondifferentiable
programming with the aid of invexity introduced by Hanson [8] because the existence of a
derivative is required in the definition of invexity.

Generalization of invexity to locally Lipschitz functions, with derivative replaced by
Clarke generalized gradient has been considered by Craven [6], Reiland [28], Mishra and
Mukherjee [17], Mishra [13, 14], and Mishra and Giorgi [16]. However, Antczak [2] used
directional derivative, in association with a hypothesis of an invex kind, following Ye [33].

Noor [26] and Mishra and Noor [18] have studied some properties of the a-preinvex
functions and their differentials. Recently Mishra, Pant and Rautela [20] and Pant and
Rautela [27] introduced the concepts of strict pseudo a-invex, quasi a-invex, weak strictly
pseudo quasi a-invex, strong pseudo quasi a-invex, weak quasi strictly pseudo a-invex and
weak strictly pseudo a-invex functions.

In the present paper, as an application of the new classes of type-I a-invex functions we
consider a nondifferentiable multiobjective programming problem and derive Fritz John
type sufficient optimality conditions for a (weakly) Pareto efficient solution to the prob-
lem. Further the Mond-Weir type and general Mond-Weir type of duality results are also
obtained.

2 Preliminaries

Throughout this paper, we will use the following conventions for vectors in R":

r=ye =y, t=1,...,n
>y T, >y, t=1...,n
Ty Ty, 1 =1,...,m

x>y >y, i=1,...,nbutx #y.

Let X be a nonempty subset of R", n : X x X — R" is an n-dimensional vector

valued function and a(z,y) : X x X — R;\0 be a bifunction. First, we recall some
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known results and concepts.

Definition 2.1. A subset X C R" is said to be a-invex set, if there existn : X x X — R"
and a(x,u) : X x X — R, such that forall z € X

u+ Aa(z,u)n(z,u) € X, Ve,ue X, A €]0,1].
Note that a-invex set need not to be convex set.

The following example from Noor (2004) shows that a-invex set need not to be convex
set.

Example 2.1. The set X = R\(—1/2,1/2) is an invex set with respect to o(z, u) = 1 and
7, where
r—u, forz >0 u>0

T]:
uw—ux, forxz <0, u>0.

It is clear that X is not a convex set.

From now onward we assume that the set X is a nonempty a-invex set with respect to

a(-,-) and (-, -) unless otherwise specified.

Definition 2.2. The function f : X C R™ — R on the a-invex set is said to be a-preinvex
Sunction if there exist  : X x X — R"™ and a(z,u) : X x X — R, such that for all
reX

flz 4+ da(z,u)n(x,uw) < (1—X)f(u)+Af(z), Ve,ue X, A €[0,1].

We consider the following mathematical programming problem:

(P) Minimize f(x), subject to g(z) < 0, # € X, where f : X C R® — R and
g: X C R" — R™ are functions on a set X C R" (a nonempty a-invex set).
Throughout this paper we use the notation

/ oy = g et Al ), u)) — f(u)
a(x,u)f (Uﬂl(la“)) - )\hj{)lJr Y ’

and a similar notation for a(z, u)g’ (u, n(x, w)).

Let D be a nonempty a-invex set such that D = {z € X : g(x)<0} is the set of all
the feasible solutions for (P) and denote I = {1,...,k}, M ={1,...,m}, J(z)={j €
M : gj(z) =0} and J(z) = {j € M : gj(x) < 0}. This implies J(z) U J(z) = M.

Now, we introduce the concept of type-I a-invex, weak strictly pseudo-quasi type-I a-
invex, strong pseudo-quasi type-I a-invex, weak quasi-strictly-pseudo type-I a-invex and

weak strictly-pseudo type-I a-invex functions.
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Definition 2.3. The pair (f, g) is said to be rype-I a-invex with respect to ccandnatu € X,
if there exist functions a(x,u) : X x X — Ry andn: X x X — R™ such that
a(z,u)g' (u,n(z,u)), Va,u e X.
Definition 2.4. The pair (f, g) is said to be weak strictly pseudo-quasi type-I a-invex with
respect to o and 1 at u € X, if there exist functions a(z,u) : X x X — R, and
n: X x X — R" such that
f(@) = f(u) <0= a(z,u) f (u,n(z,u) <0, Vr,ue X;
—g(w)<0 = a(z,u)g (u,n(z,u))<0, Vz,u € X.
Definition 2.5. The pair (f, g) is said to be strong pseudo-quasi type-I a-invex with respect
to aand n atu € X, if there exist functions a(z,u) : X x X — Ry andn: X x X — R"
such that
f(@) = f(u) <0= a(z,u) f (u,n(x,u) <0, Vr,ue X;
—g(w)=0 = a(z,u)g (u,n(z,u))<0, V,u € X.

Example 2.2. Consider the function f = (f1, f2) : [-1,4) — R defined by

:cg, —1<x<2
fi=

8, 2<zx <4,

0, —1<x<2
fa=

2w2—8, 2<x <4

and the function g = (g1, ¢2) : [-1,4) — R defined by

—2?, —1<x<2
a1 =

4, 2<z<4,

5z, —1<x<2
g2 =

a:4—6, 2<x <4

Clearly, f1, f2, g1 and g5 are not differentiable functions at x = 2. The feasible region is
nonempty. Let a(z,7) = 1, n(x,7) = 2%(x —7)/2 and T = 2.

) Iz e [-1,2) and fi(z) + f2(z) < f1(2) + f2(2), then it implies that z < 2,
which further implies that a(z, Z) f] (T, n(x, 7)) + o, T) f5(Z, n(x, T)) = 622 (x —
2) < 0 and —¢1(Z) — g2(%T) < 0, which implies that a(x,Z)g} (T, n(x,Z)) +
o, )y (T, 1(, 7)) < 0.
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(ii) The case = € [2,4) can be verified similarly.

Thus (f, g) is strong pseudo-quasi type-I a-invex with respect to o and 7 at x = 2. How-

ever, (f, g) is not type-I a-invex with respect to same « and n) at z = 2.

Definition 2.6. The pair (f, g) is said to be weak quasi-strictly-pseudo type-I a-invex with
respect to o and 1 at v € X, if there exist functions a(z,u) : X x X — R, and
n: X x X — R"™ such that

f@) = f(u) 0= a(z,u)f'(u,n(z,u))<0, Vz,u € X;
—g(u)<0 = a(z,u)g (u,n(z,u)) <0, Va,u € X.
Definition 2.7. The pair (f, g) is said to be weak strictly-pseudo type-I a-invex with respect

to avand nat u € X, if there exist functions a(z,u) : X x X — Ryandn: X x X — R"
such that

f(@) = f(u) < 0= az,u)f'(u,n(z,u) <0, Va,u€ X;
—g(u)<0 = a(z,u)g' (u,n(z,u)) <0, Vr,uec X.

Definition 2.8. A pointZ € D is said to be a weak Pareto efficient solution for (P) if the
relation f(Z) < f(z) holds for all z € D.

Definition 2.9. A point= € D is said to be a locally weak Pareto efficient solution for (P) if
there is a neighborhood N (%) around Z such that f(Z) < f(z), holds forallz € N(Z)ND.

The following results from Antczak (2002) and Weir and Mond (1988) type will be
needed in the next section.

Lemma 2.1. If7 is a locally weak Pareto or a weak Pareto efficient solution of (P) and if

g; is continuous at T for j € J(Z), then the following system of inequalities
f'(@n(z,7)) <0,
has no solution for x € X.

Definition 2.10. Function g is said to satisfy the generalized Slaters constraint qualification
atT € D if g is a-invex at 7, and there exist T € D such that g;(Z) < 0, j € J(Z).

Lemma 2.2 (Fritz John type necessary optimality condition). Let x be a weak Parato
efficient solution for (P). Moreover we assume that g; is continuous for j € J(T), f and
g are directionally differentiable at T with ' (Z,n(x,T)) and gf](i) (T, n(x,T)) a-preinvex

functions of x on X. Moreover, we assume that g satisfies the generalized Slaters constraint



322 S. K. Mishra et al.

qualification at T. Then there exist ¢ € RX, i € R™, such that (T,&,Ti) satisfies the
following conditions:

€ 1@ 0. 7)) + A gy (@ 0(2, 7)) > 0,z € X, @
ig(@) =0, 22)
9(z)<0. (2.3)

3 Sufficient Optimality Conditions

In this section, we establish a Fritz John type sufficient optimality condition.

Theorem 3.1. Let T be a feasible solution for (P) at which conditions (1)-(3) are satisfied.

Moreover, if any one of the following conditions is satisfied.:

-T
@) (& f, % g) is strong pseudo-quasi type-I a-invex at T with respect to some o, o
and n;

-T
(b) (& f,ulg) is weak strictly pseudo-quasi type-I a-invex at T with respect to some
g, a1 and 1;

-T
(¢) (& f, % g) is weak strictly pseudo type-I a-invex at T with respect to some o, o
and n;

then X is a weak Pareto efficient solution for (P).

Proof. We prove the theorem by contradiction. Let us assume that T is not a weak Pareto
efficient solution of (P). Then there is a feasible solution x of (P) such that

filz) < fi(x) forany i = 1,2,...,k

=fi(z) — fi(Z) <0

=& fi(x) —E f;(z) <0, (since & > 0). 3.1)
Now from the feasibility of x and (2.2), we get

itg(x) — A" g(T) <0.
If the condition (a) is satisfied, then from the above two inequalities, we get
€ ag(z,7) (@, n(x,7)) < 0 and i s (2, T)g' (F, 1z, F))<O0.
By the positivity of ay and «; the above two inequalities reduces to
¢ f@ () < 0and 7"y’ (7, n(x, 7)<0.

From above two inequalities, we get
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7T _ _ o _ _
& f'(@n(x, @) + 7" g (T, n(x,7)) <O0.

This contradicts (2.1).

If condition (b) is satisfied, we assume that T is not a weak Pareto efficient solution of
(P). Then there is a feasible solution z of (P) such that

filz) = fi(@) <0

=€ fi(w)— € £:(T) <0, (since & >0).

Now by condition (b) and (2.2) we get,
ETozo(a:,E)f’(f, n(z, 7)) < 0and @’ oy (2,7)g' (T, n(x,Z)) < 0.
By the positivity of ap and «; the above two inequalities reduces to
¢ 1@ n(@.3) < 0and "y (@, n(x. 7)) < 0.
From the above two inequalities, we get
¢ f @) + 79 @0z, 3) <0,

This is again a contradiction to (2.1).
Now for the part (c), following the similar process, we get

7T _ _ o _ _
¢ f'@n(x,7)+ 7" g (T n(x,T)) <0
This contradicts (2.1) and complete the proof. O

Example 3.1. Consider function f = (f1, f2) definedon X = R, by fi(z) = 22, fa(z) =
23 and function g defined on X = R, by

Clearly, g is not differentiable at x = 2, but only directionally differentiable at z = 2. The
feasible region is nonempty. Let a(x,Z) = 1, n(z, %) = (x — Z)/2 and T = 0.
() Ifz € [-1,2), —g(z) = 0, implies that «(z, T)g¢' (T, n(z,Z)) = 0.

(ii) The case = € [2,2.5) can be verified similarly.

f@)<f(@) = a(z,z)f'(Z,n(z,Z)) = 0, for all x.

Thus (f, g) is strong pseudo-quasi type-I a-invex at z = 0. But (f, g) is not type-I a-invex
at = 0 with respect to a(z,T) = 1 and n(x,Z) = (z — T)/2. Then, by Theorem 3.1(a),

T is a weak Pareto efficient solution for the given multiobjective programming problem.
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4 Mond-Weir Duality

Now in relation to (P) we consider the following dual problem in the format of Mond-
Weir (1981):

(MWD) Maximize (y) = (f1(y), Jo(u); - -, fu(y)). subject to

&+ p"g") (y,n(z,y))>0, forall z € D,

. 4.1

;U'Jgj(y) > 0, J = {1727"'7m}7
Te=1, (4.2)
¢eRE, peRT, (4.3)

where e = (1,1,...,1) € RF,
Let

(y,& 1) € X x RF x R™ - &7 f'(y,n(x,y)) + 1" g (y,n(z,y))>0,
pigi(y) >0, 5=1,2,...,m, fERf“H ¢e=1, pe R

W =
denote the set of all feasible solutions of (MWD). We also denote by pr, W the projection
of set Won X.

Theorem 4.1 (Weak Duality). Let x and (y, &, i) be feasible solutions for (P) and (MWD)

respectively. Moreover, we assume that any one of the following conditions holds:

(@) (f, 1’ g) is strong pseudo-quasi type-I a-invex at y on D U pr, W with respect to
some o, a1 and n;

() (f, 1T g) is weak strictly pseudo-quasi type-I a-invex at y on DU pr, W with respect
to some g, oy and n;

() (f, 7' g) is weak strictly pseudo type-I a-invex at y on D U pr,W with respect to

some o, a1 and 1.

Then the following can not hold:

Proof. Suppose that

fx) < fly), ie f(z)— fly) <0. (4.4)

Since z is feasible for (P) and (y, &, ) is feasible for (MWD). It follows that

= 1ig;(y) <0. 4.5)
j=1
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If condition (a) is satisfied, (4.4) and (4.5) imply
m
ao(z,y)f'(y,n(w,y)) < 0and > pyan (@, y)g (v, n(,y))<0.
j=1

By the positivity of ay and «; the above two inequalities reduce to

f'(y.n(z,y)) <0 (4.6)
and
> g (g, n(z, ) 0. “.7)
j=1

Since £ > 0, from (4.6) and (4.7), we get

k m
D &l y) + Y gy (@, y)) < 0. 4.8)

i=1 j=1

This contradicts (4.1). Hence the assertion.
If the condition (b) is satisfied, from (4.4) and (4.5), we get

ao(z,y) f'(y,n(x,y)) <0and Z o (z,y)g' (v, n(z, y))<0.

By the positivity of a and «; the above inequalities reduce to

' y,n(z,y) <0 (4.9)

> g (y,n(x,))<0. (4.10)
=1

Since £ > 0, (4.9) and (4.10) imply (4.8), again a contradiction to (4.1).
If the condition (c) is satisfied, from (4.4) and (4.5), we get

m

ao(z,y)f' (y,n(z,y)) < 0and Zujal(w, )9’ (y,n(z,y)) < 0.

By the positivity of oy and «; the above inequalities reduce to

[y n(z,y)) <0 A4.11)

> wig (. n(x,y)) < 0. (4.12)

Jj=1

But £>0, (4.11) and (4.12) imply (4.8), which contradicts (4.1). This completes the proof.
O
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Theorem 4.2 (Strong duality). Let T be a locally weak Pareto efficient solution for (P) at
which the generalized Slaters constraint qualification is satisfied. Let f, g be directionally
differentiable at T with f'(Z,n(x,T)) and g' (T, n(x, T)) are a-preinvex functions on X. Let
g; be continuous for j € J(T), then there exist i € R such that (Z,1,[) is feasible for
(MWD). If the weak duality between (P) and (MWD) in Theorem 4.1 holds, then (T,1,T)
is a locally weak Pareto efficient solution for (MWD,).

Proof. Since T satisfies all the conditions of Lemma 2.2, there exist i € R such that
conditions (1)-(3) hold. By (1)-(3), we have (z, 1, t) is feasible for (MWD). By the weak
duality, it follows that (T, 1, 7z) is a locally weak Pareto efficient solution for MWD). [

Theorem 4.3 (Converse duality). Let (3,&,7i) be a weak Pareto efficient solution for
(MWD). Moreover we assume that the hypothesis of Theorem 3.1 hold for y in D U pr, W,

then y is a weak Pareto efficient solution for (P).

Proof. We prove the theorem by contradiction. Suppose that (7 is not a weak Pareto effi-
cient solution for (P), that is, there exist T € D such that f(Z) < f (7). Since condition (a)
of Theorem 4.1 holds, we get

k

3 Eao(@ ) (@ 0(@7) < 0.

=1

By the positivity of o the above inequality reduce to

k
Z {(@,n(z,7)) < 0. (4.13)

From the feasibility of 7 and (7, £, i) for (P) and (MWD) respectively, we have

The above inequality in the light of condition (a) of Theorem 4.1, yields
Z a1 (%,7)9;(Y, n(z, 7)) 0.

Since a1 > 0, we get

m

> " 7,95@ (@, 7)) <0. (4.14)
j=1

By (4.13) and (4.14), we get

m

Zéf @0, 7)) Z i(@,n(T,y)) < 0. (4.15)

i=1 j=1
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This contradicts the dual constraint (4.1).
Similarly by condition (b) in Theorem 4.1, we get

k
Z {(@,n(T,y)) < 0and Zujal z,9)9;(y, n(z,7)) < 0.

Jj=1
By the positivity of ay and «; the above two inequalities reduce to

m

S @ (T, 7)) <0and > 71,957, n(z,7)) < 0.
Jj=1

HM?:-

Since £ > 0, the above two inequalities imply (4.15), which yields contradiction to (4.1).

By condition (c), we have

m

Zs,ao .9 £ @@ 7)) <0and Y 71,01 (Z,7)g; (T, n(T, 7)) < 0.
Jj=1

By the positivity of ay and «; the above two inequalities reduce to

k
Z (@ wy)<0and2ujgj @ 1(F9)) <0.

Jj=1
Since & > 0, the above two inequalities imply (4.15), which yields again a contradiction to
(4.1). Hence, the proof is completed. O

5 General Mond-Weir Duality

We shall continue our discussion on duality for (P) in the present section by considering
a general Mond-Weir type dual problem and proving weak and strong duality theorem
under the assumption of type-I a-invexity introduced in section 2.

We consider the following general Mond-Weir type dual to (P)

(GMWD) Maximize ¢(y,§, ) = f(y) + i}, 9., (y)e, subject to

& f +u"g )y, n(z,y))=0, forallz € D, (5.1)
w9, (y) >0, 1<t <r, (5.2)
e =1, (5.3)

£ € Ry, peRY,

where J;, 1<t < r are partitions of set M and e = (1,1,...,1) € RF.
Let

(y,&, 1) € X x RF x R™ : &7 f'(y,n(x,y)) + n* g’ (y, n(z, y)) >0,
1igi(y) >0, i=1,2,...,m, (€ Rt Te=1, peRT

W =
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denote the set of all feasible solutions of (GMWD).

Theorem 5.1 (Weak Duality). Let x and (y,§, 1) be a feasible solution for (P) and
(GMWD) respectively. Assume that one of the following condition holds:

(@ &> 0and (f + 190, 1J,9J,) is strong pseudo-quasi type-I a-invex at y on D U
prz W with respect to some g, ay and 0 for anyt, 1<t < r;

() (f+ 11,970, 103,97,) is weak strictly pseudo-quasi type-I a-invex at y on D U pry, W
with respect to some o, oy and 1) for any t, 1<t <r;

©) (f + piy970s 13,97,) is weak strictly pseudo type-I a-invex at y on D U pry, W with

respect to some o, o1 and 1 for any t, 1<t <.

Then the following condition can not hold:

f(@) < oy, & p).
Proof. We prove the theorem by contradiction. Suppose
f(@) < 8y, &, ). (5.4)
Since z is feasible for (P) and p > 0, (5.4) implies that

f(@) + uh 900 (@)e < fy) + nh95(W)e
= f(x) + uh g5 (@)e — F(y) + 1795, ()e < 0. (5.5)

From the feasibility of = for (P) and (5.2), we have
—,u:ith (y)<0, forany 1<t <r. (5.6)
By condition (a), from (5.5) and (5.6), we have
ao(z,y) f' (v, n(x,y)) + w0z, y)g), (v, n(z,y)) <0

and

. (z,y)gy, (y,n(x,y)) < 0,forany 1<t <.
By the positivity of ay and «; the above two inequalities reduce to

F'(ysn(z,y)) + 11,95, (v, n(2,9)) <0

and

11.9,(y,n(2,y)) < 0,forany 1<t <r.
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Since £ > 0, the above two inequalities yield

)+ wgh, @y n(z,y) <0. (5.7)
t=0
Since Jy, . .., J, are partition of M, (5.7) is equivalent to
f'ysn(x, ) + 1" g (y,n(z,y)) < 0. (5.8)

which contradicts the dual constraint (5.2).
Similarly by condition (b) we have

ooz, y) f (Y, n(x,y)) + paao(z,y)g, (v, n(z,y)) <0

and

.o (z,y)gy, (y,n(z,y)) < 0,forany 1<t <r.

By the positivity of ay and «; the above two inequalities reduce to

'y, n(z,y) + w95, (v n(x,y)) <0

and

11,97, (Y, n(z,y)) < 0,forany 1<t <r.

Since & > 0, the above two inequalities yield

Fn(,9) + Y wagh, (yn(z,y) <0.
t=0

The above inequality leads to (5.8), which contradicts (5.1).
Now for the part (c) following the similar process we get (5.8), which contradicts (5.1).
Hence, the proof is completed. O

Theorem 5.2 (Strong duality). Let T be a locally weak Pareto efficient solution for (P) at
which the generalized Slaters constraint qualification is satisfied. Let f, g be directionally
differentiable at T with f'(Z,n(z,T)) and ¢'(T,n(x,T)) are a-preinvex functions on X. Let
g; be continuous for j € J(T), then there exist i € R such that (Z,1, 1) is feasible for
(GMWD,). If the weak duality between (P) and (MWD) in Theorem 5.1 holds, then (T, 1, )
is a locally weak Pareto efficient solution for (GMWD,).

Proof. The proof of this theorem is similar to the proof of Theorem 4.2. O
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