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Abstract: In this manuscript, our objective is to develop a fractional-order linear model (FOLM) that characterizes the behavior of

the human liver, specifically focusing on the dynamics of bromsulphthalein storage and transfer, particularly in the context of chronic

alcoholic liver disease. To achieve this, we employ a novel approach utilizing non-orthogonal Bernstein polynomials to construct

operational matrices. These matrices play a crucial role in describing the fractional-order coupled dynamics within the human liver

system. We assessed the presence and stability of a solution through the utilization of well-established fractional calculus findings.

Drawing from precise clinical data, we present numerical instances accompanied by graphical representations illustrating the fractional

order dynamics inherent in our proposed model. To reinforce the credibility and efficacy of our novel approach, we conclude with a

contrastive analysis against integer-order outcomes. The resultant matrix equation, stemming from the fractional operational matrices,

is systematically elucidated utilizing the computational capabilities of the mathematical software Matlab. This step unveils the intricate

details of the transformed system, shedding light on the underlying dynamics.

Keywords: Bernstein polynomials, FOLM, operational matrix, algebraic matrix equation.

1 Introduction

The significance of fractional calculus in mathematical modeling is undeniable. In the last few decades, it has been
observed that in comparison to integer-order derivatives, many systematic approaches in science and engineering are
modeled with greater precision by fractional-order. In contrast to classical calculus, arbitrary-order calculus has been
found very befitting in the mathematical modeling of various real-life problems. Its dynamical aptitude has a greater
degree of freedom and hence, it is tremendously applicable in day-to-day life for modeling not only biological physical
phenomena, but also, a variety of applications on account of fractional order differential and integral equations (FODIEs)
are found in the fields of chemistry, engineering, medicine, economics, and social sciences as well. The global dynamical
decency of fractional calculus has attracted researchers, which led to the flourishing of several techniques to unravel the
problems described in a fractional system. A comprehensive array of attributes linked to memory and hereditary
processes is thoroughly expounded upon within this framework [1,2,3,4,5,6]. As a result, its significance has been
firmly established in the recent scrutiny of diverse quandaries, intersecting with models in biophysics, biochemistry, the
biological and social sciences, as well as image processing and an array of computer dynamics domains [7,8,9].
Similarly, intriguing applications of Fractional-Order Differential and Integral Equations (FODIEs) have been
meticulously explored across a spectrum of disciplines, encompassing engineering, technology, and applied sciences [10,
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11,12]. Due to these applications and its gigantic success, arbitrary-order calculus has remained the center of attraction
for new researchers.

In contrast with fractional calculus, mathematical modelling is an essential tool for expressing real-life problems in
the language of mathematics. Whereas, fractional calculus (FC) has tremendous potential to change the way we see a
mathematical model and control the results to compare with the exact data available [13,14,15]. In the present arena,
FC is found in the front row, playing a leading role in the modelling of various physical, physiological, biological, and
chemical phenomena. It has proven to be a landmark in the control of metabolic risk factors in people fighting obesity,
hypertension, and diabetes and in examining various endocrine systems in the human body [16,17]. Since its birth, it has
gained extraordinary popularity in the field of mathematical sciences. In the era of emergence, it has attracted a number
of researchers in a variety of disciplines. Arbitrary order calculus has been widely used to describe numerous complex
biological models in an effective manner. Various features in connection to the memory process and different hereditary
processes are exclusively defined with the help of (FODIEs). It has paved the way towards a new horizon of exploration.

The newly emerging technique of generating operational matrices is of great interest, as it has omitted the
discretization of data that has saved human effort, memory, and time [18,19]. Where Lebinitz was the first to introduce
fractional orders, Lacroix was the first to give a written definition of fractional calculus. Many mathematicians have
given their own definitions of fractional order derivative and integration. The lucky among them, gaining popularity, are
the Riemman-Liouville and Caputo definitions of fractional integration and differentiation. When the exact solution is
difficult to obtain, approximate solutions are tremendously taking the lead to exact solutions, and nowadays the
phenomenon is running at a pace causing scholars to derive new techniques for providing approximate solutions
coinciding with exact solutions with a high level of precision. In the available literature, different scientists have used
different orthogonal polynomials for approximation of functions and generation of operational matrices like Legendre
polynomials, Lagurre polynomials, Hermite polynomials, etc., which has remained an issue under consideration. Some
authors have also used non-orthogonal polynomials for creating operational matrices and approximating results.
Therefore, since these non-orthogonal polynomials cover a broader spectrum of approximation, they have gained
importance in recent developments [20,21]. In this paper, we are using Bernstein polynomials, a non-orthogonal basis,
for the generation of operational matrices and to approximate fractional order differentiation. In situations where exact
solutions are not available, these operational matrices can provide the best approximate solutions.

The nurturing essence of the liver has captivated the scientific community’s interest, prompting its modeling due
to its indispensable functions within the human body [22,23,24,25]. A robust liver ensures overall bodily well-being,
as it functions as a pivotal element in numerous physiological processes. This triangular organ exerts profound control
over diverse glucose metabolisms. Moreover, it assumes a prominent role in overseeing the intricate workings of the
human immune system. Various clinical observations have shown that the majority of people in society are facing distinct
abnormalities, from mild to chronic, in their liver. The unevenness and irregularities observed in the liver due to a variety
of reasons include raised levels of serum glutamic oxaloacetic transaminase (SGOT), serum alkaline phosphatase (SAP),
and bromsulphthaleine retention, etc. The liver not only regulates blood flow and clotting in our bodies, but it also aids in
the breakdown of various drugs and toxic compounds that we consume during various processes. One of the major roles
that the liver plays in our body is controlling glucose homeostasis by commanding different metabolism alleyways.

Besides, a number of liver diseases prevail in society due to different environmental and unhealthy food intake factors.
The most common viral liver infections are hepatitis B and hepatitis C, whereas, cancerous liver diseases like liver chirosis
and hepatocellular carcinoma are also hitting their peak. In addition to that, different risk factors have increased the
incidence of alcoholic liver disease (ALD) in the present arena. In recent developments, several diagnostic laboratory
tests are used to investigate these liver diseases, like biopsy, liver CT, MRI, liver profile, etc.

In the realm of human liver modeling, Celechovska pioneered a simplistic model back in 2004 [23]. Building upon
this, in 2020, Baleanu et al. elevated the simplicity by transforming the basic human liver model into a fractional variant,
employing the Caputo Fabrizio derivative [24]. Furthermore, complementing Baleanu’s work, Ismail Gad Ameen
contributed to the field by delving into the Mittag Leffler function with fractional order in a publication from 2021 [25].
Inspired by these researchers, we are redefining the model of the human liver with the help of Caputo derivatives by
using function approximation with a non-orthogonal Bernstein polynomial. The amount of bromsulphtaleine (BSP) in
the blood and liver is used to investigate the retention of BSP transferred from blood to liver, liver to bile, and liver to
blood [26]. To proceed further, the Caputo fractional differential model of the human liver is presented as










c
0D

ζ
t Z(t) =−K1Z(t)+K2W (t), 0 < ζ ≤ 1,

c
0D

ζ
t W(t) = K1Z(t)− (K2 +K3)W (t), 0 < ζ ≤ 1,

Z(0) = L, W(0) = 0,

(1)

where K1 represents the transfer rate of BSP into the liver from the blood, K2 is the transfer rate of BSP into bile from the
liver, and transportation of BSP from the liver to blood is denoted by K3. The functions Z(t) and W (t) present the amount
of BSP in the blood and liver, respectively. After a review of the literature, we have composed this paper in 6 sections.
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Section 1 is devoted to an introduction; section 2 contains basic definitions. Section 3 is devoted to the existence and
uniqueness of the numerical results. In section 4 we modelled the human liver by using fractional differential equations
with the help of Bernstein basis, and an algorithm was developed for the numerical solution of the developed model of the
human liver. In section 5 we have given a tabulated comparison of clinical data with some already existing integer order
results with its fractional counter part. In the last section 6, we have concluded our research article with closing remarks.

2 Basic results

Here, we produced some basic results and definitions of arbitrary order differentiation and integration. For a better
understanding of Bernstein polynomial, some fundamentals of Bernstein polynomial are mentioned. Moreover, some
definitions are given in [1,2,3].

Definition 1.[27] The arbitrary-order differentiation and integration of order ζ of a function w(t) converging in R+ where,

w : [0,∞)→ R, is defined as

Iζ w(t) =
1

Γ (ζ )

∫ t

0
(t− µ)ζ−1w(µ)dµ , n− 1 < ζ ≤ n, (2)

further, Expressing the generalized arbitrary integral of a function w : R+ → R, specifically for the form w(t) = (t − p) j,

involves:

Iζ (t− r)j =
Γ (j+ 1)

Γ (j+ ζ + 1)
(t− r)j+ζ

. (3)

Definition 2.[1] For an absolute continuous function w(t) fractional order derivative of a function w : R+ → R in the

Caputo sense is defined as under

Dζ w(t) =















1

Γ (n− ζ )

∫ t

0
(t− µ)n−ζ−1w(n)(µ)dµ , n− 1 < ζ < n,

dns

dtn
,

(4)

where n = [ζ ]+ 1, moreover

Dζ (t− p)j =
Γ (j+ 1)

Γ (j− ζ + 1)
(t− p)j−ζ

. (5)

Lemma 1.The solution of the problem with y ∈ L[0,T ]

Dζ w(t) = h(t), ζ ∈ (0,1]

w(0) = w0

is given by

w(t) = w0 +
1

Γ (ζ )

∫ t

0

h(µ)

(t − µ)1−ζ
dµ .

Definition 3.Bernstein Polynomials: Bernstein polynomials, formulated by the Russian mathematician Sergei Natanovich

Bernstein, constitute a class of non-orthogonal polynomials. Though the BPs are non-orthogonal, but it has a wide use in

function approximation of real valued function. Bps are formed by the linear combination of Bernstein basis [28,29,30,

31,32]. The Bernstein definition is given as

Ba,b(t) =
b

∑
a=0

(

b
a

)

ta(1− t)b−a
, a = 0,1,2, · · · ,b,

where b presents order of the polynomial. Expanding the given polynomial by using binomial expansion, we get

Ba,b(t) =
b

∑
a=0

b−a

∑
l=0

(−1)b

(

b

a

)(

b− a

l

)

tl+a
, a = 0,1,2, · · · ,b,

where

Bi,l,b = (−1)b

(

b

a

)(

b− a

l

)

(6)
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Approximation methods are applied to those problems where we fail to affirm the accuracy at the given point. One of the

scintillating polynomials that has attained significance is BPs. The following approximation can be used to approximate

any function ϖ in L2[0,1] in BPs.

ϖ(t) =
b

∑
a=0

saBa,b(t). (7)

In same line product of matrices can be computed as in [34].

Here we recalled some operational matrices for integral and differential as given in [33].

Lemma 2.

R1×b =

∫ 1

0
ϖ(t)Ba,b(t)dt

=
∫ 1

0

b

∑
a=0

saBa,b(t)B j,b(t)dt,

=
b

∑
a=0

sa

∫ 1

0
Ba,b(t)B j,b(t)dt,

where j = 0,1,2, · · · . Hence, we get

R1×b =
[

s0 s1 · · · sb

]























G0,0 G0,1 · · · G0,r · · · G0,b

G1,0 G1,1 · · · G1,r · · · G1,b

G2,0 G2,1 · · · G2,r · · · G2,b

...
... · · ·

... · · ·
...

G3,0 G3,1 · · · G3,r · · · G3,b

...
... · · ·

... · · ·
...

Gb,0 Gb,1 · · · Gb,r · · · Gb,b























,

where S1×b =
[

s0 s1 · · · b

]

is the array of coefficients , hence

S1×b = R1×bG−1
i, j . (8)

Lemma 3.[33] Let a vector function Ba,b(t) mentioned in (7), subsequently, the integration of the function with a fractional

order is expressed as:

IκPi,ς (t) =Vκ

ς×ς Pi,ς (t), (9)

here Vκ
ς×ς represent the Operational Matrix of integral, next

Vκ

ς×ς =ϒς×ς G−1
ς×ς ,

Furthermore,

ϒκ

c×c =























Λ0,0 Λ0,1 · · · Λ0,r · · · Λ0,ς

Λ1,0 Λ1,1 · · · Λ1,r · · · Λ1,ς

Λ2,0 Λ2,1 · · · Λ2,r · · · Λ2,ς
...

... · · ·
... · · ·

...

Λr,0 Λr,1 · · · Λr,r · · · Λr,ς
...

... · · ·
... · · ·

...

Λς ,0 Λς ,1 · · · Λς ,r · · · Λς ,ς























, (10)

where

Λi, j =
ς−i

∑
l=0

ς− j

∑
u=0

Pi,l,kPj,u,ς
Γ (ς + i+ 1)

(i+ j+ ς + l+κ+ 1)Γ (ς + i+κ+ 1)
(11)
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Definition 4.Operational Matrices of differential: [33] Taking into account the vector function Pi,k(t), the fractional order

differentiation of the function can be formulated as follows:

DκPi,ς (t) =Wκ

ς×ς Pi,ς (t), (12)

and

Wκ

ς×ς = ¶κς×ς G−1
ς×ς , (13)

and ¶κς×ς is defined as:

¶κς×ς =























α0,0 α0,1 · · · α0,r · · · α0,ς

α1,0 α1,1 · · · α1,r · · · α1,ς

α2,0 α2,1 · · · α2,r · · · α2,ς
...

... · · ·
... · · ·

...

αr,0 αr,1 · · · αr,r · · · αr,ς
...

... · · ·
... · · ·

...

ας ,0 ας ,1 · · · ας ,r · · · ας ,ς























, (14)

where

αi, j =



































ς−i

∑
w=κ

ς− j

∑
z=0

Pi,w,ς Pj,z,ς
Γ (w+ i−κ)

Γ (w+ i−κ+ 1)Γ (w+ z+ i+ j−κ+ 1)
, i < [κ]

ς−i

∑
w=0

ς− j

∑
z=0

Pi,w,ς Pj,z,ς
Γ (w+ i−κ)

Γ (w+ i−κ+ 1)Γ (w+ z+ i+ j−κ+ 1)
, i >= [κ].

(15)

Definition 5.Product of a function and Bernstein Basis: The following lemma defines the product of a function with a

Bernstein approximation:

Lemma 4.[33] Suppose Pi,c represents an arbitrary function vector and AM stands for any coefficient matrix. Let f (t)

denote a function within the space L2[0,1], which is approximated as:

f (t) ≈ AMPi,ς (t),

consequently, the Operational Matrix corresponding to the specified boundary condition is defined as:

Bκ

ς×ς =























ℵ0,0 ∇0,1 · · · ℵ0,r · · · ℵ0,ς

ℵ1,0 ℵ1,1 · · · ℵ1,r · · · ℵ1,ς

ℵ2,0 ℵ2,1 · · · ℵ2,r · · · ℵ2,ς
...

... · · ·
... · · ·

...

ℵr,0 ℵr,1 · · · ℵr,r · · · ℵr,ς
...

... · · ·
... · · ·

...

ℵς ,0 ℵς ,1 · · · ℵς ,r · · · ℵς ,ς























, (16)

where ever ℵi, j is presented as

ℵi, j =
∫ 1

0
℘i,ς φ(ξ )Pj,ς (t)dξ , i, j = 0,1,2, · · · ,ς ,

(17)

with

℘i,ς =
ς−i

∑
d=0

A
Γ (d + i+ 1)

(d+ i+κ+ 1)
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3 Convergence Analysis

This section delves into the convergence analysis of the preceding segment. Given that the Hilbert matrices acquired are
resolved using diverse techniques such as QR factorization and comparable methods, they inherently encompass errors.
Thus, we are poised to assess the convergence of our methodology by juxtaposing it with established approaches from
the past.
The concept of ”best approximation,” holds profound significance, serving as a methodology to transform complex
problems into more manageable counterparts, which yield solutions that closely approximate the exact solution. The
origins of this concept can be traced back to Taylor’s pioneering work, where he employed polynomial approximations
to transcendental functions. Approximation theory constitutes the foundational framework for determining the most
optimal approximation to a function or a given problem.
Assuming X is a normed linear space and Y represents a finite-dimensional subspace of X , the following condition
holds: for any x ∈ X , there exists y ′ ∈ Y satisfying:

‖x − y′‖ ≤ ‖x − y‖,

when compared to every y ∈ Y , y ′ is denoted as the optimal approximation for x within Y . Leveraging these findings,
function approximation is employed to achieve solutions that closely approximate the exact solutions [35].

Lemma 5.Consider ϕ(t) ∈ L2[0,1], a function possessing n+ 1 differentiable properties, and let PM = P0,P1,P3, · · · ,Pm

denote the Bernstein Basis. If we designate ω(t) ∈ PM as the optimal approximation for ϕ(t), then the relationship that

follows is:

‖ϕ(t)−ω(t)‖ ≤
√

2RH
2n+1

H

√

(2n+ 3)Γ (n+ 2)
, (18)

Furthermore, the provided inequality establishes the upper limit of the error, wherein:

R = maxt∈[0,1] | ϕn+1(t) | and H = max[1− t0, t0].

4 Main Work

If in the blood and liver the quantity of BSP, in certain time t, is presented by the function Z(t) : [0,∞) → R and W(t) :
[0,∞)→ R, respectively, then the differential model of integer order is given by the following coupled system






















dZ(t)

dt
=−K1Z(t)+K2W(t),

dW(t)

dt
= K1Z(t)− (K2 +K3)W(t),

Z(0) = z0, W(0) = 0,

(19)

where z0 > 0 and K1,K2,K3 are constants representing the rates of transfer. The Fractional model of the above system is
represented as











c
0D

ζ
t Z(t) =−K1Z(t)+K2W(t), 0 < ζ ≤ 1,

c
0D

ζ
t W(t) = K1Z(t)− (K2 +K3)W(t), 0 < ζ ≤ 1,

Z(0) = z0, W(0) = 0,

(20)

consider,

c
0D

ζ
t Z(t) = AMBT

M(t)

Performing a ζ -order integral on both sides yields:

Iζ c
0D

ζ
t Z(t) = Iζ AMBT

M(t)

Z(t)− c0 = Iζ AMBT
M(t),

Z(t) = c0 + Iζ AMBT
M(t),
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By the initial condition Z(0) = z0 we get Z(t) = z0 + Iζ AMBT
M(t). Besides, we will Approximate v0 ≈ DMBT

M(t) and by

Lemma 1 AMIζ BT
M(t)≈ AMV

ζ
m×mBT

M(t). Hence the function Z(t) become

Z(t) = DMBT
M(t)+AMV

ζ
m×mBT

M(t). (21)

Further, let us assume
c
0D

ζ
t w(t) = CMBT

M(t)

Upon applying a ζ -order integral on both sides, the result is:

Iζ c
0D

ζ
t W(t) = Iζ CMBT

M(t)

W(t)− c0 = Iζ CMBT
M(t),

W(t) = c0 +CMIζ BT
M(t),

Utilizing the initial condition W (0) = 0, we deduce: c0 = 0 and hence W(t) = Iζ CMBT
M(t). Besides, by Lemma ??

CMIζ BT
M(t)≈ CMV

ζ
m×mBT

M(t). Hence the function W(t) become

W(t) = CMV
ζ
m×mBT

M(t), (22)

Now by using equation (21) and (22) the given couple system can be shaped as

AMBT
M(t) = −K1

[

DMBT
M(t)+AMV

ζ
m×mBT

M(t)
]

+K2

[

CMV
ζ
m×mBT

M(t)
]

AMBT
M(t) + K1

[

DMBT
M(t)+AMV

ζ
m×mBT

M(t)
]

−K2

[

CMV
ζ
m×mBT

M(t)
]

= 0

AM + K1DM +K1AMV
ζ
m×m −CMV

ζ
m×m = 0 (23)

similarly

CMBT
M(t) = K1

[

DMBT
M(t)+AMV

ζ
m×mBT

M(t)
]

− (K2 +K3)
[

CMV
ζ
m×mBT

M(t)
]

CMBT
M(t) − K1

[

DMBT
M(t)+AMV

ζ
m×mBT

M(t)
]

+(K2 +K3)
[

CMV
ζ
m×mBT

M(t)
]

= 0

CM − K1DM +K1AMV
ζ
m×m +(K2 +K3)CMV

ζ
m×m = 0 (24)

Hence by using (23) and (24) the aforementioned coupled model is transformed into following algebraic Sylvester matrix
equation

[

AM

CM

]

+

[

K1V
ζ
m×m −K2V

ζ
m×m

K1V
ζ
m×m (K2 +K3)V

ζ
m×m

]

[

AM

CM

]

+

[

K1

−K1

]

[

DM

]

= 0. (25)

The presented matrix equation describes the required model of human liver with the bernstein type operational matrices.

5 Numerical Results and Discussion

Consider the the model (1) as











c
0D

ζ
t Z(t) =−0.09Z(t)+ 0.038W(t), 0 < ζ ≤ 1,

c
0D

ζ
t W(t) = 0.066Z(t)− 0.038W(t), 0 < ζ ≤ 1,

Z(0) = 220, W(0) = 0,

(26)

The exact solution at ζ = 1 is computed as

Z(t) = −K1220exp(−0.1204t)+ 0.2696w0exp(−0.0076t)

W(t) = 0.2696w0 exp(−0.1204t)+ 0.7304w0exp(−0.0076t).

Now we first present the numerical solution corresponding to different fractional orders for both compartments in Figures
1 and 2 respectively.

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


572 M. Wang et al. : Study of a continuous Fractional-Order Dynamical ...

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Time (Months)

T
h

e
 a

m
o

u
n

t 
o

f 
b

ro
m

s
u

lp
h

ta
le

in
e

 i
n

 b
lo

o
d

 

 
Approximate solution at 0.90

Approximate solution at 0.92

Approximate solution at 0.94

Approximate solution at 0.96

Approximate solution at 0.98

Approximate solution at 1.00

Fig. 1: Numerical solutions of the amount of BSP in blood at various fractional order taking scale level =10 for system 26.
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Fig. 2: Numerical solutions of the amount of BSP in liver at various fractional order taking scale level =10 for system 26.

Here we see that as the ζ → 1, the corresponding solution approaches to the exact solution. Figure 1 shows the decay
at different fractional order while Figure 2 shows increase in the BSP amount in liver. Next we compared our exact and
numerical solution in Figures 3 and 4 respectively. We see that both have close agreement which shows the efficiency of
the proposed method.

c© 2023 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 9, No. 4, 565-575 (2023) / www.naturalspublishing.com/Journals.asp 573

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Time (Months)

T
h

e
 a

m
o

u
n

t 
o

f 
b

ro
m

s
u

lp
h

ta
le

in
e

 i
n

 b
lo

o
d

 

 

Approximate solution

Exact solution

Fig. 3: Comparison between Numerical and exact solutions of the amount of BSP in blood taking scale level =10 for system 26.
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Fig. 4: Comparing the numerical and exact solutions of the amount of BSP in liver at various fractional order taking scale level =10 for

system 26.

6 Conclusion

A mathematical model of the liver has been treated numerically by using a spectral method based on Bernstein
polynomials. Without discretizing we have formed a numerical scheme for the solution of the proposed system. The
method is rapidly convergent as well as stable. Further omitting collocation and discretization save enough memory and
time during such a process. The graphical presentations have been given against various fractional orders. Also,
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comparison between exact and approximate solutions is also given at scale level =10. Also, as fractional order is
approaching integer-order the solution is also converging to the exact solution at integer order.
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