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Abstract: In this article, a new family of the perspectives group of transmuted distributions called the MH-Transmuted Family of

Distributions (MH-TD) is developed. MH-TD is confirmed in the quadratic (MH-QTD) and cubic (MH-CTD) distribution families.

The new proposed family increases the flexibility of the transmuted distributions, enabling the modeling of diverse data sets in

different fields of sciences, including engineering, environment, and finance. Based on the MH-QTD and MH-CTD maps, some new

distributions are developed, including MH-Quadratic and MH-Cubic Transmuted Pareto distributions, MH-Quadratic and MH-Cubic

Transmuted Gambel distributions, and MH-Quadratic and MH-Cubic Transmuted Fréchet distributions, explaining the probability

density and distribution function for each distribution. Moreover, based on the MH-QTD and MH-CTD maps, two new generalizations

of the exponential distributions called MH-quadratic transmuted exponential (MH-QTED) and MH-cubic transmuted exponential

(MH-CTED) are proposed and studied in detail to explain the utility of the proposed family MH-Transmuted. Several statistical

characteristics of the MH-QTED and MH-CTED are discussed, including the distribution and density functions, the

moment-generating function, and the use of the maximum likelihood method to estimate the distributions’ parameters. Finally, the

MH-QTED and MH-CTED models are fitted to a real-world, right-skewed dataset to determine their applicability.

Keywords: Quadratic and Cubic Transmuted, Pareto distribution, Gumbel distribution, Fréchet Distribution , Exponential distribution

1 Introduction

There are a lot of different ways to come up with new distributions by starting with some baseline distributions. For
instance, the exponentiated family of distributions introduced by Gupta et al. [1] to model the data of failure time by
F(τ) = Kθ (τ) where F(τ) and G(τ) are the proposed and baseline distribution functions, respectively, and θ is a positive
real number. Eugene et al. [2] developed a general class of distributions generated from the logit of the beta random
variable. The probability density function of the generalized class of distribution is

f (τ) =
Γ (α +β )

Γ (α)Γ (β )
Kα−1(τ)[1−Kβ−1(τ)K′(τ)]

α > 0 , β < ∞

If both α and β are whole numbers, then the probability distribution looks the same as the order statistics of the random
variable τ .
Using the Kumaraswamy distribution’s cumulative distribution function, Cordeiro and Castro [3] have introduced a new
family of distributions called the Kw-G. The cdf of the Kw-G distribution is defined by

F(τ) = 1−
[

1−Ka(τ)
]b

; a,b > 0

A different idea for obtaining a new distribution involves transforming the baseline distribution; this method never contains
any new parameters other than the parameter(s) included in the baseline distribution. For example, Kumar et al. [4]
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proposed the DUS transformation; its pdf is formulated as

f (τ) =
1

1− e
g(τ) eG(τ)

The SS transformation was introduced by Kumar et al. [5], using the sine function; the cdf of this method is

F(τ) = sin

[

π

2
K(τ)

]

The MG transmutation map was presented by Kumar et al. [6]; the cdf of this form meets the following relationship

F(τ) = exp

{

1−
1

K(τ)

}

Shaw and Buckley [7] suggested another method of generating family of distributions; this method used a quadratic
ranking transmutation map (QRT) to generate new distributions using any baseline distribution; the cdf of QRT is:

F(τ) =
(

1+ν
)

K(τ)−νK2(τ)

where ν ∈ [−1,1] is the transmuted parameter.
General formula of the QRT was developed by Abed Al-Kadim [8]; the cdf of the cubic version is

F(τ) =
(

1+ν
)

K(τ)− 2νK2(τ)+νK3(τ)

Two other classes of cubic transmuted distributions with two transmuted parameters were introduced based on the QRT,
one by Granzottoa et al. [9] with the cdf of the form

F(τ) = ν1K(τ)+
(

ν2 −ν1

)

K2(τ)−
(

1−ν2

)

K3(τ)

where ν1 ∈ [0,1],ν2 ∈ [−1,1]
while Rahman et al. [10] proposed the other class, with the cdf of the form

F(τ) =
(

1+ν1

)

K(τ)+
(

ν2 −ν1

)

K2(τ)−ν2K3(τ)

where ν1 ∈ [−1,1],ν2 ∈ [−1,1] and −2 ≤ ν1 +ν2 ≤ 1
Moreover, Rahman et al. ( [11] and [12] ) introduced the cubic of this transmuted for Weibull and Parito distributions.

This work introduces a new family of transmuted distributions, namely MH-transmuted map distributions. This new
family of transmuted distributions provides tractable distributions and is qualified to fit complex data sets, such as ones
with left- and right-skewed unimodal shapes. The quadratic and cubic transmutation map distributions of the proposed
family are studied by applying well-known lifetime distributions, namely the Pareto, Gumbel, and Fréchet distributions.
In order to evaluate the performance of the new transmuted family of distributions, the MH-quadratic and MH-cubic
exponential distributions are studied in detail.

The rest of this paper is structured as follows: Section2 presents the proposed MH-family of transmuted distributions.
Section 3 discusses some MH-quadratic transmuted distribution examples. Section 4 discusses some examples of MH-
cubic transmuted distributions. Section 5 delves deeply into the MH-quadratic and MH-cubic exponential distributions.
A real-world application of MH-quadratic and MH-cubic exponential distributions is presented in Section 6. Section 7
concludes with some final thoughts.

2 MH-Transmuted Family of Distributions

In this section, the proposed general transmuted family of distributions that can be used to generate new distributions is
explained; this family is called the MH-Transmuted Family of Distributions (MH-TD). Furthermore, the quadratic and
cubic versions of the proposed family are also discussed.
Let X be a random variable with a cdf G(x) and a pdf g(x), then a general cdf F(x) of MH-TD is defined as

F(x) = G(x)
k

∑
i=1

λi e

[

1−Gi(x)
]

(1)

where
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� | λi e |≤ 1 , for i = 1,2,3, . . . ,k

� ∑k
i=1 λi = λ1 +λ2 + · · ·+λk = 0

� The general transmuted family reduces to the base distribution for λi = 0;∀i = 1,2, . . .k
� lim

x→∞
F(x) = 1 and lim

x→−∞
F(x) = 0.

The density function (pdf) f (x) corresponding to Eq. (1) is

f (x) = g(x)

{

1−
k

∑
i=1

iλiG
(i−1)(x)e

[

1−Gi(x)
]

}

(2)

2.1 MH-Quadratic Transmuted Distributions (MH-QTD)

The MH-quadratic transmuted family distribution (MH-QTD) instance, which is addressed in this subsection, is formed
by plugging k = 2 into the Eq. (1) and is represented as follows:

F(x) = G(x)+λ1G1(x)+λ2G2(x) (3)

where

� | λi e |≤ 1, for i = 1,2
� λ1 +λ2 = 0 ⇒ λ1 =−λ2

� G1(x) = e

[

1−G(x)
]

and G2(x) = e

[

1−G2(x)
]

Now, if we take λ = λ1 =−λ2 and | λ e |≤ 1, we get

F(x) = G(x)+λ
(

G1(x)−G2(x)
)

(4)

and the pdf is

f (x) = g(x)
(

1−λ
{

G1(x)− 2G(x)G2(x)
})

(5)

2.2 MH-Cubic Transmuted Distributions (MH-CTD)

The MH-cubic transmuted family distribution (MH-CTD) situation, which is studied in this subsection, is generated by
setting k = 3 in Eq. (1) and is shown as follows:

F(x) = G(x)+λ1 G1(x)+λ2 G2(x)+λ3 G3(x) (6)

where

� | λi e |≤ 1 for i = 1,2,3
� λ1 +λ2 +λ3 = 0 which means that λ3 =−[λ1 +λ2]

� G3(x) = e

[

1−G3(x)
]

F(x) =G(x)+λ1

[

G1(x)−G3(x)
]

+λ2

[

G2(x)−G3(x)
] (7)

and pdf is

f (x) = g(x) ζ (x;λ1,λ2) (8)

where

| λi e | ≤ 1 for i = 1,2

ζ (x;λ1,λ2) = 1+λ1

[

3G2(x)G3(x)−G1(x)
]

+λ2

[

3G2(x)G3(x)− 2G(x)G2(x)
]

(9)
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3 Some Examples of (MH-QTD)

We explain some members of the MH-quadratic transmuted family of distributions given in Eqs.(4 , 5) for various
baselines G(x) and g(x) in this section. Distributions such like Pareto, Gumbel, and Fréchet are examples.

3.1 MH-Quadratic Transmuted Pareto Distribution (MH-QTPD)

Assume that the random variable X follows the Pareto distribution. Hence, the pd f and cd f are respectively given as

G(x) =1−
(m

x

)θ
= 1− p = G(p) ;

θ ,m > 0,x ≥ m and p =
(m

x

)θ
(10)

and

g(x) =
θmθ

x(θ+1)
=
( θ

m

)

θ

√

p(θ+1) (11)

where m is the minimum value of x, and must be positive, while θ is a shape parameter.

Remark 3.1 Consider the random variable P = u(X) =
(m

X

)θ
then for (x = m)⇒ (p = 1) and for (x → ∞)⇒ (p → 0)

also dx
d p

=

[

−m

θ θ
√

p(θ+1)

]

. Hence, f (x) is expressed in term of the random variable P as follows

f (p) = f [w(p)]
dx

d p

=
( θ

m

)

θ

√

p(θ+1)
(

1−λ
{

G1(p)− 2(1− p)G2(p)
})

[

−m

θ θ
√

p(θ+1)

]

=(−1)
(

1−λ
{

G1(p)− 2(1− p)G2(p)
})

; ifp ∈ [0,1]

Theorem 3.1 Consider the random variable X with the MH-QTPD, then

(A311) The corresponding cdf and pdf are respectively given as

F(x) = (1− p)+λ
[

G1(p)−G2(p)
]

(12)

and

f (x) =
( θ

m

)

θ

√

p(θ+1)

{

1−λ
[

G1(p)− 2(1− p) G2(p)
]

}

(13)

where | λ e |≤ 1 is a transmuted parameter.
(A312) f (x) of Eq.(12), is a pdf.

Proof.

(A311)The proof is easy to see. Eq.(12) is achieved by substituting Eq.(10) into Eq.(4) and Eq.(13) is obtained by substituting
Eq.(10) and Eq.(11) into Eq.(5) or differentiating Eq.(12) with respect to x.
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Fig. 1: The pd f of MH-QTPD for various values of parameter λ with θ = 2 and m = 1 where µ = 2 and β = 2.

(A312)To show that f (x) is pdf , we must prove that f (x) ≥ 0 and
∫ ∞

m f (x)dx = 1. the proof of f (x) ≥ 0 is deduced from the
following two limits

lim
x→∞

f (x) = lim
p→0

f (p) =
( θ

m

)

lim
p→0

θ

√

p(θ+1)

{

1−λ
[

G1(p)− 2(1− p) G2(p)
]

}

= 0

lim
x→m

f (x) = lim
p→1

f (p) =
( θ

m

)

lim
p→1

θ

√

p(θ+1)

{

1−λ
[

G1(p)− 2(1− p) G2(p)
]

}

=
θ (1−λ e)

m

since θ ,m > 0, | λ e |≤ 1, then θ (1−λ e)> 0. while the proof of
∫ ∞

m f (x)dx = 1 is given below

∫ ∞

m
f (x)dx =

∫ 0

1
f (p) d p

=

∫ 1

0

{

1−λ
[

G1(p)− 2(1− p) G2(p)
]

}

d p

=

∫ 1

0

(

1−λ
{

ep − 2(1− p)e

[

1−(1−p)2
]

})

d p

= 1−λ (e− 1)+λ (e− 1)= 1

Therefore, the theorem is proved.
Some shapes of the pd f and cd f of MH-QTPD for selected values of λ at θ = 2 and m = 1 are illustrated in Figure (1)
and Figure (2) respectively.
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Fig. 2: The cd f of MH-QTPD for various values of parameter λ with θ = 2 and m = 1 where µ = 2 and β = 2.

3.2 MH- Quadratic Transmuted Gumbel Distribution (MH-QTGD)

Assume that X is a random variable with the Gumbel distribution. As a result, the pd f and cd f are respectively defined
as

G(x) = e−e
−

(x− µ

σ

)

= e−z = G(z);

σ ≥ 0;x,µ ∈ ℜ and z = e
−
(x− µ

σ

)

(14)

and

g(x) =
( 1

σ

)

e

−

[

(x− µ

σ

)

+e
−

(x− µ

σ

)

]

=
( z

σ

)

e−z (15)

where σ and µ are the scale and location parameters respectively.

Remark 3.2 Consider the random variable Z = u(X) = e
−
(X − µ

σ

)

then for (x → −∞)⇒ (z → ∞) and for (x → ∞) ⇒

(z → 0) also dx
dz

=
(−σ

z

)

. Then, in terms of the random variable Z, f (x) may be rewritten as follows.

f (z) = f [w(z)]
dx

dz

=
( z

σ

)

e−z
{

1−λ
[

G1(z)− 2e−zG2(z)
]}

(−σ

z

)

=(−e−z)
{

1−λ
[

G1(z)− 2e−zG2(z)
]}

ifz ∈ [0,∞)

Theorem 3.2 Suppose the random variable X follows the MH-QTGD. Then

(A321) The cd f and pd f respectively are defined as

F(x) = e−z +λ
[

G1(z)−G2(z)
]

(16)
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and

f (x) =
( z

σ

)

{

e−z −λ
[

e−zG1(z)− 2e−2zG2(z)
]}

(17)

where | λ |≤
(1

e

)

is a transmuted parameter.

(A322) f (x) of Eq.(16), is a pdf.

Proof.

(A321)The proof is easy to see . Eq.(16) is achieved by substituting Eq.(14) into Eq.(4) and Eq.(17) is obtained by substituting
Eq.(14) and Eq.(15) into Eq.(5).

(A322)To show that f (x) is pdf , we must prove that

f (x)≥ 0and

∫ ∞

−∞
f (x)dx = 1

The proof of f (x)≥ 0 is derived from the two limits below,

lim
x→∞

f (x) = lim
z→0

f (z) =
( 1

σ

)

lim
z→0

z

{

e−z −λ
[

e−zG1(z)− 2e−2zG2(z)
]

}

= 0

whilst from L’Hopital’s rule we get

lim
x→−∞

f (x) = lim
z→∞

f (z) =
( 1

σ

)

lim
z→∞

z

{

e−z −λ
[

e−zG1(z)− 2e−2zG2(z)
]

}

= 0

Moreover, the Proof of
∫ ∞
−∞ f (x)dx = 1 is as follows

∫ ∞

−∞
f (x)dx =

∫ 0

∞
f (z)dz =

=

∫ ∞

0

{

e−z −λ
[

e−zG1(z)− 2e−2zG2(z)
]

}

dz

=

∫ ∞

0

{

e−z −λ
[

e−ze1−e−z

− 2e−2ze

(

1−e−2z
)

]

}

dz

= 1−λ (e− 1)+λ (e−1)= 1

With this, the theorem is proved.
Some shapes of the pd f and cd f of MH-QTGD for selected values of λ at µ = 2 and σ = 2 are illustrated in Figure (3)
and Figure (4) respectively.

3.3 MH-Quadratic Transmuted Fréchet Distribution (MH-QTFD)

Assume that X is a random variable with the Fréchet distribution. As a result, the pd f and cd f are respectively represented
as

G(x) =e
−
( s

x

)α

= e−y = G(y);

x > 0 and y =
( s

x

)α
(18)

and

g(x) =
(α

s

)( s

x

)α+1
e
−
( s

x

)α

=
(α

s

) α

√

y(α+1)e−y (19)

where α,s ∈ (0,∞) are the scale and shape parameters respectively.
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Fig. 3: The pd f of MH-QTGD for various values of parameter λ setting µ = 2 and σ = 2.
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Fig. 4: The cd f of MH-QTGD for various values of parameter λ setting µ = 2 and σ = 2.

Remark 3.3 Consider the random variable Y = u(X) =
( s

X

)α
then for (x → 0)⇒ (y → ∞) and for (x → ∞)⇒ (y → 0)

also dx
dy

=

(

−s

α α
√

y(α+1)

)

.

c© 2023 NSP

Natural Sciences Publishing Cor.



Inf. Sci. Lett. 12, No. 4, 1047-1072 (2023) / www.naturalspublishing.com/Journals.asp 1055

Then, in term of the random variable Y , f (x) may be rewritten as follows

f (y) = f [w(y)]
dx

dy

=
(α

s

) α

√

y(α+1)e−y

{

1−λ

[

G1(y)− 2e−yG2(y)

]}

(

−s

α α
√

y(α+1)

)

=− e−y

{

1−λ

[

G1(y)− 2e−yG2(y)

]}

ify ∈ [0,∞)

Theorem 3.3 Assume that X is a random variable with the (MH-QTFD), then

(A331) The corresponding cd f and pd f respectively are given as

F(x) = e−y +λ
[

G1(y)−G2(y)
]

; | λ e |≤ 1 (20)

and

f (x) =
(α

s

) α

√

y(α+1) e−y

{

1−λ

[

G1(y)− 2e−yG2(y)

]} (21)

(A332) f (x) of Eq.(21), is a pdf.

Proof.

(A331)The proof is easy to see. Eq.(20) is achieved by substituting Eq.(18) into Eq.(4) and Eq.(21) is achieved by substituting
Eq.(18) and Eq.(19) into Eq.(5) .

(A332)To show that f (x) is pdf , we must prove that f (x) ≥ 0 and
∫ ∞

0 f (x)dx = 1. The proof of f (x) ≥ 0 comes from the
limits below

lim
x→∞

f (x) = lim
y→0

(α

s

) α

√

y(α+1)e−y

{

1−λ

[

G1(y)− 2e−yG2(y)

]}

= 0

whilst from L’Hopital’s rule

lim
x→0

f (x) = lim
y→∞

(α

s

) α

√

y(α+1)e−y

{

1−λ

[

G1(y)− 2e−yG2(y)

]}

= 0

Moreover, the following is the Proof of
∫ ∞

0 f (x)dx = 1

∫ ∞

0
f (x)dx =

∫ 0

∞
f (y)dy

=

∫ ∞

0
e−y

{

1−λ

[

G1(y)− 2e−yG2(y)

]}

dy

=

∫ ∞

0
e−y

{

1−λ

[

e1−e−y

− 2e−ye

(

1−e−2y
)

]}

dy

= 1−λ (e− 1)+λ (e−1)= 1

This concludes the theorem’s proof.
Some shapes of the pd f and cd f of MH-QTFD for selected values of λ at α = 2 and s = 2 are illustrated in Figure (5)
and Figure (6) respectively.
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Fig. 5: The pd f of MH-QTFD for various values of parameter λ with α = 2 and s = 2.
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4 Some Examples of MH-CTD

In this section, we show some members of the MH-cubic transmuted family of distributions given in Eqs. (7 , 8) for
various choices of baseline G(x) and g(x). Specifically, Pareto, Gumbel, and Fréchet distributions
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4.1 MH-Cubic Transmuted Pareto Distribution (MH-CTPD)

The cd f and pd f of the MH-CTPD are given in the following theorem.
Theorem 4.1 Assume X is a random variable with the (MH-CTPD). Then

(A411)The cd f and pd f are defined, respectively, as

F(x) =(1− p)+λ1

[

G1(p)−G3(p)
]

+λ2

[

G2(p)−G3(p)
] (22)

and

f (x) =
(θ

m

) θ

√

p(θ+1) ζ (p;λ1,λ2) (23)

where | λi |≤
(1

e

)

; i = 1,2 are transmuted parameters and p = (
m

x
)θ .

(A412) f (x) of Eq.(23), is a pdf.

Proof.

(A411)The proof is easy to see. Eq.(22) is achieved by substituting Eq.(10) into Eq.(7) and Eq.(23) is achieved by substituting
Eq.(10) and Eq.(11) into Eq.(8) or differentiating Eq.(22) with respect to x.

(A412)To show that f (x) is pdf , we must prove that f (x) ≥ 0 and
∫ ∞

m f (x)dx = 1. The proof of f (x) ≥ 0 is drawn from
Remark 3.1 and the following two limits

lim
x→∞

f (x) =
( θ

m

)

lim
p→0

θ

√

p(θ+1) ζ (p;λ1,λ2) = 0

lim
x→m

f (x) =
(θ

m

)

lim
p→1

θ

√

p(θ+1) ζ (p;λ1,λ2) =
θ
(

1−λ1e
)

m

and since θ ,m > 0, | λ1e |≤ 1 which tends to θ (1−λ1e) > 0. In addition, the Proof of
∫ ∞

m f (x)dx = 1, using Remark
2.1 we find that

∫ ∞

m
f (x)dx =

∫ 0

1
f (p)d p

=

∫ 1

0
ζ (p;λ1,λ2)d p

= 1+λ1

[

(e− 1)− (e− 1)
]

+

λ2

[

(e− 1)− (e− 1)
]

= 1

Therefore, the theorem is proved.
Some shapes of the pd f and cd f of MH-CTPD for selected values of λ1 and λ2 at θ = 2 and m = 1 are illustrated in
Figure (7) and Figure (8) respectively.

4.2 MH- Cubic Transmuted Gumbel Distribution (MH-CTGD)

The cd f and pd f of the MH-CTGD are illustrated in the theorem below.
Theorem 4.2 Assume that X is a random variable with the (MH-CTGD). Then

(A421) The cd f and pd f are defined, respectively, as

F(x) = e−z +λ1

[

G1(z)−G3(z)
]

+λ2

[

G2(z)−G3(z)
]

(24)

and

f (x) =

(

z

σ

)

e−z ζ (z;λ1,λ2) (25)

where | λie |≤ 1; i = 1,2 are transmuted parameters and z = e
−
(x− µ

σ

)

.
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Fig. 7: The pd f of MH-CTPD for various values of parameter λ1 and λ2 setting θ = 2 and m = 1.
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Fig. 8: The cd f of MH-CTPD for various values of parameter λ1 and λ2 setting θ = 2 and m = 1.

(A422) f (x) of Eq.(25) is a pdf.
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Fig. 9: The pd f of MH-CTGD for various values of parameter λ1 and λ2 setting µ = 2 and σ = 2.

Proof.

(A421)The proof is easy to see. Eq.(24) is achieved by swappint Eq.(14) with Eq.(7) and Eq.(25) is achieved by swapping
Eq.(14) and Eq.(15) with Eq.(8) .

(A422)To show that f (x) is pdf , we must prove that

f (x)≥ 0 and

∫ ∞

−∞
f (x)dx = 1.

Moreover, the proof of f (x) ≥ 0 is deduced from Remark 3.2, Eq.(9) and the two limits below

lim
x→∞

f (x) = lim
z→0

f (z) = lim
z→0

( z

σ

)

e−z ζ (z;λ1,λ2) = 0

whilst from L’Hopital’s rule we get

lim
x→−∞

f (x) = lim
z→∞

f (z) = lim
z→∞

( z

σ

)

e−z ζ (z;λ1,λ2) = 0

Furthermore, the proof of
∫ ∞
−∞ f (x)dx = 1 is satisfied from the definition of the random variable Z in Remark 3.2 and

Eq.(9) that is

∫ ∞

−∞
f (x)dx =

∫ 0

∞
f (z)dz

=−

∫ ∞

0
e−z ζ (z;λ1,λ2)dz

= 1+λ1

[

(e− 1)− (e− 1)
]

+

λ2

[

(e− 1)− (e− 1)
]

= 1

This concludes the theorem’s proof.
Some shapes of the pd f and cd f of MH-CTGD for selected values of λ1 and λ2 at µ = 2 and σ = 2 are illustrated in
Figure (9) and Figure (10) respectively.
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Fig. 10: The cd f of MH-CTGD for various values of parameter λ1 and λ2 setting µ = 2 and σ = 2.

4.3 MH-Cubic Transmuted Fréchet Distribution (MH-CTFD)

The cd f and pd f of the MH-CTFD are given in the following theorem.

Theorem 4.3 Let X be a random variable with the (MH-CTFD). Then

(A431) The cd f and pd f are defined, respectively, as

F(x) = e−y +λ1

[

G1(y)−G3(y)
]

+λ2

[

G2(y)−G3(y)
]

(26)

and

f (x) =
(α

s

)

α

√

y(1+α) e−y ζ (y;λ1,λ2) (27)

where | λie |≤ 1; i = 1,2 are transmuted parameters and y =
( s

x

)α
.

(A432) f (x) of Eq.(27), is a probability density function.

Proof.

(A431)The proof is easy to see. Eq.(26) is achieved by swapping Eq.(18) with Eq.(7) and Eq.(27) is achieved by swapping
Eq.(18) and Eq.(19) with Eq.(8).

(A432)To show that f (x) is a pdf , we must establish that

f (x)≥ 0 and

∫ ∞

−∞
f (x)dx = 1.

And the proof of f (x) ≥ 0 is drown from Remark 3.3, Eq.(9) and the two limits below

lim
x→∞

f (x) =
(α

s

)

. lim
y→0

α

√

y(1+α) e−y ζ (y;λ1,λ2) = 0
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Fig. 11: The pd f of MH-CTFD for various values of parameter λ1 and λ2 setting α = 2 and s = 2.

lim
x→0

f (x) =
(α

s

)

. lim
y→∞

α

√

y(1+α) e−y ζ (y;λ1,λ2) = 0

Moreover, the Proof of
∫ ∞

0 f (x)dx = 1 is satisfied from the definition of the random variable Y given in Remark 2.3
that is

∫ ∞

0
f (x)dx =

∫ 0

∞
f (y)dy

=−

∫ ∞

0
e−y ζ (y;λ1,λ2)dy

= 1+λ1

[

(e− 1)− (e− 1)
]

+

λ2

[

(e− 1)− (e− 1)
]

= 1

Therefore, the theorem is proved.
Some shapes of the pd f and cd f of MH-CTFD for selected values of λ1 and λ2 at α = 2 and s = 2 are illustrated in
Figure (11) and Figure (12) respectively.

5 MH-Transmuted of Exponential Distributions (MH-TED)

This section pertains to the study of the MH-quadratic and MH-cubic transmuted exponential distributions (MH-QTED
and MH-CTED) in detail, including distribution functions, density functions, and some statistical properties. In addition,
the estimate of distribution parameters using the maximum likelihood technique is investigated.
The exponential distribution (ED) is one of the widely used lifetime continuous distributions. It is often used to model the
time elapsed between events. The cd f and pd f of the exponential random variable X are defined as follows:

G(x) = 1− e−ax = 1−ω = G(ω) (28)

and

g(x) = ae−ax = a ω = g(ω) (29)

where a > 0 is a rate or inverse scale parameter and ω = e−ax; x > 0 .
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Fig. 12: The cd f of MH-CTFD for various values of parameter λ1 and λ2 setting α = 2 and s = 2.

5.1 MH-Quadratic Transmuted Exponential Distribution (MH-QTED)

In this subsection, the distribution and denisty functions of MH-QTED are introduced.

Remark 5.1 Consider the random variable Ω = u(X) = e−aX then for (x → 0)⇒ (ω → 1) and for (x → ∞)⇒ (ω → 0)

also dx
dω =

(

−1

aω

)

.

Then, in terms of the random variable Ω , f (x) may be expressed as follows:

f (ω) = f [w(ω)]
dx

dω

=aω

{

1−λ
[

G1(ω)− 2(1−ω)G2(ω)
]

}(

−1

aω

)

=

{

λ
[

G1(ω)− 2(1−ω)G2(ω)
]

− 1

}

if ω ∈ [0,1]

Theorem 5.1 Assume that X is a random variable with the (MH-QTED). Then

(A511) The cd f and pd f are defined, respectively, as

F(x) =
(

1−ω
)

+λ

{

eω − e

[

1−(1−ω)2
]

}

(30)

and

f (x) = aω

{

1−λ
[

eω − 2(1−ω)e

[

1−(1−ω)2
]

]

}

(31)

where | λ |≤
(1

e

)

is a transmuted parameter.

(A512) f (x) of Eq.(31), is a pdf.

Proof.

(A511)The proof is easy to see.
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Fig. 13: The pd f of MH-QTED for various values of parameter λ setting a = 2.

(A512)To show that f (x) is a pdf , we must establish that f (x) ≥ 0 and
∫ ∞
−∞ f (x)dx = 1. The proof of f (x) ≥ 0 is deduced

from the following two limits

lim
x→∞

f (x) = lim
ω→0

f (ω) = a lim
ω→0

ω
{

1−λ
[

G1(ω)− 2(1−ω)G2(ω)
]

}

= 0

lim
x→0

f (x) = lim
ω→1

f (x) = a lim
ω→1

ω
{

1−λ
[

G1(ω)− 2(1−ω)G2(ω)
]

}

= a
{

1−λ e
}

Since a > 0 and |λ e| ≤ 1 then a{1−λ e}≥ 0. Moreover, the Proof of
∫ ∞

0 f (x)dx = 1 is

∫ ∞

0
f (x)dx =

∫ 0

1
f (ω)dω

=

∫ 1

0

{

1−λ
[

G1(ω)− 2(1−ω)G2(ω)
]

}

dω

=

∫ 1

0

{

1−λ
[

eω − 2(1−ω)e

[

1−(1−ω)2
]

]

}

dω

= 1+λ
[

(e− 1)− (e− 1)
]

= 1

This concludes the theorem’s proof.
Some shapes of the pd f and cd f of MH-QTED for selected values of λ at a = 2 are illustrated in Figure (13) and Figure
(14) respectively.
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Fig. 14: The cd f of MH-QTED for various values of parameter λ setting a = 2.

5.1.1 The Moment Generating Function (MGF) of MH-QTED

The moment generating function of MH-QTED is demonstrated in the following theorem.
Theorem 5.2 Let X be a random variable with the MH-QTED. The MGF is defined, respectively, as

MX(t) =

(

a

a− t

)

−λ

[

(−1)

( t

a

)

(

Γ (1−
t

a
,−1)

−Γ (1−
t

a
)

)

−

(

2ea2

2a2 − 3at + t2

)

H(t)

]

(32)

Where

– Γ (.) and Γ (., .) are Gamma and Incomplete Gamma functions ( [13] ) respectively

– H(t) = pFq

[

{1,
3

2
},{

3

2
−

t

2a
,2−

t

2a
},−1

]

is the generalized hypergeometric function.

Proof. From the definition of MX (t) = E(etX ) =
∫ ∞
−∞ f (x)etxdx =

∫ ∞
0 f (x)etxdx. and Using Remark 5.1 to obtain

MX (t) =

∫ 1

0
ω

−
( t

a

)

{

1−λ
[

G1(ω)− 2(1−ω)G2(ω)
]

}

dω

= I1 −λ
(

I2 − I3

)

(33)
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where

I1 =

∫ 1

0
ω

−
( t

a

)

dω

I2 =

∫ 1

0
ω

−
( t

a

)

G1(ω)dω

I3 =

∫ 1

0
ω

−
( t

a

)

{

2(1−ω)G2(ω)
}

dω

Using, Wolfram Mathematica software, to get the integrals I1, I1 and I3 as follows:

I1 =
a

a− t
; t < a

I2 = (−1)

( t

a

)

(

Γ (1−
t

a
;−1)−Γ (1−

t

a
)

)

I3 =

(

2ea2

2a2 − 3at+ t2

)

H(t)

(34)

By substituting Eq.(34) in Eq.(33) we obtain the proved of theorem.
Now, we can get the rth moments of MH-QTED by this derivatives

E(xr) =

[

dr

dtr
Mx(t)

]

t=0

; r = 1,2, . . . . . . (35)

Hence, putting r = 1,2 to get the arithmetic mean and variance of MH-QTED as follows

E(X) =
1

a

[

1+(0.7862)λ
]

E(X2) =
1

a2

[

2− (0.4)λ
]

Var[X ] =
1

a2

[

1− (1.9724)λ − (0.6)λ 2
]

(36)

The arithmetic mean and variance of MH-QTED for various combinations of model parameters are given in Table(1).

Table 1: Mean and Variance of MH-QTED

Mean

λ =−0.3 λ =−0.1 λ = 0 λ = 0.1 λ = 0.3

a = 2 0.3821 0.4607 0.5000 0.5393 0.6179

a = 4 0.1910 0.2303 0.2500 0.2697 0.3090

a = 6 0.1274 0.1536 0.1667 0.1798 0.2060

Variance

a = 2 0.3240 0.2778 0.2500 0.2191 0.1482

a = 4 0.0810 0.0694 0.0625 0.0548 0.0370

a = 6 0.0360 0.0309 0.0278 0.0243 0.0165

Table(1) demonstrates that increasing the inverse scale parameter a decreases the mean and variance while maintaining
the transformed parameter lambda unchanged. In contrast, when the inverse scale parameter a is held constant and the
transmuted parameter λ is increased, the mean rises while the variance falls.

5.1.2 The Parameter Estimation of MH-QTED

The maximum likelihood estimate (MLE) for MH-QTED parameters is discussed in this part.
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Let X1,X2, . . . ,Xn be a random sample of size n from MH-QTED. Then the likelihood function is given by

L =
n

∏
i=0

f (xi;a,λ ) = an
n

∏
i=0

(ωi Λi); ωi = e−axi

where

Λi = 1−λ
[

G1(ωi)− 2(1−ωi)G2(ωi)
]

Therefore, the log-likelihood function is

l = lnL = n lna+
n

∑
i=0

(

lnωi + lnΛi

)

(37)

by differentiating the log-likelihood function in Eq.(37) with respect to the unknown parameters a,λ and equating them
to zero. We obtain the following likelihood equations:

n

∑
i=0

(

λ ωi

[

G1(ωi)+ 2{1− 2(1−ωi)
2}G2(ωi)

]

Λi

− 1

)

lnωi = n

n

∑
i=0

(

G1(ωi)+ 2(1−ωi)G2(ωi)

Λi

)

= 0

(38)

5.2 MH-Cubic Transmuted Exponential Distribution (MH-CTED)

In this subsection the distribution and density functions of MH-CTED is demonstrated.
Theorem 5.3 Let X be a random variable with the (MH-CTED). Then

(A521) The cd f and pd f are defined, respectively, as

F(x) =
(

1−ω
)

+λ1

[

G1(ω)−G3(ω)
]

+λ2

[

G2(ω)−G3(ω)
] (39)

and
f (x) = aω ζ (ω ;λ1,λ2) (40)

where |λi e| ≤ 1 for i = 1,2 are transmuted parameters and ω = e−ax.
(A522) f (x) of Eq.(40), is a pdf.

Proof.

(A521)The proof is easy to see.
(A522). To show that f (x) is a pdf , we must establish that

f (x)≥ 0 and

∫ ∞

−∞
f (x)dx = 1.

The proof of f (x) ≥ 0 is drawn from Remark 5.1, Eq.(9) and the two limits below

lim
x→∞

f (x) = a lim
ω→0

ω ζ (ω ;λ1,λ2) = 0

lim
x→0

f (x) = a lim
ω→1

ω ζ (ω ;λ1,λ2) = a
{

1−λ1e
}

Moreover, using Remark 5.1 the Proof of
∫ ∞

0 f (x)dx = 1 is as follows

∫ ∞

0
f (x)dx =

∫ 1

0
f (ω)dω

=
∫ 1

0
ζ (ω ;λ1,λ2)dω

=1+λ1

[

(e− 1)− (e− 1)
]

+λ2

[

(e− 1)− (e− 1)
]

=1
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Fig. 15: The pd f of MH-CTED for various values of parameter λ1 and λ2 setting a = 2.
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Fig. 16: The cd f of MH-CTED for various values of parameter λ1 and λ2 setting a = 2.

Therefore, the theorem is proved.
Some shapes of the pd f and cd f of MH-CTED for selected values of λ1 and λ2 at a = 2 are illustrated in Figure (15)
and Figure (16) respectively.
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5.2.1 The Moment Generating Function (MGF) of MH-CTED

The moment generating function of MH-CTED is introduced in the following theorem

Theorem 5.4 Assume that X is a random variable with the MH-CTED. The MGF is defined, respectively, as

Mx(t) =

(

a

a− t

)

+ 4π
(

λ1 +λ2

)

3

(

−5

2
+

t

a

)

Γ
(

1−
t

a

)

H (t)+λ1(−1)

( t

a

)

(

Γ (1−
t

a
,−1)−Γ (1−

t

a
)

)

−λ2

(

2ea2

2a2 − 3at + t2

)

H(t)

(41)

where H (t) = pF̌q

[

{1,
4

3
,

5

3
},{

4

3
−

t

3a
,

5

3
−

t

3a
,2−

t

3a
},−1

]

is the Regularized Hypergeometric function.

Proof. From the definition

Mx(t) = E(etx) =
∫ ∞

−∞
f (x)etxdx =

∫ ∞

0
f (x)etxdx

=

∫ 1

0
ω

−
( t

a

)

ζ (ω ;λ1,λ2)dω

= I1 +λ1

(

I4 − I2

)

+λ2

(

I4 − I3

)

(42)

such that

I1 =

∫ 1

0
ω

−
( t

a

)

dω

I2 =

∫ 1

0
ω

−
( t

a

)

G1(ω)dω

I3 =

∫ 1

0
ω

−
( t

a

)

[

2(1−ω)G2(ω)
]

dω

I4 =

∫ 1

0
ω

−
( t

a

)

[

3(1−ω)2G3(ω)
]

dω

Using, Wolfram Mathematica software, to get the integral I4 and the integrals I1, I2 and I3 as in Eq.(34)

I4 = 4π(3)

[

−5

2
+

t

a

]

Γ
(

1−
t

a

)

H (t) (43)

By substituting Eq.(34) and Eq.(43) in Eq.(42) we obtain the proof of the theorem .
Now, we can get the rth moments of MH-CTED by the derivative of Eq.(41) and putting r = 1,2 to obtain the arithmetic
mean and variance of MH-CTED as follows

E(X) =
1

a

[

1+(1.32961)λ1+(0.54331)λ2

]

E(X2) =
1

a2

[

2+(3.65364)λ1+(1.6882)λ2

]

Var[X ] =
1

a2

[

1+(1.1)λ1− (0.3)λ2 +(1.3)λ1λ2

+(1.69)λ 2
1 +(0.25)λ 2

2

]

(44)
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Table (4) shows the mean and variance of MH-CTED for various sets of model parameters. The arithmetic mean and
variance decrease as the inverse scale parameter a increases when the transmuted parameters λ1 and λ2 are held constant.
When the inverse scale parameter a and the transmuted parameter λ1(λ2) are held constant, the mean and variance increase
as the transmuted parameter λ2(λ1) increases.

5.2.2 The Parameter Estimation of MH-CTED

The maximum likelihood estimate for MH-CTED parameters is discussed in this part.
Let X1,X2, . . . ,Xn be a random sample of size n from MH-CTED. Then the likelihood function is given by

L =
n

∏
i=0

f (xi;a,λ1,λ2)

= an
n

∏
i=0

ωi ζ (ωi;λ1,λ2);

where ωi = e−axi . Therefore, the log-likelihood function is

l = lnL = n lna+
n

∑
i=0

[

lnωi + lnζ (ωi;λ1,λ2)
]

(45)

by taking the derivative of the log-likelihood function in Eq.(44) with respect to the unknown parameters a,λ1,λ2 and
equating them to zero. We obtain the following likelihood equations.

n =
n

∑
i=0

[

ηiωi

ζ (ωi;λ1,λ2)
− 1

]

lnωi

0 =
n

∑
i=0

3(1−ωi)
2G3(ωi)− eωi

ζ (ωi;λ1,λ2)

0 =
n

∑
i=0

3(1−ωi)
2G3(ωi)− 2(1−ωi)G2(ωi)

ζ (ωi;λ1,λ2)

(46)

where

ηi =3
(

λ1 +λ2

)[

2(1−ωi)− 3(1−ωi)
4
]

G3(ωi)

+ 2λ2

[

2(1−ωi)
2 − 1

]

G2(ωi)+λ1G1(ωi)

6 Application of MH-QTED and MH-CTED

In this section, the MH-QTED and MH-CTED are applied to a real-world data set. Table 2 displays the lifespans of 20
electronic components; this data is right-skewed. It has been used by ([10],[14], [15]). The summary statistics of the data
are reported in Table 3, while Table 5 demonstrates the maximum likelihood estimates, the log-likelihood value
(-Log(L)), the Kolmogorov-Smirnov (ks) test statistic, and its corresponding p-value, for the fitted distributions, which
include Exponential ED, Quadratic Transmuted Exponential QTED, and Cubic Transmuted Exponential that was
proposed by Rahman et al. [10] CTED-R, in addition to the two proposed distributions MH-QTED and MH-CTED.

Table 2: Lifetimes of 20 Electronic Component

0.03 0.12 0.22 0.35 0.73 0.79 1.25 1.41
1.52 1.79 1.8 1.94 2.38 2.4 2.87 2.99
3.14 3.17 4.72 5.09
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Fig. 17: The pd f of the selected distributions for the Electronic data

Table 3: Summary Statistics for the Electronic data

Data n Mean Median Skewness kurtosis

Electronic data 20 1.936 1.795 0.653 0.008

Looking at the values of the ks and p-value in Table 5 we see that all distributions fit the electronic data adequacy and
the MH-CTED is the best one (see Figure 17). Moreover, MH-CTED has the minimum value of -log(L) (31.693). We can
infer that the proposed MH-CTED is the most suitable model for electronic data.

7 Conclusions

In this article, a new family of transmuted distributions called MH-Transmuted Family of Distributions is introduced. The
proposed family is confirmed in the quadratic and cubic distribution families. It is concluded that the cubic version of
the proposed transmuted family is more flexible and capable of capturing right-skewed unimodal data than the quadratic
one. Based on the quadratic and cubic distribution maps, some new distributions are proposed. Further, depending on
the quadratic and cubic distribution maps, two new generalizations of the exponential distributions called MH-quadratic
transmuted exponential and MH-cubic transmuted exponential are developed to evaluate the effectiveness of the proposed
family of distributions. The MH-quadratic transmuted exponential and MH-cubic transmuted exponential are fitted to
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real-life data sets, and it has been found that the cubic transmuted exponential distribution adequately fits the selected data
set as compared with the other related distributions used in the comparison.

Table 4: Mean and Variance of CTED-MH

Mean

λ1 =−0.3 λ1 =−0.1 λ1 = 0.0 λ1 = 0.1 λ1 = 0.3

λ2 = 0.3 0.2191 0.352 0.4185 0.485 0.6179

λ2 = 0.1 0.2734 0.4064 0.4728 0.5393 0.6723

a = 2 λ2 = 0.0 0.3006 0.4335 0.5 0.5665 0.6994

λ2 =−0.1 0.3277 0.4607 0.5272 0.5936 0.7266

λ2 =−0.3 0.3821 0.515 0.5815 0.648 0.7809

λ2 = 0.3 0.1095 0.176 0.2093 0.2425 0.309

λ2 = 0.1 0.1367 0.2032 0.2364 0.2697 0.3361

a = 4 λ2 = 0.0 0.1503 0.2168 0.25 0.2832 0.3497

λ2 =−0.1 0.1639 0.2303 0.2636 0.2968 0.3633

λ2 =−0.3 0.191 0.2575 0.2907 0.324 0.3905

λ2 = 0.3 0.073 0.1173 0.1395 0.1617 0.206

λ2 = 0.1 0.0911 0.1355 0.1576 0.1798 0.2241

a = 6 λ2 = 0.0 0.1002 0.1445 0.1667 0.1888 0.2331

λ2 =−0.1 0.1092 0.1536 0.1757 0.1979 0.2422

λ2 =−0.3 0.1274 0.1717 0.1938 0.216 0.2603

Variance

λ2 = 0.3 0.0514 0.1581 0.1982 0.2295 0.2656

λ2 = 0.1 0.109 0.2013 0.2342 0.2583 0.2799

a = 2 λ2 = 0.0 0.1356 0.2207 0.25 0.2704 0.2848

λ2 =−0.1 0.1608 0.2386 0.2643 0.2811 f 0.2883

λ2 =−0.3 0.2066 0.27 0.2885 0.2981 0.2908

λ2 = 0.3 0.0128 0.0395 0.0496 0.0574 0.0664

λ2 = 0.1 0.0273 0.0503 0.0586 0.0646 0.07

a = 4 λ2 = 0.0 0.0339 0.0552 0.0625 0.0676 0.0712

λ2 =−0.1 0.0402 0.0597 0.0661 0.0703 0.0721

λ2 =−0.3 0.0517 0.0675 0.0721 0.0727 0.0754

λ2 = 0.3 0.0057 0.0176 0.022 0.0255 0.0295

λ2 = 0.1 0.0121 0.0224 0.026 0.0287 0.0311

a = 6 λ2 = 0.0 0.0151 0.0245 0.0278 0.0300 0.0316

λ2 =−0.1 0.0179 0.0265 0.0294 0.0312 0.0320

λ2 =−0.3 0.023 0.03 0.0321 0.0323 0.0331

Table 5: Estimates of parameters, -log (L), k-s test value, and p-value for the selected distributions

Distribution Parameters estimates -log(L) k-s P-value

ED a = 0.5167 33.207 0.1758 0.511

QTED a= 0.6325 λ = -0.0.4715 32.714 0.1296 0.848

CTED a= 0.5306 λ = 0.3045 33.037 0.1457 0.739

CTED-R a= 0.7616 λ1= -0.3017 λ2= -0.99 31.726 0.0986 0.979

MH-QTED
a=0.5592 λ =0.1309 32.958 0.1419 0.765(proposed)

MH-CTED
a = 0.6735 λ1= -0.0579 λ2=0.49 31.693 0.0913 0.991(proposed)
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