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Abstract: This paper proposes a fractional numerical approximation of elliptic system with fractional order (s ∈]0,1[) via the finite

difference method (FDM), the analysis is performed on two general dimensional domains with homogeneous boundary conditions. A

convergent series solution and the corresponding error estimates are obtained. The performance of FDM is tested with known exact

solution, which confirm the theoretical predictions.
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1 Introduction

In the mathematical modeling of real life phenomena, the
study of fractional differential equations has gained
notable importance among interested researchers [1,2,3,
4]. It is realized that the use of fractional calculus
methods is quite prominent in modeling various processes
(see [5,6,7,8]). In many cases these equations can be
solved analytically and some cases where the equations
have no analytical solutions, one way is to use numerical
methods, therefore, many numerical methods are used for
the fractional differential equations [9,10,11].

The finite difference methods for the nonlinear
fractional problem were extended in some sense [12] and
many authors contributed to develop the finite difference
approximations.

The aim of this study is to prove a general
convergence result of the finite difference approximation
of a nonlinear fractional elliptic system involving
fractional Laplacian in two dimension.

The fractional Laplacian is widely-spread in the
modern study of fractional partial differential systems. It
has a variety of definitions, though they can be distilled

down to the follwing two:

(−∆)sϕ = (2π |ξ |2sϕ̂ )̌,

and

(−∆)sϕ(z) = K(n,s)P.V.
∫

Rn

ϕ(z)−ϕ(w)

|z−w|n+2s
dw.

We recall that the Riesz potentials of order α for 0 <

α < n and n ∈ N
∗ is defined by

Iαϕ = Iα ∗ϕ ,

where

Iα(z) =
γ(n,α)

|z|n−α
,

and the constant

γ(n,α) =
Γ ( n−α

2
)

π
n
2 2αΓ (α

2
)
.

Through analytic continuation, the Riesz potential can
be extended to negative exponents. Thus the auteurs in [13]
arrives at the next formula for the fractional laplacian

(−∆)sϕ = I−2sϕ ,

and others propositions which are used in our work.
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After the Mathematical preliminaries and the analytic
study that the reader can extend into by checking our
article [14], we perform numerical study and we close
with numerical experiment illustrating the convergence
results.

2 Mathematical preliminaries

The main motivation of our study is the efficient numerical
solution of the boundary value system





(−∆)sϕ(z) = p(z,ϕ(z),φ(z)) in Ω ,

(−∆)sφ(z) = k(z,ϕ(z),φ(z)) in Ω ,

ϕ = φ = 0 on R
n \Ω ,

(1)

where Ω ⊂ R
n is a bounded open set with Lipschitz

boundary, s ∈]0,1[ and p,k : Ω × R× R → R are two
continuous functions satisfying the Carathéodory
conditions ( i.e : p(.,x), k(.,y) are measurables for each
x,y ∈ R

2 and p(z, .), k(w, .) are continuous for almost
every z,w ∈ Ω ), and Lipschitz continuous functions with
respect to the second variable, i.e., there are constants c1,
c2 ∈ R

+ for almost every x ∈ Ω and for any
x = (x1,x2),y = (y1,y2) ∈R

2 ×R
2,

{
‖p(z,x1)− p(z,x2)‖L2(Ω) ≤ c1‖x1 − x2‖L2(Ω)×L2(Ω),

‖k(z,y1)− k(z,y2)‖L2(Ω) ≤ c2‖y1 − y2‖L2(Ω)×L2(Ω).

(2)
We consider the space

U = Es,2(Ω)×Es,2(Ω), (3)

with the norm

‖(ϕ ,φ)‖2
U = ‖ϕ‖2

Es,2(Ω)+ ‖φ‖2
Es,2(Ω),

where Es,2(Ω) =C∞
c (Ω)

‖.‖Hs
, (Es,2(Ω) is the completion

of C∞
c (Ω) compared to the Hs(Ω) norm), if Ω is a

bounded Lipschitz open set, then

Es,2(Ω) = {ϕ ∈ Hs(Rn), such that ϕ = 0 in R
n \Ω},

such that

Hs(Rn) = {ϕ ∈ L2(Rn) :
|ϕ(z)−ϕ(w)|

|z−w|
n
2+s

∈ L2(Rn ×R
n)};

thus Es,2(Ω) is a Hilbert space with respect to the scalar
product

〈ϕ ,φ〉= K(n,s)
∫∫

R2n

(ϕ(z)−ϕ(w))(φ(z)−φ(w))

|z−w|n+2s
dwdz.

The norm in Es,2(Ω) is

‖ϕ‖Es,2(Ω) =

[∫∫

R2n

|ϕ(z)−ϕ(w)|2

|z−w|n+2s
dwdz

] 1
2

.

All along the paper and without further mention, we
always assume that n = 2 and Ω =]0,1[×]0,1[.

3 Analytical study

The contraction principle is applied to have the following
result.

Theorem 1(Existence and uniqueness). Let the

Carathéodory functions p, k be Lipschitzian continuous

with respect to the second variable with constants ci > 0
(i = 1,2) such that |c| < c−2

emb
(c = (c1,c2) and cemb is the

embedding constant). Then, there is a unique fixed point

(ϕ ,φ) ∈U, i.e., (ϕ ,φ) is a unique weak solution of (1).

For more details and the proof, you can see [14].

4 Numerical study

We devote this Section to the description of the numerical
scheme that we are going to employ. In order to solve
numerically (1), we will develop a finite difference
scheme on a uniform mesh. To this purpose, let us first
introduce a partition of Ω =]0,1[×]0,1[ as follows:

Ω = {(xi,y j) : 0 = x0 < ... < xi < ... < xN+1 = 1

and 0 = y0 < ... < yi < ... < yM+1 = 1},

with xi+1 = xi + h, xi = x0 + ih where i = 0, ...N and
y j+1 = y j + k, y j = j0 + jk where j = 0, ...M (N and M

are non-null positive constants), in the rest of this paper,
we take N = M and h = k.

For n = 2, we call (i, j) an interior grid point if all of
its neighbors (i−1, j), (i+1, j), (i, j−1) and (i, j+1) are
in Ω . The matrix A ∈ MN×N denotes the approximation of
the operator (−∆)s with the standard five-star difference
scheme such that for each (ϕ ,φ) indexed according to the
grid points we have

(xi,y j)→ ϕ(xi,y j) = ϕi j,

(xi,y j)→ φ(xi,y j) = φi j,

and from [13], we get that the system (1) is equivalent to

−
∂ s

∂xs

∂ sϕ

∂xs
−

∂ s

∂ys

∂ sϕ

∂ys
= p(x,y,ϕ ,φ),

−
∂ s

∂xs

∂ sφ

∂xs
−

∂ s

∂ys

∂ sφ

∂ys
= k(x,y,ϕ ,φ),

which lead to

−(I2−2s ∗
∂ 2ϕ

∂x2
)− (I2−2s ∗

∂ 2ϕ

∂y2
) = p(x,y,ϕ ,φ),

−(I2−2s ∗
∂ 2φ

∂x2
)− (I2−2s ∗

∂ 2φ

∂y2
) = k(x,y,ϕ ,φ),

but we have

∂ 2ϕ

∂x2
≃

ϕi+1, j − 2ϕi j +ϕi−1, j

h2
,

∂ 2ϕ

∂y2
≃

ϕi, j+1 − 2ϕi j +ϕi, j−1

h2
,
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then, we can write our system as follows

I2−2s ∗
−ϕi−1, j −ϕi+1, j + 4ϕi j −ϕi, j−1 −ϕi, j+1

h2
=

p(xi,y j,ϕi j,φi j),

I2−2s ∗
−φi−1, j −φi+1, j + 4φi j −φi, j−1 −φi, j+1

h2
=

k(xi,y j,ϕi j,φi j),

according to the definition of convolution product for
sequences (by replacing the Lebesgue measure by the
counting measure), we can write

N

∑
n=1

M

∑
m=1

1

|(xi,y j)− (xn,ym)|n−2+2s

−ϕi−1, j −ϕi+1, j +4ϕi j −ϕi, j−1 −ϕi, j+1

h2
= p(xi,y j,ϕi j,φi j),

N

∑
n=1

M

∑
m=1

1

|(xi,y j)− (xn,ym)|n−2+2s

−φi−1, j −φi+1, j +4φi j −φi, j−1 −φi, j+1

h2
= k(xi,y j,ϕi j,φi j),

and after a simple calculus and the fact that n= 2 we arrive
to the numerical scheme of the system (1)




∑N
n=1 ∑M

m=1
1

((i−n)2+( j−m)2)s

−ϕi−1, j−ϕi+1, j+4ϕi j−ϕi, j−1−ϕi, j+1

h2 = h2−2s p(xi,y j,ϕi j,φi j),

∑N
n=1 ∑M

m=1
1

((i−n)2+( j−m)2)s

−φi−1, j−φi+1, j+4φi j−φi, j−1−φi, j+1

h2 = h2−2sk(xi,y j,ϕi j ,φi j),

ϕi,0 = ϕi,N+1 = ϕ0, j = ϕN+1, j = φi,0 = φi,N+1 =

φ0, j = φN+1, j.

(4)
Hence (4) is equivalent to the matrix system

BU = b,

where U = (ϕ ,φ), b = (p,k) and

B =

(
A 0
0 A

)
,

as an example if we take N = 2, then

A =




−2 (4− 1
2s ) (4−

1
2s ) (

4
2s − 2)

(4− 1
2s ) −2 ( 4

2s − 2) (4− 1
2s )

(4− 1
2s ) (

4
2s − 2) −2 (4− 1

2s )
( 4

2s − 2) (4− 1
2s ) (4−

1
2s ) −2




and

U =




ϕ11

ϕ12

ϕ21

ϕ22

φ11

φ12

φ21

φ22




,b =




p11

p12

p21

p22

k11

k12

k21

k22




.

Consequently to get the approaches solution of the system
(4) it’s equivalent to solve the system

U = B−1b.

4.1 Error estimate

In this part, we study the consistency, the stability and the
convergence of the scheme (4) but first, it is necessary to
prove the existence and the unicity of the solution and for
that we must prove the next theorem.

Theorem 2.Under the assumption (2) the system (4)

admits a unique solution.

We use the discrete maximum principle to prove that
the application BU is injective in finite dimension, than
the matrix B is invertible which lead us to the existence
and uniqueness of solution.

4.1.1 Consistency

We say that a method is consistent with the differential
equation and boundary conditions if

‖R‖∞ ≤Cht
,

where R is the rest and C is positive constant.

Remark.If ‖R‖∞ ≤ Cht , we say that the method is
consistent of order t where t is a positive real constant.

Proposition 1.The scheme (4) is consistent of order (2−
2s), moreover

‖R‖∞ ≤Ch2−2s
.

Proof.We have

Ri j =





h2−2S

4!
(N ×N − 1)(S+T),

h2−2S

4!
(N ×N − 1)(L+M),

where

S =
∂ 4ϕ

∂x4
(α1,y)+

∂ 4ϕ

∂x4
(α2,y),

T =
∂ 4ϕ

∂y4
(x,β1)+

∂ 4ϕ

∂y4
(x,β2),

L =
∂ 4φ

∂x4
(α1,y)+

∂ 4φ

∂x4
(α2,y),

M =
∂ 4φ

∂y4
(x,β1)+

∂ 4φ

∂y4
(x,β2),

then for every N

‖R‖∞ ≤
h2−2s

6
CN ,

such that CN = (N × N − 1)W , where
W = max(max|∂ 4ϕ |,max|∂ 4φ |).
Consequently

‖R‖∞ ≤
h2−2s

6
min(CN). (5)
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4.1.2 Stability

A numerical scheme is said to be stable if

‖U‖∞ ≤ K‖b‖∞,

where K is positive constant.

The stability result is given in the following statement,
which is proved in several steps.

Theorem 3.The (4) scheme is stable for the ‖.‖∞ norm. In

particular:

‖B−1‖∞ ≤
1

8
. (6)

Proof.• Step 1: In the first step, we prove that B−1 ≥ 0.

• Step 2: We give an exact solution.

• Step 3: We calculate the critical points.

• Step 4: Finally, we conclude that ‖B−1‖∞ ≤ 1
8
.

4.1.3 Convergence

A scheme is said to be convergent if ‖e‖ → 0 as h → 0
where e is the error between the exact solution and the
approximate solution. Combining the ideas introduced
above, we arrive at the conclusion that if we have the
consistency and the stability we get the convergence of
the scheme.

Theorem 4.The (4) scheme is convergent, moreover

‖e‖∞ ≤
h2−2s

48
min(CN).

Proof.This is easily proved by using (5) and (6).

These facts will be confirmed by the numerical
simulations that we are going to present in Section 5
below, by observing the behavior of the approximate
solution, the exact solution, and the norm of the error e in
the infinity. In this way, as predicted by Theorem 4, we
obtain a numerical evidence of the properties of null and
the convergence of system (1), in accordance with the
theoretical results in Section 4.

5 Numerical results

In this Section, we present the numerical simulations
corresponding to the scheme previously described, and
we provide a complete discussion of the results obtained.

First of all, in order to numerically test the accuracy of
our method, we use the following system





(−∆)
1
2 ϕ(x,y) = p(x,y,ϕ(x,y),φ(x,y)) in Ω ,

(−∆)
1
2 φ(x,y) = k(x,y,ϕ(x,y),φ(x,y)) in Ω ,

ϕ = φ = 0 on R
2 \Ω ,

(7)

where Ω =]0,1[×]0,1[ and

p(x,y,ϕ(x,y),φ(x,y)) = −4x3(y− 1)4 − 4x4(y− 1)3
,

k(x,y,ϕ(x,y),φ(x,y)) = −4y3(x− 1)4 − 4y4(x− 1)3
,

we can write p and k in terms of ϕ and φ as follows

p(x,y,ϕ(x,y),φ(x,y)) =−4x(y− 1)2ϕ
1
2 − 4x2(y− 1)φ

1
2

−4x2y2(y− 1)− 8x2(y− 1)y2(x− 1)

−4x4(y− 1)+ 8x4y(y− 1),

k(x,y,ϕ(x,y),φ(x,y)) =−4y2(x− 1)φ
1
2 − 4y(x− 1)2ϕ

1
2

−4yx2(x− 1)2 − 8yx2(x− 1)2(y− 1)

−4y3(x− 1)2 + 8y3x(x− 1)2.

In this particular case, the solution can be computed
exactly and it reads as follows,

ϕ(x,y) = x4(y− 1)4
,

φ(x,y) = y4(x− 1)4
.

According to the matrix transformation method we
proceeded as follows.

• The domain was discretized using a uniform
square-grid with the grid size h.

• The standard five-point approximation of the
operator (−∆)s was applied to obtain the matrix B.

• Gauss Seidel method was applied.

• To get the approximate solution, we use the
solutions of the quadratic equation.

The next results were shown after a lot of
mathematical calculations.

In Fig. 1 and Fig. 2, we show a comparison between the
exact solution and the computed numerical approximation.
Here we consider N = 5 then h = 0.1667 and s = 1

2
.

One can notice that the computed solution is to a
certain extent not different from the exact solution, Fig. 3
and Fig. 4 where N = 60 and h = 0.0164 shown that very
well (there is a different but we can’t detect it by the aye
we need to zoom the figure to see it).

However, one should be careful with such result and a
more precise analysis of the error should be carried.
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Fig. 1: The surface graph of the exact solution varphi and the

fifth-order approximate solution.

Fig. 2: The surface graph of the exact solution phi and the fifth-

order approximate solution.

In the same spirit as in [12], the computation of the
error can be readily done by using the Theorem 4, namely

‖e‖∞ ≤
h2−2s

48
min(CN).

The computational results are shown for our model in

Fig. 3: The surface graph of the exact solution varphi and the

sixty-order approximate solution.

Fig. 4: The surface graph of the exact solution phi and the sixty-

order approximate solution.

Table 1. While in the two-dimensional case, the predicted
convergence rate is reached shortly, in the
threedimensional computations a remarkable oscillation
can be detected see [12]. Since the computations are
lengthy, we have tested our system only with a single
parameter s = 1

2
.
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Table 1: Computational error and estimated convergence rate

r with respect to the infty-norm for the matrix transformation

method applied to the finite difference approximation of (7). N:

number of steps.

ϕ φ
N h max-error max-error r

35 0.0278 1.3650×10−11 1.1657×10−14 0.0417

40 0.0244 3.0754×10−12 3.5565×10−15 0.0366

45 0.0217 1.0939×10−12 1.2084×10−15 0.0326

60 0.0164 5.3331×10−13 6.9390×10−17 0.0246

65 0.0152 3.6230×10−13 2.7303×10−17 0.0227

In Fig. 5, we present the computational errors evaluated
for different values of N and h.

Fig. 5: Plot of the absolute error.

The rates of convergence shown are of order (in h) of
(2− 2s).

6 Summary

We have verified the convergence of the matrix
transformation method applied to the fractional elliptic
system. The corresponding computation algorithm is
difficult: we can’t avoid the computation of a full matrix
containing involved finite differences. Combined with the
Gauss Seidel method, the corresponding method exhibits
optimal convergence rate for s ∈ (0,1) in the infty-norm.
The finite difference method is applied successfully for
solving the nonlinear fractional elliptic systems. The
fundamental objective of this article is to introduce an
algorithmic form and implement a new analytical
repeated algorithm derived from the finite difference
method to find numerical solutions for the fractional
elliptic system. Graphical and numerical consequences
are introduced to illustrate the solutions. Thus, it is
concluded that we can translate numericaly and find a

numerical solutions for a wide class of linear and
nonlinear fractional differential systems applied in
physics, biologics...ect. From the results, it is clear that
the numerical resolution of fractional system yields very
accurate and convergent approximate solutions.
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