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Abstract: This paper discussed inference for two generalized exponential using the joint type-I progressively hybrid censoring
(JPHC-I) scheme. It assumed that the lifetime distribution of the items from the two populations follow generalized exponential
distribution. Based on the JPHC-I scheme, we first consider the maximum likelihood estimators of the unknown parameters along
with thier asymptotic confidence intervals. Next, we provide the Bayesian inferences of the unknown parameters under the
assumptions of independent gamma priors on the scale parameters using squared error (SE) and linear-exponential (LINEX) loss
functions. Markov Chain Monte Carlo (MCMC) techniques is applied to carry out the Bayesian estimation procedure and in turn
calculate the credible intervals. To evaluate the performance of the estimators, numerical example is carried out.

Keywords: Generalized exponential distribution, Joint type-I progressive hybrid censoring scheme, Maximum likelihood estimation,
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1 Introduction

Censoring schemes are used to make life testing experiments time and cost effective, and give impetus to the performance
of the design. Various types of censored data are available in the literature for analysis of lifetime experiments (see [1]).
Most of these censored data deals with one-sample problem, however, there are situations in which the experimenter
may compare two different populations. In such cases, the joint censoring scheme has been suggested in literature. As
suggested by [2], [3], and [4], the joint censoring scheme is quite useful to compare the lifetime distribution of products
coming from different units which are manufactured by two different lines in the same facility.

To describe this scheme, suppose that two samples of products of sizes m and n, respectively, are selected from these
two lines of operation (say lines 1 and 2), and they are placed on a life testing experiment simultaneously. Based on cost
considerations and time restrictions for completion of the test, the researcher may choose to terminate the life testing
experiment as soon as a pre-specified number of failures are observed.

Several authors have addressed inferential issues based on joint progressive type-1I censored (JPC-II) scheme. Notable
among them are: [5,19,7,8,9,10], [11,12], and the references cited therein. [4], obtained both Bayesian and frequents
estimators for two exponential populations under both joint progressive type-I censored (JPC-I) and joint type-I censored
schemes.

[13] introduced type-I progressive hybrid censoring (PHC-I) scheme to overcome the drawback of type-II progressive
censoring scheme, where the experiment length can be quite large to get the desirable number of failures. The PHC-
I scheme provides flexibility to terminate the experiment at a prefixed time as well as withdrawal of items during the
life test. They investigated the maximum likelihood and Bayes estimators of the unknown parameter of the exponential
distribution, as well as different confidence intervals. [14] used PHC-I scheme to estimate the unknown parameters of the
Weibull distribution. See also [15], [16], [17], and for more details see [18].

At the present time, the reliability tests should be performed with severe time limitations because of the short product
development times, which make the usual joint progressive type-II censoring scheme proposed by [3] no longer
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appropriate in many field products. Therefore, [19] introduced a new joint type-I progressively hybrid censoring
(JPHC-I) scheme. They investigated the maximum likelihood and Bayes estimators of the unknown parameter of the
exponential distribution, as well as different confidence intervals.

According to JPHC-I scheme the experiment is terminated when the test reaches a predetermined time, or a
predetermined number of failures has occurred. The experimental time is unbounded in the case of the usual joint
progressive type-II censoring scheme, but for the JPHC-I scheme, the experimenter can determine it according to the
maximum experimental time that can afford to continue. Using JPHC-I, [20] investigated the maximum likelihood and
Bayes estimators of the unknown parameters of Weibull distribution.Based on the JPHC-I scheme, we analyze
estimation problems of two generalized exponential populations. The maximum likelihood estimators (MLEs) and
approximate confidence intervals (ACIs) of the unknown parameters are constructed. Also Bayes estimators (BEs) of the
unknown parameters under the assumptions of independent gamma priors on the scale parameters are obtained using SE
and LINEX loss functions and credible intervals depending on MCMC techniques. Further, both frequents and Bayesian
confidence intervals (BClIs) are obtained. Some simulation experiments are performed to compare the performances of
the estimators based on JPHC-I. One data set analysis has been performed for illustrative purposes.

The rest of this paper is organized as follows. In Section 2, we introduce the model and provide the necessary
assumptions. The MLEs and asymptotic confidence intervals will be discussed in Section 3. In Section 4, BEs under SE
and LINEX loss functions and Bayesian credible intervals for the parameters are given using JPHC-I scheme. Numircal
results and the analysis of one data set are provided in Section 5. Finally a conclusion is given in Section 6.

2 Model description

Suppose we consider products from two different populations. we draw a random sample of size m from population (1)
with distribution function F(x) and density function f(x), and a random sample of size n from population (2) with
distribution function G(y) and density function g(y). The two independent samples are placed simultaneously in a life
testing experiment. Further, W(l) < W(z) < - K W(N) denote the order statistics of N = m + n random
variables(Xy,...,Xu,Y1,...,Y,). The proposed JPHC-I can be described as follows. The integer r < N is fixed at the
beginning of the experiment, Ry,...,R, are r pre-fixed integers satisfying R 4 ---+ R, +r = N and the time point 7'is
also fixed beforehand. At the time of the first failure (that may be from either X or Y), R; units are randomly withdrawn
from the remaining N — 1 surviving units. Similarly, at the time of the second failure (that may be from either X or Y), R»
units are randomly withdrawn from the remaining N — R; — 2 surviving units, and so on. If the #*failure occurs before
the time point 7', the experiment stops at the time point w(,). On the other hand, suppose the #failure does not occur
before time point 7and only Jfailures occur before the time point 7', where 0 < J < r. Then, at the time point 7" all the
remaining R}, R =N — (R| +--- +Ry) — Junits are removed and the experiment terminates at time point 7. We denote
the two cases as Case I and Case II, respectively.

LetR, =s;+¢qi, i=1,...,D (where D < N being a prefixed integer, D = r for case I and D = J for case II) and s;(g;)
is the number of units withdrawn at the time of the i * failure that belongs to X (Y) sample and these are unknown and
random variables. The data observed in this form will consist of (Z,W,S), where W = (w(y),...,w(p)), Z = (21,---,2D)
with z; = 1 or 0 according as whether wy;) is either X- or Y -failure, respectively, § = (s1,-..,8p) and R = (R|,R,,...,Rp)
has the decomposition S+ Q = (s1,...,5p) + (¢, ..-,9D)-

The likelihood function (without the constant term) of (z,w,s) can be written as

(f(W(i))Z"g(W(i))liz") (F(w(i)))si (G_(w(i)))% for Case I

.o . (D
j )Z"g(W(i))lfz") (F(W(i)))si (G_(W(i)))% (F(T))"(G(T))¥, for Casell,

—
=
=

~
R
TeT g

where 57 =m— (sy+---+s7) —my, ¢y =n—(q1+---+qs) —ny , (my,n;) number of failure units in the (first and second)
sample respectively, F(-) = 1 — F(-) and G(-) = 1 — G(+) are the survival function of the two populations.
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3 Maximum likelihood estimation

Suppose the lifetimes of m units of population (1), Xi,...,X,,, are independent and identically distributed (iid) random
variables from generalized exponential (GE) (o, 6;) population with density and distribution functions as

flx) =061 —efelx)alilefelx

and
F(x)=(1—¢ % forx>0, oy,0, >0, )
respectively.
Similarly, let the lifetimes of n units of population (2), Y1,...,Y, be iid random variables from GE (o, 6,) population

with density and distribution functions as

8(y) = 6x(1 - 9792)6)0‘27]6*9%

and

G(x) = (1—e )" fory >0, 0,65 > 0. 3)

respectively. The log-likelihood function corresponding to Equations (2) and (3) is given by

r r
myInog +m,1n0; +n,Inoy +n,In6, + '):,lz,'ln(l —Ul.)alfl + Y zilnU;
i=

i=1
r

r r r
+Y (1—z)n(1—P)2 7 £ ¥ (1—z) P+ ¥ siln(1 =A%) + ¥ giln(1 — A%), Case I
i=1 i=1 i=1 i=1
— J J
InL = mylnog +myIn6) +nylncy +nyIn 6, + ZZ,']]‘](]—U,’)OQ*I—I— Y zilnU; S
i=1 i=1

J J J J

+Y (1=z)In(1=P)2 '+ ¥ (1-z)InP+ ¥ siln(1 —A") + ¥ giIn(1 — 1,%)
i=1 i=1 i=1 i=1

+s3In(1 — %) + ¢} In(1 — 3?), Case I,

where U = ¢ "0, =70, V) =0, Vy = e 20, 4 = (1-W), Ay = (1 =Va), A; = e 0T, Ay = ¢ T,
n=(1-A))and = (1 -Az).
Differentiating partially (4) with respect to @, ¢, 8; and 6, and equating them to zero, we get the following two

equations
Case I:
’ Z Siilal 1ni|
my =1
“Z+V zin(1-0,)-" — =0
o ,; iin(1=0) -k
- Z ql_izaz lnkz
Y (=) (=B - = —0
(27— 1712(12
N Zr:s,alw(r)ilalil A1
1 (6 1)iZiw(i’Ui Y ziwgy — = 0
- 1 — — i — — =
1 S1-0 5" g 1—A
i
5 Y qitownAy V.
neoo L (L—zwph & i1
Dot —1)Y Y (2w — - —0, (5)
6, L5 gl 1Ak
where U; = ¢ 00, B = ¢ %0 D) = o700 Py = %70 4 = (1 - V1) and Jp = (1 — Th).
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Case II:
¥ sd® i,

J iY $5% 4
m A = In
R
| 1—Af -9

J

J ):éhl IHAQ *A(xz N
n = In
MY (—g)in(l Byt M BB
(0%) = 1_122 ]_722

J .
~ AOtlfl" N
my . J ZwinUi J ,E’l Slalw(])ll ! sjﬁclT}A/{x‘ Aj
A—Jr( ]*1)2 = *ZZIW(I)* o " =0
0 = 1=-U 3 -2 =%
. qidowp A
S (1—z)wpP L qitaw Ay 2 T4 i

n R Z — (05
AJ+(a2_1)Z( 4 A(l) ! Z(l_zt) ()_l — q;02 YZAO‘ 2 07 (6)
2 i=1 17})1 i=1 1*&22 17’)/22

where U,' = eielw(i), FA’, = efﬂzw“)’ ‘71 = 6791W<J>, Vz = eiezwm, ﬁ,l = (1 — Vl), jyz = (1 — Vz), Al = e—G]T’ Az = eiezr,
’}71 = (1 71&1) and ’)72 = (1 7142).

Then the maximum likelihood estimates of the parameters a;, o, 8; and 6, can be obtained by solving system
of equations (5) and (6). No explicit form for these estimates, a numerical technique using R statistical programming
language is considered to obtain &, G, 6, and 6.

The variance-covariance matrix for the maximum likelihood estimators of ¢, 0p, 6; and 6, can be obtained by
inverting the information matrix with the elements that are negative of the expected values of the second order derivatives
of logarithms of the likelihood functions. [21] concluded that the approximate variance covariance matrix may be obtained
by replacing expected values (say & = (q;, 0%, 01, 6,)) by their MLEs D= (6,00, o, éz). Now the Fisher information
matrix associated with 9 is defined as

2 2
- BBOItTZL 0 B aa0‘1IS 51 0

0 _ 9%InL 0 _ 9%InL

1(19) ~ 80;22 9(12892
- _ 9%InL 0 _ 9%InL 0 ’

da1d6, 3612

9%InL 9%InL

0 - 3&2892 O - 6922

where
Case I:

a N o 2
d*InL  m, E’] siti ™ (Ind)

7_30512 - alz (] _llal)z

d . [¢7%) 2
PETNI  Z LYY

Tow a1 ey
72}) + Zs,(xlw (1 77[,]061)72 {(1 7k|al)V]W(r)k| a171:|
[((051 - OVidi~ ) } + {061 V2 (r)llz(alil)} +ZSiOCIW(r)(1 %1“1)*2

oy

X [(1 _lla])vlw(r)llalil} K(Oq - l)VIM") —~ 1} + [oclvlzw(,)lf(“‘*')} ,
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2%InL . oz B -
() Z +Zq,a2w (1= 20%) 2 [(1 = M) Vo) 2%
862 6 i=1 ) i=1

x [((Ocz W ) - 1} + Vot 2]

2
aaallggl Y- 1_ +Y o siViw (1= ™) [(1711“‘)(amf“*‘lnkﬁkl‘”]*‘)}+[ale“‘*'1nxl},
and
2
73805213[(;2 Y lew + Y aiVaw (1-452) 7 [(1 - 1,?) (0@/12"‘2*1 1n7Lz+/12"‘2*‘)} + [azxzzo‘flln /12} .
(7)
Case II:

CPIL my N YL sl @ (In ) N 5581 (InBy)?
et e (1AM’ (1B

9L ny L1 giM*® (In k)’ N 438 % (In o)’
aazz - a22 (1 7&2112)2 (1 7B2(X2)2

821nL my nyY Zi(W(z’))zUz’ J 1= 22 (1 = 2,2y PR
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X K((Xl - l)Vlhfl) _ 1} + [061V12W(J))~12(a1*')} +sionT(1 _%0‘1)*2 [(] —p® )AIT%O‘FI}
X [((OC[ - 1)A]Y]71) - 1} [(XIAIZTYIZ(OCPI)} ,
9?InL z(w(y) Ui - i
- 891212 N é " (OCQ? UZZ‘JZI ﬁJer{:lq’.azw(l)(l 712(%2) ? |:(1 712052)‘/21”}(])12052 1:|
X K((Xz - 1)V27Lz*1) _ 1} + {(XzVZZW(j)KQZ(OCrI)} +qionT(1— }’20‘2)72 [(1 _ Vzaz)AzTYZO‘z*l]

X [((az - 1)A2’)/271) — ]] |:a2A22T»y22(O!271)} ,

d*InL _
7W§917 Zl 1 ]_ Zl{zlsiVIW(])(lfﬂ,]al) 2[(17110”)((X]k[alillnxlﬁ’)l,]alil)]

+ [0611120"7] 11111} +S5AIT(L=7n") 7 [(1=1) (an® "Iy + 1A D] + [y ®@ nn]

and

d’InL - _ _
8062392 Y YL Vo (1= 10%) [(1-22%) (@A™ A+ 1,27 |

+ @2 n lz} + AT (1= 1%) 2 [(1-%%) (@p® e+ p® )]+ [@p’® 'hp]. ®

Using the asymptotic normality of the MLESs, we can express the approximate 100(1 — ¢)% confidence intervals for
oy, 0p, 61 and 6,. Suppose that § is the MLE of the parameter vector § = (o, 0, 61, 60,). Denote the Fisher information
matrix corresponding to d by Is and ¢ = hm,HoonI . Then, § is asymptotically normal distributed, i.e., \/ﬁ(S —8)~

N(0,¢) (see [22]). In particular, let (SOQ)2 = ¢(;y/ni=1,2 are the (i,i) elements in the matrix ¢ = nfg' and [y is the
estimator of I5. Therefore, asymptotic normality confidence intervals of §; i = 1,2, with confidence level 100(1 — @)%
are given by

(XliZ —9/2) a,l—]z and Giz( (p/z)éz_12

where 7| _¢)/2 denotes the upper (1 — ¢)/2 percentage point of the standard normal distribution.
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4 Bayes estimation

In this section, Bayesian method is used to obtain the estimators for the unknown parameters ¢;, i = 1,2 and 6;, i = 1,2
using symmetric squared error loss function and asymmetric LINEX loss functions for Case I and Case II. Consider that
ap, 0, 8; and 6, have the following independent gamma prior distributions

ak
o) o< a® e % b0 >0
7[( k) F(ak) k e y Ay O, O > 0,
and
bk
0,) o« —k 9% 1ot g >0 k=1,2. 9
7[( k) F(ak) k e bl k> bl bl ( )

Here all the hyper parameters a; and by are assumed to be known and non-negative. Combining (9) with equation (1)
and using Bayes theorem, the joint posterior density function of a;, ¢, 6; and 6, can be written as:

1
n(data\oc] , 00, 0 , 92) = @L((X] , 00, 0 R GQ,W,Z)TE(OCk)ﬂ.'(Qk),

wher%ommm
Y=[[[[Lai,,61,6:,wz)m(0y)m(6)doydby, k=1,2.
0000

Therefore, the Bayes estimator of any function of @, 0, 6; and 65, say 6(c, az, 0y, 6,) under the squared error (SE)
loss function is

6SE = EO{] ,00,01,6,,data (5(“1 ) a27 61 ) 92))

0 o0 o0 oo

1
= — 1) 0,,6
q,//// (ou,,61,6,)
0000
X L(alaa27915925W7Z)n(ak)n(9k)dakd9k7 k= ]72 (]O)

Under a LINEX loss function the Bayes estimate of a function 8 (@, o, 6, 6) is given by
N 1 —cé
6L1N:7—1IIE(€ ), C#O, (11)
c

where, fork=1,2,

[
=g [ ][
0000
x L@, 00, 01,0, w,2) (04 ) 70 (6 )d Ot d .

Equations (5), (7), (10) and (11) in Case I and equations (6), (8), (10) and (11) in Case II are difficult to obtain. An
iterative procedure is applied to solve these equations numerically. Normally, the ratio of four integrals given by equations
(10) and (11) can not to be obtained in a closed form. In this case, one may utilize the MCMC technique to generate
samples from the posterior distributions, after that, compute the Bayes estimators of the individual parameters.

In Bayesian inference, compute the full posterior joint distribution over a set of random variables will be desired.
Most often posterior distributions will not be standard distributions, because, this often requires calculating intractable
integrals, therefore, the analytical equations can be performed with sampling techniques based upon Markov chain Monte
Carlo (MCMC) methods using simulated samples from posterior distribution. MCMC is an increasingly popular method
for obtaining information about distributions, especially for estimating posterior distributions in Bayesian inference. It is
a computer-driven sampling method and allows one to characterize a distribution without knowing all of the distributions
mathematical properties by randomly sampling values out of the distribution. Several standard approaches to define such
Markov chains exist, namely: Metropolis-Hastings (M-H) algorithm (see [23]) and Gibbs sampling (see [24]). Using these
algorithms it is possible to implement posterior simulation in essentially any problem. The Gibbs sampling algorithm is
one of the simplest MCMC algorithms. It was introduced by [25] and discussed for Bayesian computations by [24].
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5 Numerical illustration

In this section, we carry out some simulation studies to illustrate the finite sample performance of the proposed method
under choices of sample sizes and choices of censoring schemes. The ML estimates and the Bayes estimates based on SE
and LINEX loss functions are all compared by means of a simulation study, and a numerical example is finally presented
to illustrate all the inferential results established in the preceding sections.

5.1 Simulation study

In this subsection, a simulation study is performed to evaluate the behaviour of the results obtained in the previous sections,
including the Maximum Likelihood estimates, Bayes estimates and the corresponding confidence/credible intervals by
considering choices of values of the parameters.

To run the experiment according to a jointly Type-I progressively hybrid censored sampling from two GE populations,
we propose the following algorithm:

Step 1: Set the parameter values of ¢, 0, 8; and 6,.

Step 2: Generate X and Y independent observations of sizes m and n from GE; (¢, 0,) GE» (0, 0,), respectively.

Step 3: Combine the two generated samples and rearrange them in ascending order.

Step 4: For a specific values of m, n, r and R, generate an ordinary JPCS-I sample using the algorithm proposed by [6].

A large number (1,000) of the JPHC-I samples are generated from both (GE) populations when the true values of the
parameters ¢; and 6; for i = 1,2 are taken as (o, 0, 0;,60,) = (1.5,2,0.5,0.75) for some different combinations of m,
n, r, T and R. The sample sizes of both populations are taken as m = n = 40(small), 60 (moderate) and 80 (large) for
each specified time T = (1.25,2.5). When the number of failed subjects achieves or exceeds a certain value r, where the
percentages of failure information (r/N)% are considered as 25, 50 and 75%, the test is terminated. Also, for each N
and r, different censoring schemes (CSs) to remove survival units during the lifetime experiment are assumed as given in
Table 1.

The selection value of the hyper-parameters, when an informative prior of the density parameter is taken into
account, is the main issue in Bayesian procedure. [26] and [27] suggested ways to overcome this problem. If the proper
prior information, i.e., ay;,as;,b1;,b2; = 0, i = 1,2 is available, the joint posterior distribution of ¢; and 6;, i = 1,2
reduced proportional to the likelihood function (3), therefore, if one does not have prior information on the unknown
parameters of interest, it is preferable to use the MLEs instead of the BEs because the latter are computationally more
expensive.We used two informative priors of @; and 6;, i = 1,2 called; prior (1): (aj1,a12,b11,b12) = (1.2,1.5,1.5,2),
prior (2): (az1,a22,b21,b22) = (1.5,1.5,1.2,1.8). The values of hyper-parameters of the unknown parameters ¢; and
6;, i = 1,2 are chosen in such way that the prior mean become the expected value of the corresponding parameter, initial
value of LINEX loss function is (¢ = 2) see [26].

To run the Gibbs sampler algorithm, we started with the MLEs, and then draw samples from various full conditionals,
in turn, using the most recent values of all other conditioning variables unless some systematic pattern of convergence
was achieved. The algorithm Gibbs sampling can be described as follows:

Step 1: Start with an initial guess (Ocl(o) =0, az(o) =y, 91(0) =0, and 92(0) = 92).

Step 2: Setr = 1.
Step 3: Generate a](z) using M-H algorithm with normal proposal distribution () = N(&, var(¢;)) as follows:

—(a) Let e = Ocl(lfl). We use & as al(o).

—(b) Generate @ from the proposal distribution.

. . q(e)g(wlw(y)
—(c) Obtain P(&,®) = min (1, d@geh) )
—(d) Accept @ with probability P(€,®), or accept € with probability 1 — P(g, ®).
Step 4: Generate OCZ(I), 91(1) and 92(1).
Step 5: Sett =t + 1.

Step 6: Repeat steps 2—4, M times, and obtain U") = (Ocl([), 2(1),9](’)7 62(1)) ,t=1,....M.

In order to guarantee the convergence, the first simulated varieties, My, of the algorithm may be biased by the initial
value, therefore, usually discarded in the beginning of the analysis implementation (burn-in period). Then the selected

samples are U = (Ocl(l) , Otz(t), 91(1) , Bz(t)) fort =My+1,...,M, are sufficiently large M.
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Hence, the BE of U = (o, 0, 01, 6,) based on SE loss is given by

M
U= Y UY/(M—My),
t=My+1

where M is burn-in.
To construct the symmetric BCIs of «, o, 6; and 6,, sort the generated MCMC samples (after burn-in-period) in

ascending order for vl = (Oc](l)7 2(”,9,"),92(”) fort =Mo+1,....,M as Uy, 1), U, +2),- - - Uiny» then the 100(1 —
2¢)% two-sided BCIs of U = (a1, 0, 0, 6,) is given by

(Utgmy: Uti—gym)) -

Hence, (12,000) MCMC samples are generated and discard the first (2,000) values as ’burn-in’. Hence, the average
Bayes MCMC estimates and 95% two-sided credible intervals are computed based on (10,000) MCMC samples. The
average values of all the estimates, the mean squared error (MSE), the confidence lengths and the coverage probabilities
(CPs) are obtained.

The average point values of the MLEs and BEs under the SE and LINEX loss functions of ¢; and 6; for i = 1,2 with
their MSEs are computed and reported in Tables 2-5. In addition, the associated average confidence lengths (ACLs) of
95% ACIs/BCls also are summarized in Tables 6-9. All required computational algorithms are coded in R statistical
programming language software version 3.6.1 with 'maxLik’ package proposed by [28]. Also, the computations of
Bayesian MCMC estimates were performed using ’CODA’ package proposed by [29].

From the numerical results established in Tables 2-9, MSEs and ACLs (with their CPs) of the proposed estimators are
used from which we can make the following observations.

It is clear that the MLEs and BEs of «; and 6; for i = 1,2 are good estimators in term of minimum MSEs, as expect,
using gamma informative prior in this example, the BEs are better (as they include prior information) than MLEs in
respect of their MSE values. As N increases, MSEs of o;,0;, i = 1,2 reduced significantly while that associated with
@;,0;, i = 1,2 increase. Further, when T increases, the MSEs associated with scale parameters 6;, i = 1,2 increase while
associated with shape parameter o;, i = 1,2 decrease. In most cases, when the failure percent (r/N)% increases, the point
estimates become even better as expected.

As the effective increase in sample sizes, the ACLs associated with 95% ACIs/BCIs narrow down as expected. Also,
when T increases, the ACLs of both ACIs and BClIs tend to decrease. It is also observed that as the failure proportion
increases, the ACLs for scale parameters 6;, i = 1,2 increase while decrease for the shape parameter ¢;, i = 1,2. Moreover,
when the failure proportion increases, it is observed that the performance of the scale parameters 6;, i = 1,2 become better
in contrast to the shape parameter ¢, i = 1,2 in terms of their ACLs values.

The credible intervals estimates of the unknown parameters are better than asymptotic confidenceintervals in terms of
their ACLs due to they include prior information. Since the variance of prior (2) is smaller than prior (1), it can be seen
that the Bayes (point and interval) estimates based on prior (2) has perform better than prior (1) in terms of minimum
MSEs and ACLs for each setting.

Comparing the four different CSs which is better, it is clear that the MSEs associated with all estimates for the
unknown parameters ; and 6; for i = 1,2 are greater based on the CS-IV than the other censoring schemes. Because
the expected duration of the experiments for CS-I (where remaining N — r units are withdrawn in first stage) and CS-1I
(where remaining N — r units are withdrawn After each stages), and CS-III (where remaining N — r units are withdrawn
in both first and last stages), are greater than the CS-IV (where remaining N — r units are withdrawn at the r — th failure
occur).Therefore, we recommend the Bayesian MCMC estimation of the GE population parameters using the hybrid
Gibbs within M-H algorithm sampler.

5.2 Real-life data analysis

In this subsection we analyze a set of data that arose in tests on the endurance of deep grove ball bearings. They were
discussed by [30] and [31]. The data are the number of revolutions in millions before failure for each of the 23 ball
bearings in the life test and they are: 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80,
68.64, 68.64, 68.88, 84.12,93.12, 98.64, 105.12, 105.84, 127.92, 128.04 and 173.40.

To illustrate the findings of the paper, the data are divided into two samples by randomly sampling m = 13 observations
and considering these observations as the group X, and the remaining n = 10 observations are taken as the group Y, (see
Table 10). Firstly, before analyzing the datasets of Table 10, one question arises about whether the data sets fit the GE
distribution or not. Thus, we use the MLEs to obtain the Kolmogorov-Smirnov (K-S) distance and the corresponding
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p-value for each group. Using the failure times of group X, the MLEs of the model parameters ¢ and 6; become 3.9201
and 0.0355, respectively. Similarly, using the failure times of group Y, the MLEs of the model parameters o, and 6,
become 5.0678 and 0.0305, respectively. Hence, the K-S distance (with associate p-value) for each group X and Y is
0.3072(0.1718) and 0.2255(0.0545), respectively. These results indicate that the GE distribution fits Gupta’s and Kundu’s
datasets quite well(see Table 11).

For fitting the assumed two data sets graphically, we plot the empirical cdfs and the corresponding fitted cdfs for the
GE distribution, also, we plot the histogram and the corresponding fitted pdf lines for same distribution. Figure 1 showed
the fitted lines for the cdfs and pdfs for the given two data sets and corresponding GE distribution. The figures also indicate
that the GE distribution provide better fit at least for this data set.

From the original data set given in Table 10, one can generate, e.g., three JPHC-I samples with different number of
stages r = (10,15,23) at time censoring T = 54 and removed items R; are assumed as given in Table 12.

Because no any prior information is available about the model parameters, the BEs are developed with a
non-informative prior, i.e., ai;,a2;,b1;,b2; = 0, i = 1,2. Here, we have used two informative priors of ¢; and 6;, i = 1,2
called prior (]) (alhalz;bllablZ) = (1 '27 1 '55 1 '572)» prior (2) (a217a227b215b22) = (1 '57 1 '55 1 '27 1 8) Initial value of
LINEX loss function with (¢ = 2).Using the hybrid Gibbs within M-H sampler algorithm described in Section 4,
(12,000) MCMC samples are generated and discard the first (2,000) values as ’burn-in’. Hence, the average Bayes
MCMC estimates and 95% two-sided credible intervals are computed based on (10,000) MCMC samples. The MLEs,
BEs (with their standard errors) and two-sided 95% ACIs/BCIs of the unknown parameters ¢; and 6;, i = 1,2 are
computed and reported in Table 13 and 14.

It is evident from the estimates that the generated posteriors of the unknown GE population parameters ¢; and 6;, i =
1,2 are fairly symmetric and corresponds well to the theoretical posterior density functions. The analysis of these real
data sets shows the flexibility of the proposed JPHC-I scheme to remove reliable items at any time and terminate the
experiment at min (X(,), T), and furthermore, compromise between reduce the experiment time and the observation of at
least some extreme lifetimes sought.

For each data set, the marginal posterior density estimates of ¢; and 6;, i = 1,2 based on (10,000) chain values using
the Gaussian kernel are plotted in Figure 2. Similarly, in each histogram plot, it is evident from the estimates that the
generated posteriors of the unknown GE population parameters ¢; and 6;, i = 1,2 are fairly symmetric and corresponds
well to the theoretical posterior density functions. To assess the convergence of 10000 MCMC outputs, trace plots of the
conditional posterior distributions of ; and 6;, i = 1,2 for each data set are shown in Figure 2. It indicates that the MCMC
procedure converges very well.

6 Conclusions

In this article, the maximum likelihood and Bayesian estimation based on SE and LINEX loss functions for the unknown
parameters of two GE distributions has been discussed based on a new scheme called the JPHC-I scheme. The ML
estimates and the Bayesian estimates have then been compared through a simulation study, and a numerical example
has also been presented to illustrate all the inferential results established here. The computational results show that the
Bayesian estimation based on the SE and LINEX loss functions is more precise than the ML estimation. As N increases,
the MSEs of ¢; and 6;, i = 1,2 reduced significantly while that associated with o; and 6;, i = 1,2 increase. Further,
when T increases, the MSEs associated with scale parameters 6;, i = 1,2 increase while associated with shape parameter
0;, i = 1,2 decrease. In most cases, when the failure percent (r/N)% increases, the point estimates become even better as
expected.
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Table 1: Removal patterns of units in various censoring schemes.

(m,n) r Censoring Schemes
1 1T 11T v
4040) 20 (60,0719 (3720 (30,0°830) (0719, 60)
40 (40,03 (1740) (20, 0*38,20) (073, 40)
60 (20, 0*59) (1*20, 0*40) (10, 0*58’10) (0*59’ 20)
(60,60) 30 (90, 0°2) (330) (45, 0°28,45) (02, 90)
60 (60, 0°%%) (1+60) (30, 0" 30) (059, 60)
90 (30,0)  (170,0°0) (15,015 (0", 30)
(80,80) 40 (120, 0%%%) (340) (60, 0°38,60) (073, 120)
80 (80, 0°7) (1780) (40, 0°88 40) (07, 80)
120 (40,0°119) (140, 0"y (20,0°1820)  (0*'19, 40)

Here, (1*3,0), for example, means that the censoring scheme employed is (1,1,1,0).

Table 2: The average estimates (MSEs) of a;; = 1.5 under choices of censoring scheme and choices of T's.

(m,n) r Scheme MLEs BEs
SE LINEX
T — 1.25 2.5 1.25 2.5 1.25 2.5
I 6.0948 (3.9210) 6.1129 (3.9653) 2.3873 (0.5916) 2.3874 (0.5883) 17048 (0.2570)  1.7100 (0.2561)
@40 20 I 4.5692 (2.1645) 4.6193 (2.1945) 1.6978 (0.0812) 1.7102 (0.0814) 13973 (0.0338)  1.4184 (0.0327)
’ 11T 3.7916 (1.4377) 3.8136 (1.4489) 1.5427 (0.0418) 1.5479 (0.0423) 1.3139 (0.0266) 1.3175 (0.0267)
v 2.2993 (0.3913) 2.3030 (0.3915) 1.2453 (0.0214) 1.2477 (0.0212) 1.0943 (0.0261) 1.0956 (0.0260)
I 2.9844 (0.6187) 3.8290 (1.1181) 1.6920 (0.0594) 2.2069 (0.1385) 1.4338 (0.0649)  1.9201 (0.0743)
10 I 2.1975 (0.1870) 3.8451 (1.1287) 1.4696 (0.0531) 2.0871 (0.0922) 12131 (0.0352)  1.7801 (0.0373)
I 2.1322 (0.1404) 3.9881 (1.2729) 1.4269 (0.0183) 2.0557 (0.0736) 1.2679 (0.0166) 1.7604 (0.0336)
v 1.8890 (0.1037) 3.8280 (1.1728) 1.3298 (0.0191) 1.8566 (0.0402) 1.1892 (0.0198) 1.5860 (0.0178)
1 2.1469 (0.1625) 2.2829 (0.1585) 1.4321 (0.0176) 1.7207 (0.0754) 1.2768 (0.0164) 1.3460 (0.0736)
60 I 22671 (0.2144) 2.3295 (0.1608) 1.4810 (0.0201) 1.9466 (0.3874) 13167 (0.0164)  1.2797 (0.0872)
i 1.9424 (0.1231) 1.9035 (0.0711) 1.3574 (0.0180) 1.5264 (0.0191) 12135 (0.0183)  1.3864 (0.0151)
v 1.8128 (0.0700) 1.7560 (0.0502) 1.2990 (0.0162) 1.4359 (0.0163) 1.1689 (0.0188) 1.3150 (0.0142)
1 5.3515 (2.7578) 5.3578 (2.7608) 2.6940 (0.5539) 2.6908 (0.5504) 2.1046 (0.3029) 2.1127 (0.3020)
€060 30 I 43172 (1.6049) 4.3330 (1.6161) 2.0015 (0.0866) 2.0037 (0.0867) 17115 (0.0363)  1.7150 (0.0363)
- i 3.2042 (0.7086) 3.2108 (0.7100) 1.7036 (0.0321) 1.7059 (0.0321) 1.4943 (0.0163)  1.4960 (0.0162)
v 2.0557 (0.1604) 2.0568 (0.1605) 1.3716 (0.0158) 1.3719 (0.0158) 1.2263 (0.0166) 1.2264 (0.0166)
1 2.6296 (0.2738) 3.4699 (0.6459) 1.7986 (0.0556) 2.4080 (0.1573) 1.5806 (0.0373) 2.1589 (0.0969)
60 1T 2.0421 (0.0948) 3.5277 (0.6884) 1.5574 (0.0580) 2.3429 (0.1183) 1.3571 (0.0182) 2.0677 (0.0600)
11 1.9333 (0.0731) 3.3682 (0.5966) 1.4827 (0.0149) 2.1903 (0.0832) 1.3549 (0.0128)  1.9382 (0.0407)
v 1.7375 (0.0456) 3.3754 (0.6514) 1.3754 (0.0142) 2.0813 (0.0636) 12622 (0.0148)  1.8263 (0.0297)
1 2.0228 (0.0828) 2.1636 (0.0867) 1.5461 (0.0175) 1.8239 (0.0865) 1.4107 (0.0129) 1.4807 (0.0433)
90 1T 2.0242 (0.0795) 2.1502 (0.0839) 1.5506 (0.0171) 1.9098 (0.1878) 1.4150 (0.0126) 1.4108 (0.1338)
11T 1.8279 (0.0590) 1.8315 (0.0365) 1.4234 (0.0145) 1.5943 (0.0148) 1.3023 (0.0135) 1.4898 (0.0108)
v 1.7157 (0.0386) 1.6441 (0.0212) 1.3753 (0.0129) 1.4527 (0.0106) 12632 (0.0136)  1.3637 (0.0098)
I 47079 (1.8418) 47075 (1.8416) 2.8193 (0.5204) 2.8187 (0.5199) 23714 (0.3146)  2.3729 (0.3145)
(80.80) 40 1T 3.8249 (0.9892) 3.8320 (0.9923) 2.1810 (0.0993) 2.1839 (0.0991) 1.9082 (0.0491) 1.9123 (0.0489)
’ 11T 2.8161 (0.3847) 2.8169 (0.3848) 1.7782 (0.0332) 1.7784 (0.0332) 1.6007 (0.0182) 1.6009 (0.0182)
v 1.8791 (0.0600) 1.8793 (0.0600) 1.4258 (0.0126) 1.4258 (0.0126) 12997 (0.0123)  1.2998 (0.0123)
I 2.4008 (0.1536) 3.1733 (0.3965) 1.8505 (0.0435) 2.4608 (0.1450) 1.6767 (0.0307)  2.2550 (0.0974)
80 1T 1.9330 (0.0524) 3.2908 (0.4614) 1.5940 (0.0195) 2.4635 (0.1326) 1.4621 (0.0144) 2.2389 (0.0819)
11T 1.8607 (0.0478) 3.1838 (0.4553) 1.5255 (0.0133) 2.3025 (0.0989) 1.4172 (0.0105) 2.0830 (0.0580)
v 1.6561 (0.0249) 3.1099 (0.4064) 1.4068 (0.0111) 2.2045 (0.0810) 1.3119 (0.0112) 1.9786 (0.0443)
I 1.9050 (0.0544) 2.0668 (0.0635) 1.5543 (0.0157) 1.8538 (0.0766) 1.4450 (0.0120)  1.6145 (0.0429)
120 I 1.9331 (0.0477) 2.0687 (0.0550) 1.5940 (0.0144) 1.9048 (0.1520) 1.4794 (0.0103) 15622 (0.0660)
11T 1.7361 (0.0286) 1.7612 (0.0228) 1.4535 (0.0097) 1.5851 (0.0108) 1.3546 (0.0093) 1.5031 (0.0080)
v 1.6750 (0.0276) 1.5984 (0.0130) 1.4095 (0.0110) 1.4607 (0.0080) 1.3156 (0.0110) 1.3911 (0.0075)
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Table 3: The average estimates (MSEs) of 8; = 0.5 under choices of censoring scheme and choices of T's.

(m,n) r Scheme MLEs BEs
SE LINEX
T— 1.25 2.5 1.25 2.5 1.25 2.5
I 4.0707 (1.4158) 4.0815 (1.4206) 1.8004 (0.2790) 1.7972 (0.2775) 1.3907 (0.1684) 1.3923 (0.1682)
4040 20 1I 2.2581 (0.4195) 2.2854 (0.4247) 0.9703 (0.0457) 0.9725 (0.0454) 0.8396 (0.0317) 0.8431 (0.0303)
(40,40) I 2.2413 (0.4067) 2.2559 (0.4089) 1.0663 (0.0535) 1.0734 (0.0538) 0.9196 (0.0336)  0.9257 (0.0338)
v 0.9018 (0.0406) 0.9055 (0.0406) 0.4817 (0.0044) 0.4848 (0.0043) 0.4340 (0.0040)  0.4368 (0.0039)
I 1.5053 (0.1434) 1.9729 (0.2381) 0.9528 (0.0403) 1.4070 (0.0947) 0.8703 (0.0370) 13147 (0.0776)
40 1I 0.7915 (0.0214) 1.7415 (0.1778) 0.5216 (0.0149) 1.1787 (0.0543) 0.4873 (0.00940 1.0977 (0.0428)
1T 0.8470 (0.0244) 2.0785 (0.2756) 0.5702 (0.0059) 1.4086 (0.0903) 0.5301 (0.0049) 1.3027 (0.0711)
v 0.6004 (0.0098) 2.0339 (0.2608) 0.4096 (0.0041) 1.3509 (0.0784) 0.3847 (0.0043)  1.2524 (0.0622)
I 0.8548 (0.0236) 0.9362 (0.0282) 0.5771 (0.0058) 0.8267 (0.0495) 0.5381 (0.0047)  0.7401 (0.0412)
6 I 0.8002 (0.0205) 0.8601 (0.0210) 0.5291 (0.0048) 0.7846 (0.0546) 04954 (0.0042)  0.7157 (0.0466)
1 0.6946 (0.0129) 0.7076 (0.0112) 0.4795 (0.0039) 0.5924 (0.0054) 0.4483 (0.0037) 0.5729 (0.0049)
v 0.5746 (0.0075) 0.5732 (0.0071) 0.3942 (0.0035) 0.4811 (0.0040) 0.3706 (0.0038) 0.4660 (0.0037)
I 3.8875 (1.2445) 3.8915 (1.2456) 2.2825 (0.4006) 2.2775 (0.3986) 1.8926 (0.2763)  1.8903 (0.2739)
€060 30 I 2.1913 (0.3578) 2.1987 (0.3588) 1.1624 (0.0604) 1.1642 (0.0603) 1.0442 (0.0434)  1.0462 (0.0434)
’ 1T 2.0487 (0.2921) 2.0557 (0.2929) 1.2359 (0.0682) 1.2408 (0.0685) 1.1068 (0.0485) 11111 (0.0487)
v 0.8548 (0.0265) 0.8561 (0.0265) 0.5530 (0.0041) 0.5539 (0.0041) 0.5091 (0.0032) 0.5099 (0.0032)
I 1.4306 (0.1122) 1.9504 (0.2253) 1.0529 (0.0475) 1.5555 (0.1206) 0.9723 (0.0417)  1.4856 (0.1060)
6 I 0.7515 (0.0142) 1.6887 (0.1544) 0.5495 (0.0051) 1.3029 (0.0708) 0.5315 (0.0074)  1.2418 (0.0607)
1 0.7886 (0.0151) 1.9617 (0.2276) 0.6016 (0.0050) 1.5149 (0.1090) 0.5701 (0.0041)  1.4411 (0.0963)
v 0.5591 (0.0044) 1.9582 (0.2265) 0.4280 (0.0028) 1.4896 (0.1033) 0.4077 (0.0029) 1.4085 (0.0874)
I 0.8336 (0.0184) 0.9163 (0.0230) 0.6376 (0.0061) 0.8280 (0.0343) 0.6052 (0.0049) 0.7831 (0.0280)
% I 0.7508 (0.0128) 0.8188 (0.0153) 0.5682 (0.0043) 0.8176 (0.0676) 0.5401 (0.0036)  0.6948 (0.0336)
11 0.6564 (0.0080) 0.6780 (0.0064) 0.4994 (0.0030) 0.6036 (0.0036) 0.4746 (0.0028)  0.5904 (0.0032)
v 0.5531 (0.0040) 0.5328 (0.0029) 0.4274 (0.0025) 0.4755 (0.0021) 0.4074 (0.0027) 0.4651 (0.0021)
I 3.7489 (1.1322) 3.7484 (1.1320) 2.5706 (0.5109) 2.5697 (0.5105) 2.3026 (0.4062) 2.3040 (0.4063)
20800 40 I 2.0637 (0.2867) 2.0673 (0.2873) 1.3120 (0.0805) 1.3130 (0.0804) 1.1995 (0.0619)  1.2024 (0.0619)
(30,80) 11 1.9485 (0.2445) 1.9494 (0.2446) 1.3345 (0.0825) 1.3351 (0.0825) 12230 (0.0631)  1.2236 (0.0631)
v 0.7993 (0.0179) 0.7997 (0.0179) 0.5808 (0.0038) 0.5811 (0.0038) 0.5436 (0.0030)  0.5439 (0.0029)
I 1.3640 (0.0933) 1.8994 (0.2051) 1.0970 (0.0512) 1.6210 (0.1333) 1.0297 (0.0409) 1.5673 (0.1214)
30 I 0.7264 (0.0103) 1.6642 (0.1449) 0.5898 (0.0073) 1.3768 (0.0823) 0.5628 (0.0042) 1.3307 (0.0742)
1 0.7737 (0.0129) 1.9324 (0.2154) 0.6283 (0.0052) 1.5894 (0.1238) 0.6024 (0.0044)  1.5270 (0.1102)
v 0.5396 (0.0030) 1.9132 (0.2097) 0.4438 (0.0021) 1.5596 (0.1169) 04270 (0.0022)  1.4931 (0.1028)
I 0.7987 (0.0147) 0.8903 (0.0193) 0.6495 (0.0061) 0.8720 (0.0479) 0.6237 (0.0051) 0.7849 (0.0203)
120 I 0.7281 (0.0095) 0.8006 (0.0120) 0.5882 (0.0037) 0.7686 (0.0288) 0.5648 (0.0031) 0.7136 (0.0232)
I 0.6364 (0.0054) 0.6571 (0.0047) 0.5208 (0.0022) 0.6000 (0.0028) 0.5005 (0.0020) 0.5891 (0.0026)
v 0.5483 (0.0031) 0.5205 (0.0016) 0.4473 (0.0021) 0.4778 (0.0013) 0.4308 (0.0022)  0.4698 (0.0013)
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Fig. 1: Estimated pdf and cdf for the given two data set with corresponding GE distribution.
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Table 4: The average estimates (MSEs) of a = 2 under choices of censoring scheme and choices of 7”s.

1.25

MLEs

2.5

BEs

SE

LINEX

1.25

2.5

1.25

2.5

7.4853 (5.8901)
4.3574 (1.5845)
2.8359 (0.4312)
2.4079 (0.2098)
4.4667 (1.6270)
3.3734 (0.5802)
2.7098 (0.2243)
2.3188 (0.1456)
2.7940 (0.2613)
3.1642 (0.4263)
2.4471 (0.1818)
2.2477 (0.1128)

7.4816 (5.8806)
4.3169 (1.5472)
2.8305 (0.4283)
2.4058 (0.2089)
4.6843 (1.5147)
3.2867 (0.3861)
2.2278 (0.0648)
1.8762 (0.0376)
3.4638 (0.6172)
4.3611 (1.1379)
2.5395 (0.1244)
2.1037 (0.0396)

2.7789 (0.9344)
1.9980 (0.1006)
1.6222 (0.0730)
1.4636 (0.0525)
2.0619 (0.1113)
1.7675 (0.0462)
1.6649 (0.0339)
1.5250 (0.0414)
1.7108 (0.0332)
1.8521 (0.0335)
1.5729 (0.0384)
1.5017 (0.0420)

2.7876 (0.9312)
2.0244 (0.1003)
1.6205 (0.0728)
1.4667 (0.0523)
2.5755 (0.1339)
2.2531 (0.0603)
1.6950 (0.0336)
1.5438 (0.0393)
2.0745 (0.0757)
2.3706 (0.1431)
1.9082 (0.0244)
1.6821 (0.0252)

1.8068 (0.3145)
1.6540 (0.0669)
1.4147 (0.0667)
1.2929 (0.0669)
1.6321 (0.0593)
1.4715 (0.0569)
1.4515 (0.0434)
1.3392 (0.0551)
1.4923 (0.0410)
1.6040 (0.0362)
1.3842 (0.0509)
1.3225 (0.0570)

1.8186 (0.3147)
1.6869 (0.0628)
1.4148 (0.0665)
1.2956 (0.0666)
2.1720 (0.0575)
1.9937 (0.0382)
1.5370 (0.0381)
1.4255 (0.0462)
1.5876 (0.0809)
1.6457 (0.1763)
1.6982 (0.0252)
1.5263 (0.0325)

6.8532 (4.9402)
3.7601 (0.7365)
2.5148 (0.1927)
2.1932 (0.0829)
3.9440 (0.8664)
3.0408 (0.2691)
2.4602 (0.1052)
2.1728 (0.0507)
2.6103 (0.1523)
2.9201 (0.2357)
2.2921 (0.0692)
2.1208 (0.0567)

6.8359 (4.9143)
3.7454 (0.7182)
2.5133 (0.1925)
2.1924 (0.0828)
4.3325 (0.9800)
3.0692 (0.2016)
2.0916 (0.0324)
1.7916 (0.0210)
3.2395 (0.3085)
4.0288 (0.6639)
2.4292 (0.0606)
2.0458 (0.0238)

3.0888 (0.7303)
2.2110 (0.0830)
1.7088 (0.0382)
1.5643 (0.0370)
2.3231 (0.0804)
2.0283 (0.0340)
1.8007 (0.0249)
1.6515 (0.0288)
1.8748 (0.0300)
2.0343 (0.0303)
1.7053 (0.0260)
1.6149 (0.0305)

3.0842 (0.7252)
2.2117 (0.0823)
1.7080 (0.0383)
1.5650 (0.0371)
2.9319 (0.1961)
2.4055 (0.0550)
1.7456 (0.0250)
1.5742 (0.0302)
2.3309 (0.1009)
2.6893 (0.2509)
2.0229 (0.0194)
1.7662 (0.0181)

2.2963 (0.3746)
1.9197 (0.0408)
1.5305 (0.0393)
1.4121 (0.0470)
1.9802 (0.0481)
1.7677 (0.0648)
1.6111 (0.0292)
1.4877 (0.0372)
1.6719 (0.0276)
1.8056 (0.0230)
1.5334 (0.0331)
1.4621 (0.0396)

2.3070 (0.3730)
1.9246 (0.0399)
1.5303 (0.0393)
1.4125 (0.0470)
2.5786 (0.1070)
2.1847 (0.0308)
1.6246 (0.0289)
1.4905 (0.0358)
1.9619 (0.1487)
1.9815 (0.0940)
1.8569 (0.0159)
1.6392 (0.0220)

5.9498 (3.0998)
3.6117 (0.5944)
2.3132 (0.0747)
2.0910 (0.0506)
3.4227 (0.4443)
2.9120 (0.1753)
2.3933 (0.0663)
2.0763 (0.0384)
2.5102 (0.0862)
2.7203 (0.1248)
2.1953 (0.0386)
2.1437 (0.0445)

5.9500 (3.0998)
3.6046 (0.5907)
2.3128 (0.0746)
2.0910 (0.0506)
3.8749 (0.5473)
3.0175 (0.1644)
2.0465 (0.0196)
1.7448 (0.0187)
3.1679 (0.2330)
3.8976 (0.5482)
2.3932 (0.0433)
2.0697 (0.0204)

3.2565 (0.5523)
2.3969 (0.0877)
1.7588 (0.0272)
1.6248 (0.0297)
2.3743 (0.0639)
2.1814 (0.0658)
1.8812 (0.0211)
1.6920 (0.0250)
1.9582 (0.0217)
2.1089 (0.0275)
1.7658 (0.0196)
1.7289 (0.0238)

3.2582 (0.5519)
2.3990 (0.0872)
1.7591 (0.0272)
1.6249 (0.0297)
2.9576 (0.1748)
2.5133 (0.0602)
1.8001 (0.0178)
1.5855 (0.0274)
2.5539 (0.1589)
2.9686 (0.3972)
2.0806 (0.0162)
1.8443 (0.0146)

2.6674 (0.3050)
2.1291 (0.0444)
1.6098 (0.0304)
1.4888 (0.0372)
2.0891 (0.0438)
1.9464 (0.0581)
1.7158 (0.0215)
1.5563 (0.0307)
1.7868 (0.0202)
1.9107 (0.0190)
1.6206 (0.0247)
1.5867 (0.0285)

2.6663 (0.3048)
2.1307 (0.0441)
1.6101 (0.0304)
1.4889 (0.0372)
2.6809 (0.1095)
2.3423 (0.0390)
1.7009 (0.0200)
1.5198 (0.0315)
2.2022 (0.0503)
2.3376 (0.1209)
1.9428 (0.0123)
1.7373 (0.0162)

(m,n) r Scheme
T —
1
1T
(40,40) 20 I
v
1
1T
40 1T
v
1
1T
60 1T
v
1
1T
(60,60) 30 m
v
1
1T
60 I
v
1
1T
90 I
v
1
1T
(80,80) 40 I
v
1
1T
80 I
v
1
1T
120 m
1\
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Table 5: The average estimates (MSEs) of 8, = 0.75 under choices of censoring scheme and choices of 7”s.

(m,n) r Scheme MLEs BEs
SE LINEX
T— 1.25 2.5 1.25 2.5 1.25 2.5
I 4.6174 (1.7316) 4.6081 (1.7248) 2.0554 (0.3199) 2.0558 (0.3187) 1.5177 (0.1671) 1.5224 (0.1670)
(40.40) 20 1I 1.6156 (0.1235) 1.5972 (0.1193) 0.8247 (0.0220) 0.8215 (0.0149) 0.7329 (0.0126) 0.7427 (0.0120)
" I 1.0661 (0.0341) 1.0619 (0.0338) 0.6105 (0.0098) 0.6078 (0.0099) 0.5628 (0.0101)  0.5608 (0.0102)
v 0.7528 (0.0145) 0.7506 (0.0145) 0.4292 (0.0143) 0.4286 (0.0143) 0.3961 (0.0160)  0.3956 (0.0161)
I 2.2390 (0.3165) 2.1998 (0.2338) 1.2779 (0.0589) 1.5929 (0.0853) 1.1255 (0.0388)  1.4916 (0.0674)
40 1I 1.3287 (0.0666) 1.1250 (0.0223) 0.7462 (0.0086) 0.8489 (0.0059) 0.7219 (0.0238) 0.8172 (0.0058)
1T 1.1536 (0.0323) 0.7716 (0.0038) 0.7705 (0.0072) 0.6111 (0.0047) 0.7150 (0.0064) 0.5886 (0.0052)
v 0.8084 (0.0089) 0.4793 (0.0096) 0.5449 (0.0078) 0.3940 (0.0149) 0.5094 (0.0090)  0.3807 (0.0152)
I 1.2043 (0.0376) 1.4608 (0.0733) 0.8144 (0.0078) 1.0684 (0.0593) 0.7570 (0.0066)  0.9967 (0.0501)
6 I 1.2297 (0.0428) 1.6229 (0.1057) 0.8005 (0.0087) 1.1068 (0.0785) 0.7449 (0.0076)  0.9880 (0.0625)
1 0.9462 (0.0151) 1.0011 (0.0133) 0.6382 (0.0064) 0.8241 (0.0042) 0.5953 (0.0070) 0.7989 (0.0047)
v 0.8046 (0.0090) 0.7615 (0.0029) 0.5475 (0.0081) 0.6424 (0.0031) 0.5114 (0.0093) 0.6226 (0.0035)
I 4.2805 (1.3912) 4.2634 (1.3713) 2.4478 (0.3809) 2.4474 (0.3797) 2.0380 (0.2538)  2.0439 (0.2543)
€060 30 I 1.4755 (0.0820) 1.4706 (0.0811) 0.9224 (0.0152) 0.9187 (0.0146) 0.8522 (0.0111)  0.8522 (0.0110)
’ N 1T 0.9808 (0.0183) 0.9785 (0.0183) 0.6616 (0.0062) 0.6601 (0.0062) 0.6195 (0.0064) 0.6182 (0.0065)
v 0.7006 (0.0085) 0.6996 (0.0085) 0.4710 (0.0110) 0.4705 (0.0110) 0.4421 (0.0123) 0.4416 (0.0123)
I 2.0834 (0.2273) 2.1344 (0.2062) 1.4555 (0.0749) 1.7220 (0.1044) 1.3264 (0.0563)  1.6528 (0.0909)
6 I 1.2478 (0.0419) 1.0833 (0.0159) 0.8707 (0.0088) 0.8977 (0.0056) 0.8286 (0.0118)  0.8723 (0.0048)
11 1.0938 (0.0219) 0.7379 (0.0024) 0.8349 (0.0066) 0.6270 (0.0035) 0.7897 (0.0055)  0.6106 (0.0038)
v 0.7956 (0.0056) 0.4640 (0.0095) 0.6059 (0.0052) 0.4027 (0.0132) 0.5761 (0.0059) 0.3953 (0.0137)
I 1.1518 (0.0265) 1.4233 (0.0583) 0.8793 (0.0078) 1.1789 (0.0632) 0.8332 (0.0063) 1.1307 (0.0548)
% I 1.1850 (0.0307) 1.5845 (0.0863) 0.8798 (0.0082) 1.2445 (0.0851) 0.8342 (0.0067)  1.1499 (0.0776)
11 0.9194 (0.0099) 0.9901 (0.0095) 0.6989 (0.0043) 0.8732 (0.0042) 0.6632 (0.0045)  0.8526 (0.0036)
v 0.7775 (0.0053) 0.7566 (0.0019) 0.5937 (0.0054) 0.6754 (0.0020) 0.5648 (0.0062) 0.6605 (0.0022)
I 4.0569 (1.1824) 4.0574 (1.1825) 2.7533 (0.4747) 2.7551 (0.4748) 2.4524 (0.3592) 2.4517 (0.3590)
G080 40 I 1.4510 (0.0698) 1.4479 (0.0692) 1.0095 (0.0170) 1.0093 (0.0169) 0.9576 (0.0154)  0.9524 (0.0131)
- 11 0.9268 (0.0113) 0.9266 (0.0113) 0.6885 (0.0045) 0.6885 (0.0045) 0.6539 (0.0047)  0.6539 (0.0047)
v 0.6609 (0.0062) 0.6607 (0.0062 0.4865 (0.0094) 0.4864 (0.0094) 0.4622 (0.0105)  0.4621 (0.0105)
I 1.9535 (0.1754) 2.0590 (0.1805) 1.5131 (0.0736) 1.7657 (0.1108) 1.4328 (0.0677) 1.7168 (0.1011)
30 I 1.2114 (0.0333) 1.0705 (0.0136) 0.9320 (0.0098) 0.9294 (0.00590 0.8923 (0.0097) 0.9109 (0.0052)
11 1.0851 (0.0184) 0.7301 (0.0017) 0.8791 (0.0066) 0.6490 (0.0025) 0.8418 (0.0055)  0.6363 (0.0027)
v 0.7616 (0.0044) 0.4504 (0.0099) 0.6206 (0.0044) 0.4051 (0.0128) 0.5971 (0.0050)  0.3994 (0.0132)
I 1.1238 (0.0216) 1.4039 (0.0528) 0.9121 (0.0077) 1.2103 (0.0343) 0.8751 (0.0064) 1.1846 (0.0363)
120 I 1.1397 (0.0238) 1.5751 (0.0814) 0.9155 (0.0084) 1.3222 (0.0722) 0.8771 (0.0070) 1.2259 (0.0664)
I 0.8966 (0.0072) 0.9929 (0.0092) 0.7293 (0.0034) 0.9013 (0.0048) 0.7002 (0.0034) 0.8835 (0.0043)
v 0.7842 (0.0045) 0.7625 (0.0015) 0.6347 (0.0041) 0.6974 (0.0015) 0.6102 (0.0045)  0.6856 (0.0016)
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Table 6: The ACLs (CPs) for 95% asymptotic/credible intervals of (a1, &) = (1.5,2) under choices of censoring scheme and 7' = 1.25.

(m,n) r Scheme ACI BCI
SE LINEX
T— 65. (AXZ 65. (AXZ 65. (AXZ
1 14.438 (93.42) 18.012 (93.65) 5.8231 (95.06) 8.2673 (95.05) 3.3760 (95.05) 3.6260 (95.24)
(4040) 20 1T 11.426 (94.04) 10.647 (95.13) 2.6454 (96.06) 3.2040 (95.44) 2.0579 (96.53) 2.5538 (96.64)
- I 9.7153 (94.79) 6.5635 (95.68) 1.9810 (96.06) 2.1328 (95.57) 1.4295 (96.48) 1.7035 (95.17)
v 5.8473 (96.60) 5.1329 (95.90) 1.3087 (95.80) 1.6218 (96.10) 1.0371 (96.30) 1.3440 (96.30)
I 6.8985 (95.69) 10.725 (95.67) 2.5668 (97.64) 2.9812 (96.59) 2.4233 (95.07) 2.7244 (95.06)
40 1T 4.5036 (95.80) 7.2539 (94.89) 1.7690 (96.38) 2.2730 (97.51) 1.9362 (95.03) 2.3427 (97.20)
1T 3.9306 (95.49) 5.1729 (95.10) 1.5556 (95.60) 1.7124 (96.00) 1.1902 (97.10) 1.4064 (95.50)
v 3.6908 (96.30) 4.5644 (96.90) 1.4482 (95.80) 1.5689 (95.80) 1.2096 (97.20) 1.2551 (95.60)
I 4.3012 (96.40) 5.5221 (95.50) 1.4702 (96.60) 1.7244 (96.10) 1.2363 (96.10) 1.4140 (96.10)
60 I 47126 (95.90) 6.5078 (96.00) 1.6332 (95.80) 2.0033 (95.70) 1.3145 (96.80) 1.6642 (96.40)
11T 3.9378 (97.09) 4.9413 (96.99) 1.4678 (96.19) 1.5682 (95.49) 1.2045 (96.19) 1.2540 (95.99)
v 3.0429 (94.29) 4.0505 (96.10) 1.2665 (96.89) 1.4845 (96.49) 1.0234 (96.69) 1.1945 (96.70)
I 12.352 (94.16) 16.823 (94.50) 5.5002 (95.97) 6.7768 (95.42) 44111 (95.03) 4.6362 (95.10)
50 30 I 9.9024 (94.92) 7.8106 (94.77) 2.4597 (95.34) 2.8735 (95.65) 1.9127 (95.67) 2.3135 (95.77)
’ 1T 7.2141 (94.98) 5.0425 (97.19) 1.8333 (95.79) 1.8412 (95.69) 1.4829 (95.79) 1.5913 (95.59)
v 4.2870 (96.50) 3.4895 (95.40) 1.3822 (95.80) 1.5736 (96.60) 1.1320 (96.30) 1.2958 (95.90)
I 47416 (94.79) 8.2779 (95.29) 2.4267 (97.24) 3.1117 (97.12) 2.4937 (98.17) 3.0415 (98.25)
60 I 3.1733 (95.90) 4.9734 (96.20) 1.5987 (96.82) 2.0923 (96.88) 1.7307 (98.50) 2.2050 (98.69)
11 2.8911 (95.60) 3.5952 (95.90) 1.4769 (95.40) 1.6560 (95.90) 1.2171 (96.00) 1.3852 (96.30)
v 2.4787 (95.80) 2.7092 (94.60) 1.3142 (96.20) 1.5969 (96.10) 1.1321 (96.20) 1.2804 (95.30)
1 2.9203 (94.90) 4.2076 (96.40) 1.4513 (95.50) 1.8004 (96.20) 1.2598 (95.60) 1.4323 (96.40)
00 I 2.8299 (95.50) 4.8202 (95.60) 1.3956 (96.00) 2.0284 (95.40) 1.2379 (96.00) 1.5840 (95.70)
i 2.7245 (96.10) 3.0553 (95.50) 1.3565 (95.80) 1.4864 (95.80) 1.1314 (96.50) 1.2197 (96.70)
v 2.2858 (95.30) 2.9154 (96.80) 1.2452 (95.60) 1.4080 (95.20) 1.0535 (95.80) 1.1771 (95.20)
1 10.298 (95.61) 13.645 (94.69) 5.2702 (95.60) 6.1253 (95.19) 4.3994 (96.13) 4.4551 (95.43)
@030 40 I 7.9786 (96.30) 7.1743 (96.90) 2.3969 (95.99) 2.7218 (95.59) 1.9240 (96.10) 2.1354 (95.49)
- I 5.6681 (95.10) 3.1591 (96.10) 1.8287 (96.20) 1.6200 (95.40) 1.5304 (95.90) 1.3960 (95.70)
v 2.6490 (94.89) 2.7669 (95.80) 1.3028 (96.90) 1.4580 (95.70) 1.0888 (96.50) 1.2706 (95.70)
1 3.3382 (94.89) 6.0994 (96.10) 2.1296 (96.80) 2.5145 (95.76) 2.0846 (98.19) 2.6707 (98.29)
30 1T 2.2739 (95.69) 3.7653 (95.59) 1.4537 (96.20) 1.9686 (95.99) 1.4313 (97.59) 1.7787 (98.09)
i 2.3135 (95.90) 2.7974 (95.40) 1.3654 (96.60) 1.6039 (96.00) 1.1372 (96.00) 1.3392 (96.30)
v 1.8584 (95.70) 2.4133 (95.30) 1.1730 (95.90) 1.4012 (95.50) 1.0154 (95.70) 1.1979 (95.50)
1 2.4176 (95.70) 3.0429 (96.10) 1.3982 (95.70) 1.7150 (95.90) 1.2242 (95.90) 1.4348 (96.30)
120 1T 2.1086 (95.60) 3.3488 (95.30) 1.3262 (96.30) 1.8685 (96.50) 1.1854 (96.00) 1.5751 (96.30)
1T 1.8812 (95.10) 2.3139 (96.20) 1.1630 (96.80) 1.3974 (97.30) 0.9697 (96.20) 1.1704 (96.90)
v 1.9423 (95.90) 2.5546 (94.60) 1.1924 (96.60) 1.4821 (96.30) 1.0236 (96.80) 1.2649 (96.20)
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Table 7: The ACLs (CPs) for 95% asymptotic/credible intervals of (i, 0n) = (1.5,2) under choices of censoring scheme and 7' = 2.5.

(m,n) r Scheme ACIT BCI
SE LINEX
T— d] dg d] dg d] dg
I 14.452 (93.53) 17.998 (93.78) 5.8231 (95.09) 8.2673 (95.08) 3.3760 (95.06) 3.6605 (95.04)
(40.40) 20 I 11.472 (94.14) 10.550 (95.23) 2.5707 (95.63) 3.1166 (95.12) 1.8757 (96.04) 2.2864 (95.45)
" I 9.7409 (94.89) 6.5474 (95.78) 1.9966 (96.17) 2.1268 (95.67) 1.4368 (96.48) 1.6766 (95.37)
v 5.8491 (96.60) 5.1259 (96.00) 1.3087 (95.80) 1.6186 (96.10) 1.0398 (96.20) 1.3440 (96.20)
I 8.5341 (95.69) 10.210 (95.99) 2.8130 (95.47) 3.2964 (95.58) 2.3379 (95.99) 2.5573 (96.09)
40 I 8.5628 (95.58) 5.8244 (95.40) 2.4020 (95.70) 2.4361 (95.60) 1.7977 (95.70) 2.0227 (95.90)
1T 9.0022 (95.78) 3.0287 (95.60) 2.1711 (96.29) 1.7843 (96.20) 1.6932 (97.19) 1.4852 (96.20)
v 8.7531 (95.57) 2.3546 (95.20) 1.9443 (96.29) 1.4991 (95.49) 1.4614 (95.59) 1.2877 (95.50)
I 3.8664 (96.80) 7.4003 (96.80) 2.6770 (95.12) 2.6005 (98.72) 2.3141 (95.01) 27234 (95.11)
6 I 3.7607 (96.30) 9.0855 (95.39) 3.3137 (95.09) 3.7368 (95.14) 2.4784 (95.04) 3.1240 (95.01)
I 2.9028 (96.30) 3.8276 (96.50) 1.5148 (95.78) 1.7447 (96.06) 1.2854 (96.40) 1.4360 (96.39)
v 2.5919 (96.70) 2.4350 (95.30) 1.3619 (96.70) 1.4562 (95.80) 1.1463 (96.00) 1.2031 (95.90)
I 12.353 (94.16) 16.788 (94.51) 5.4627 (96.21) 6.7450 (95.34) 44111 (95.03) 4.5911 (96.56)
(60.60) 30 I 9.9261 (94.82) 7.7334 (94.67) 2.4597 (95.37) 2.8644 (95.88) 1.9012 (95.68) 2.2878 (95.57)
’ N I 7.2169 (94.98) 5.0413 (97.19) 1.8328 (95.79) 1.8412 (95.69) 1.4829 (95.79) 1.5913 (95.59)
v 4.2883 (96.50) 3.4884 (95.40) 1.3917 (95.60) 1.5832 (96.10) 1.1334 (96.20) 1.2994 (95.90)
I 6.2970 (94.30) 8.1885 (95.80) 3.0276 (95.40) 3.5708 (95.60) 2.4795 (95.40) 2.9608 (96.00)
6 I 6.5307 (94.80) 3.6651 (95.60) 2.5906 (95.60) 2.2658 (95.30) 1.8847 (95.70) 1.9357 (95.80)
11 6.1709 (95.19) 2.2018 (95.50) 2.1995 (96.19) 1.4846 (96.00) 1.7614 (95.69) 1.3307 (97.40)
v 6.7700 (96.09) 1.5995 (95.69) 2.0876 (95.59) 1.3100 (95.89) 1.5873 (95.99) 1.1660 (96.29)
I 2.5627 (95.90) 4.8808 (96.10) 2.3099 (98.38) 2.4926 (97.55) 2.3720 (95.01) 3.0870 (95.04)
90 11 2.5294 (95.10) 6.2291 (95.00) 2.9835 (95.04) 3.2286 (98.69) 2.4965 (95.06) 3.3797 (95.09)
1 1.9805 (96.10) 2.5481 (95.10) 1.3785 (96.19) 1.7055 (95.79) 1.2295 (95.80) 1.4416 (95.60)
v 1.7146 (95.80) 1.9043 (95.60) 1.1675 (96.60) 1.3291 (96.10) 1.0052 (96.70) 1.1156 (95.90)
I 10.298 (95.61) 13.644 (94.69) 5.2702 (95.60) 5.918395.19) 4.3856 (95.73) 4.4551 (95.43)
(80.80) 40 I 7.9847 (96.30) 7.1591 (96.90) 2.3886 (95.70) 2.7018 95.70) 1.9097 (96.10) 2.1244 (95.40)
- I 5.6682 (95.10) 3.1564 (96.10) 1.8287 (96.20) 1.6307 95.50) 1.5304 (95.90) 1.3960 (95.70)
v 2.6484 (94.89) 2.7669 (95.80) 1.3028 (96.90) 1.4580 95.70) 1.0888 (96.50) 1.2706 (95.70)
I 4.2338 (95.40) 5.4877 (95.70) 2.5967 (95.50) 3.2139 95.70) 2.2465 (95.50) 2.7500 (95.40)
30 I 4.6518 (96.20) 3.0605 (96.40) 2.3451 (96.70) 2.1942 95.50) 1.9567 (96.30) 1.9319 (96.00)
1 5.1400 (96.00) 1.7256 (95.80) 2.1570 (97.30) 1.3704 96.20) 1.8192 (95.30) 1.2527 (96.00)
v 4.7588 (94.60) 1.3695 (95.60) 2.0635 (95.90) 1.1673 96.50) 1.6962 (95.40) 1.1064 (95.90)
I 2.1978 (94.90) 3.8554 (95.50) 1.7728 (97.39) 2.3814 96.73) 2.4919 (95.06) 3.1413 (95.84)
120 1I 1.8661 (95.40) 5.3787 (95.20) 2.0252 (98.38) 2.6756 96.87) 2.3997 (95.04) 3.6684 (95.02)
I 1.5668 (95.80) 2.0708 (96.20) 1.1469 (96.30) 1.5150 97.09) 1.0183 (96.50) 1.3353 (97.30)
v 1.3629 (95.40) 1.7484 (95.80) 1.0286 (95.50) 1.2679 95.80) 0.9438 (95.80) 1.1069 (95.90)
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Table 8: The ACLs (CPs) for 95% asymptotic/credible intervals of (6;,6,) = (0.5,0.75) under choices of censoring scheme and T = 1.25.
(m,n) r Scheme ACI BCI
SE LINEX
T— 65. (AXZ 65. (AXZ 65. (AXZ
1 4.6544 (95.58) 6.0238 (95.54) 3.9138 (95.09) 4.4374 (95.09) 2.9743 (95.26) 3.2763 (95.01)
(40.40) 20 11 4.1204 (95.75) 2.7325 (95.86) 1.6748 (96.17) 1.4659 (96.07) 1.5338 (95.04) 1.3553 (95.93)
- I 3.9903 (95.17) 1.9242 (95.78) 1.5739 (95.67) 0.9968 (96.37) 1.3841 (95.87) 0.9182 (95.88)
v 1.8715 (95.40) 1.4939 (94.80) 0.7574 (95.90) 0.7087 (96.00) 0.6808 (95.70) 0.6575 (96.20)
I 2.5515 (95.29) 3.8175 (95.49) 1.7952 (95.07) 1.7950 (98.19) 1.6868 (95.10) 1.9495 (95.05)
40 11 1.4087 (96.30) 2.2565 (95.10) 0.9333 (96.31) 1.0969 (97.74) 0.9603 (95.05) 1.2569 (95.10)
1T 1.3794 (96.20) 1.5715 (96.50) 0.8287 (95.90) 1.0056 (96.80) 0.7842 (96.50) 0.9430 (96.10)
v 1.1630 (97.10) 1.1462 (96.90) 0.6585 (95.60) 0.7272 (96.20) 0.6243 (95.50) 0.6773 (96.60)
I 1.3027 (97.20) 1.6154 (96.10) 0.8677 (96.80) 1.0062 (96.20) 0.8049 (96.50) 0.9463 (96.20)
60 I 1.3265 (95.80) 1.7457 (96.10) 0.8464 (97.10) 1.1083 (96.60) 0.7929 (97.20) 1.0390 (96.60)
1T 1.1864 (96.39) 1.3172 (96.19) 0.7536 (96.69) 0.8442 (95.79) 0.6858 (97.60) 0.7981 (96.09)
v 1.0307 (96.80) 1.1555 (95.80) 0.5850 (96.29) 0.7498 (96.49) 0.5521 (96.60) 0.7136 (96.80)
I 3.8621 (95.07) 4.7186 (95.70) 3.5036 (97.14) 3.4671 (96.82) 3.6175 (97.33) 3.5740 (95.67)
50 30 I 3.3217 (95.48) 2.1250 (95.680 1.5125 (96.36) 1.2510 (96.06) 1.3551 (96.48) 1.1403 (96.18)
’ 1T 2.8350 (95.49) 1.4136 (96.09) 1.4326 (96.29) 0.8677 (95.39) 1.2977 (95.69) 0.8095 (95.39)
v 1.4615 (95.80) 1.1247 (95.90) 0.7555 (97.30) 0.6834 (97.20) 0.6879 (96.40) 0.6316 (96.60)
I 1.9831 (96.19) 2.7595 (95.79) 1.4875 (97.03) 1.7582 (96.58) 1.5920 (97.88) 1.9984 (97.95)
60 I 1.1011 (96.20) 1.6231 (95.90) 0.8022 (97.68) 0.9854 (96.36) 0.8497 (96.58) 1.0732 (97.17)
11 1.0236 (96.70) 1.2471 (96.90) 0.7617 (96.80) 0.9066 (97.30) 0.7387 (96.60) 0.8619 (97.50)
v 0.7927 (96.00) 0.9092 (96.50) 0.6009 (95.80) 0.6678 (97.00) 0.5751 (97.00) 0.6404 (97.10)
1 1.0600 (96.40) 1.2651 (96.80) 0.7819 (96.20) 0.9424 (96.60) 0.7514 (95.80) 0.9003 (96.50)
00 I 0.9999 (96.50) 1.3468 (96.30) 0.7374 (96.000 0.9701 (97.90) 0.6995 (96.20) 0.9448 (97.90)
11 0.9208 (96.10) 1.0436 (96.60) 0.6795 (96.60) 0.7500 (95.90) 0.6454 (98.10) 0.7187 (96.30)
v 0.7570 (96.00) 0.8978 (96.40) 0.5605 (96.90) 0.6702 (96.00) 0.5352 (96.40) 0.6352 (96.30)
1 3.4331 (96.14) 3.6966 (95.75) 3.5068 (97.04) 3.2599 (96.42) 3.6059 (96.04) 3.1669 (96.65)
@030 40 I 2.5482 (96.00) 1.7808 (96.10) 1.4283 (97.49) 1.1963 (95.49) 1.3429 (97.00) 1.1235 (96.00)
- I 2.3096 (95.70) 1.1203 (96.70) 1.3574 (96.70) 0.7916 (95.50) 1.2705 (96.60) 0.7505 (96.50)
v 1.1737 (96.70) 0.9122 (95.70) 0.6690 (97.00) 0.6017 (96.40) 0.6265 (97.00) 0.5696 (97.00)
1 1.6939 (95.70) 2.1668 (96.70) 1.4158 (95.98) 1.4405 (96.80) 1.4045 (97.09) 1.5167 (98.39)
30 11 0.8962 (96.69) 1.3612 (95.99) 0.7148 (96.21) 0.9742 (95.99) 0.7430 (97.79) 1.0001 (96.89)
i 0.9134 (96.40) 1.0509 (96.60) 0.7120 (96.90) 0.8621 (97.40) 0.6879 (96.30) 0.8219 (96.40)
v 0.6659 (96.30) 0.8173 (96.10) 0.5318 (97.50) 0.6322 (96.60) 0.5082 (96.00) 0.6160 (96.10)
1 0.9443 (97.30) 1.0853 (96.40) 0.7422 (97.00) 0.8415 (96.40) 0.7249 (96.70) 0.8272 (96.50)
120 11 0.8132 (96.10) 1.1531 (95.90) 0.6614 (97.40) 0.8861 (96.00) 0.6350 (96.90) 0.8606 (96.10)
1T 0.7376 (95.90) 0.8783 (96.90) 0.5835 (96.30) 0.7021 (96.60) 0.5619 (96.30) 0.6763 (97.20)
v 0.6632 (96.10) 0.8228 (95.20) 0.5208 (97.00) 0.6376 (96.10) 0.5000 (97.10) 0.6265 (97.90)
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Table 9: The ACLs (CPs) for 95% asymptotic/credible intervals of (6;,6,) = (0.5,0.75) under choices of censoring scheme and 7" = 2.5.

(m,n) r Scheme ACIT BCI
SE LINEX
T — d] dg d] dg d] dg
I 4.6062 (95.47) 6.0289 (95.44) 3.8875 (95.02) 4.4277 (95.01) 2.9743 (95.28) 3.2763 (95.02)
40,40 20 I 4.0371 (95.75) 2.7030 (95.96) 1.6233 (95.94) 1.3644 (95.63) 1.4275 (95.45) 1.2660 (95.96)
(40,40 1T 3.9338 (95.07) 1.9259 (95.78) 1.5493 (96.57) 0.9968 (96.37) 1.3519 (96.78) 0.9182 (95.88)
v 1.8691 (95.40) 1.4947 (94.80) 0.7424 (96.00) 0.7087 (96.00) 0.6688 (95.60) 0.6575 (96.20)
I 1.8036 (95.20) 1.9053 (96.00) 1.2827 (95.38) 1.3242 (96.88) 1.1964 (96.90) 1.2551 (96.89)
40 I 1.9085 (95.60) 1.1234 (95.60) 1.0678 (97.30) 0.8396 (96.00) 0.9783 (96.30) 0.8101 (96.20)
I 2.0151 (96.30) 0.7613 (95.60) 1.0732 (95.89) 0.6180 (96.69) 0.9932 (96.80) 0.6107 (96.60)
v 1.9823 (95.90) 0.5850 (94.99) 0.9198 (97.19) 0.4835 (96.99) 0.8544 (96.80) 0.4628 (96.30)
I 1.1849 (95.50) 1.8715 (95.40) 1.3131 (95.09) 1.1026 (98.31) 1.3230 (95.06) 1.8143 (95.03)
60 I 1.1152 (94.30) 2.1295 (95.60) 1.4020 (95.05) 1.5392 (95.14) 1.5285 (95.06) 1.9497 (95.09)
it 1.0295 (94.20) 1.0362 (96.30) 0.8420 (95.48) 0.7393 (96.27) 0.8125 (95.60) 0.7345 (96.70)
v 1.0034 (95.10) 0.6632 (96.20) 0.7683 (95.20) 0.5424 (95.70) 0.7325 (95.50) 0.5200 (95.80)
I 3.8306 (94.87) 4.5879 (95.39) 3.5036 (97.16) 3.4197 (96.73) 3.5135 (96.93) 3.5740 (95.68)
60.60) 30 I 3.2865 (95.48) 2.1194 (95.78) 1.4726 (96.38) 1.2435 (96.08) 1.3282 (96.88) 1.1371 (95.98)
? - it 2.7983 (95.49) 1.4187 (96.09) 1.4012 (96.59) 0.8677 (95.39) 1.2598 (95.69) 0.8095 (95.39)
v 1.4562 (95.70) 1.1256 (95.90) 0.7431 (97.20) 0.6834 (97.20) 0.6728 (96.50) 0.6316 (96.60)
I 1.5154 (95.90) 1.4945 (95.90) 1.1891 (96.70) 1.1699 (96.30) 1.1294 (96.50) 1.1596 (96.00)
60 I 1.4220 (96.00) 0.8601 (95.80) 0.9644 (95.90) 0.7099 (97.10) 0.9013 (96.20) 0.7026 (96.90)
111 1.4635 (96.50) 0.6055 (96.60) 0.9231 (96.99) 0.5158 (97.40) 0.8766 (96.79) 0.5059 (97.10)
v 1.4592 (95.69) 0.4450 (96.09) 0.8800 (95.69) 0.4076 (97.19) 0.8248 (96.29) 0.3957 (96.59)
I 0.9370 (95.60) 1.4137 (96.10) 1.2666 (95.08) 0.9127 (96.98) 1.3248 (95.04) 1.7607 (95.09)
90 I 0.8888 (95.40) 1.6003 (95.10) 1.4191 (95.05) 1.3578 (97.52) 1.3080 (95.08) 1.9958 (95.11)
11T 0.7075 (96.20) 0.7531 (96.10) 0.5801 (95.79) 0.6163 (96.89) 0.5784 (95.70) 0.6020 (97.10)
v 0.6516 (98.00) 0.5415 (96.90) 0.4266 (96.50) 0.4658 (97.20) 0.4196 (96.70) 0.4581 (97.70)
I 3.4353 (96.14) 3.6926 (95.75) 3.5068 (97.04) 3.2161 (96.32) 3.5782 (96.04) 3.1669 (96.66)
30.80 20 I 2.5325 (96.00) 1.7775 (96.10) 1.4226 (97.50) 1.1920 (95.50) 1.3248 (96.20) 1.1211 (96.10)
(80,80) 111 2.3053 (95.70) 1.1200 (96.70) 1.3508 (96.80) 0.7916 (95.50) 1.2644 (96.80) 0.7505 (96.50)
v 1.1716 (96.70) 0.9131 (95.70) 0.6668 (96.80) 0.6017 (96.40) 0.6203 (96.90) 0.5703 (96.30)
I 1.1901 (96.40) 1.1898 (96.00) 1.0734 (96.70) 1.0585 (96.10) 1.0666 (96.60) 1.0621 (96.10)
30 I 1.1989 (96.40) 0.7142 (96.10) 0.8979 (95.60) 0.6347 (96.40) 0.8719 (96.90) 0.6188 (96.50)
11T 1.2544 (95.60) 0.5119 (96.20) 0.8642 (96.70) 0.4656 (97.10) 0.8455 (95.60) 0.4621 (97.20)
v 1.2383 (96.30) 0.3804 (96.10) 0.7953 (96.70) 0.3750 (96.30) 0.7567 (95.90) 0.3706 (97.60)
I 0.7954 (96.40) 1.2428 (96.00) 1.0110 (96.63) 0.8357 (96.99) 1.1374 (97.08) 1.4225 (97.37)
120 I 0.6800 (96.30) 1.4336 (95.10) 1.1655 (95.01) 1.0051 (96.70) 1.1313 (95.04) 1.7123 (95.07)
I 0.5866 (97.20) 0.7128 (96.40) 0.4803 (96.30) 0.6242 (96.40) 0.4721 (96.10) 0.6088 (96.70)
v 0.4830 (98.40) 0.4838 (96.70) 0.3613 (96.50) 0.4166 (97.50) 0.3548 (96.70) 0.4113 (97.40)
Table 10: Failure times of ball bearings divided into two samples.
Data: X
17.88, 28.92, 28.92, 33.00, 41.52, 51.84, 51.96, 68.64, 84.12, 93.12, 98.64,
105.12, 105.84
Data: Y
42.12,45.60, 48.80, 54.12, 55.56, 67.80, 68.88, 127.92, 128.04, 173.40
Table 11: The MLEs and fitting K-S of GE under ball bearings data.
Data  Parameter MLE K-S
Statistic ~ p-value
X o 3.9201 0.3072 0.1718
0, 0.0355
Y o 5.0678 0.2255 0.5045
6, 0.0305
Table 12: Removal patterns of units in various censoring schemes.
(m,n) r Censoring Schemes
1 11 111
(13,100 10 (13,0°) (17,4 (07,13)
15 (8, 0°14) (1°8, 0%7) (0714, 8)
20 (3,09 (173, 0°17) (0719, 3)
Here, (1*3,0), for example, means that the censoring scheme employed is (1,1,1,0).
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Table 13: MLEs, BEs, and standard errors (St.E) for real data set based on JPHC-I under choices of censoring schemes and 7" = 54.
r Scheme Parameter MLEs BEs
SEL LINEX
Estimate St.E Estimate St.E Estimate St.E
) 12.1870 8.2197 2.2697 0.9892 1.6444 1.0266
10 I 6, 0.0780 0.0237 0.0315 0.0128 0.0313 0.0129
o 4.5168x 102 6.3504x1078 1.5933 0.9747 1.0735 0.9646
6, 0.1954 0.0125 0.0260 0.0144 0.0258 0.0142
) 13.4761 11.3817 1.9726 0.9769 1.3716 0.9984
I 6, 0.0760 0.0269 0.0265 0.0133 0.0263 0.0133
o 2.4995x10*2 5.8164x1077 1.8789 1.0515 1.2586 1.1006
6, 0.1086 0.0067 0.0130 0.0081 0.0130 0.0084
) 4.2806 3.1544 1.5749 0.6995 1.2300 0.7108
I 0, 0.0349 0.0165 0.0177 0.0079 0.0177 0.0079
o 59.4325 2.0289%x107° 2.1577 1.0955 1.5146 1.0679
0, 0.0738 0.0059 0.0150 0.0069 0.0149 0.0070
[ 8.8980 7.0987 2.0594 1.0868 1.4102 1.0239
15 I 0, 0.0662 0.0253 0.0288 0.0145 0.0286 0.0138
[+ 1.5038x 1072 8.4845x 1077 2.4109 1.1306 1.7068 1.1622
0, 0.0956 0.0061 0.0185 0.0077 0.0185 0.0077
[ 12.7369 10.8033 2.0447 0.9539 1.5189 0.9309
I 0, 0.0739 0.0268 0.0280 0.0125 0.0278 0.0125
o 4.4293x10+2 3.3169x 1077 2.1613 1.1576 1.4795 1.1908
6, 0.1223 0.0068 0.0175 0.0080 0.0174 0.0081
[ 4.2721 3.1406 1.5902 0.8290 1.1925 0.8146
I 6, 0.0349 0.0165 0.0174 0.0088 0.0173 0.0091
o 60.7585 1.9871x107° 1.6784 0.9667 1.1391 1.0019
0, 0.0743 0.0059 0.0112 0.0073 0.0111 0.0077
) 5.5655 4.1752 1.7117 0.8161 1.2801 0.7978
20 I 6, 0.0455 0.0194 0.0218 0.0105 0.0217 0.0102
o 1.5282x 102 8.3504x 1077 2.5995 1.1916 1.7993 1.2012
6, 0.0959 0.0061 0.0196 0.0078 0.0195 0.0082
) 6.8097 5.2861 1.7454 0.8323 1.3049 0.9528
I 6, 0.0518 0.0213 0.0220 0.0110 0.0218 0.0116
o 1.5444 %102 8.2643x 1077 2.3534 1.1992 1.5659 1.1720
6, 0.0961 0.0061 0.0176 0.0083 0.0175 0.0084
) 4.2854 3.1590 1.4898 0.8005 1.0713 0.8135
I 0, 0.0350 0.0165 0.0159 0.0097 0.0158 0.0095
o 59.5062 2.0265%x107° 1.7252 0.9815 1.1885 0.9871
0 0.0739 0.0059 0.0111 0.0072 0.0111 0.0071
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Table 14: Associated interval estimates for ML and Bayesian for real data set based on JPHC-I under choices of censoring schemes and 7' = 54.
r Scheme Parameter ACI BCI
SE LINEX
o (7.0924,10.2815) (0.6623,4.2289) (0.6641,4.3641)
10 I 6, (0.0633,0.0927) (0.0093,0.0555) (0.0100,0.0566)
o (6.0036,6.0036) (0.1846,3.3927) (0.1638,3.3260)
6, (0.1876,0.2032) (0.0019,0.0520) (0.0018,0.0508)
o (6.0402,20.9120) (0.4161,3.8361) (0.4283,3.9174)
I 6, (0.0584,0.0936) (0.0023,0.0503) (0.0024,0.0515)
o (8.6013,8.6013) (0.3723,3.9009) (0.3637,4.0865)
6, (0.10423,0.1130) (0.0011,0.0286) (0.0010,0.0292)
o (2.2197,6.3415) (0.3475,2.9210) (0.3380,2.9528)
I 6, (0.0241,0.0458) (0.0034,0.0333) (0.0023,0.0320)
o (5.9391,5.9391) (0.5386,4.3820) (0.5130,4.2956)
6, (0.0700,0.0777) (0.0035,0.0291) (0.0041,0.0300)
oy (4.4982,3.2977) (0.4699,4.2509) (0.4654,4.1038)
15 I 6, (0.0505,0.0819) (0.0013,0.0558) (0.0012,0.0535)
o (1.5325,1.5325) (0.5487,4.7004) (0.6558,4.7921)
6, (0.0917,0.0994) (0.0046,0.0327) (0.0050,0.0329)
oy (6.0410,19.4327) (0.5674,3.9556) (0.5362,3.8695)
I 6, (0.0572,0.0905) (0.0053,0.0518) (0.0041,0.0504)
o (1.0997,1.0997) (0.6376,4.6221) (0.4851,4.6790)
6, (0.1181,0.1265) (0.0040,0.0335) (0.0042,0.0340)
oy (2.2202,6.3239) (0.2957,3.2538) (0.2975,3.2332)
m 6, (0.0241,0.0457) (0.0032,0.0362) (0.0034,0.0373)
o (5.9348,5.9384) (0.2174,3.6421) (0.2317,3.8121)
6, (0.0782,0.0077) (0.0003,0.0255) (0.0002,0.0268)
o (2.9777,8.1532) (0.3754,3.3183) (0.3754,3.2549)
20 I 6, (0.0335,0.0576) (0.0055,0.0414) (0.0054,0.0411)
o (1.5329,1.5329) (0.5792,4.8930) (0.2954,4.7841)
6, (0.0921,0.0997) (0.0028,0.0336) (0.0007,0.0334)
o (3.5334,10.0860) (0.3654,3.3844) (0.3677,3.7708)
I 6, (0.0385,0.0650) (0.0035,0.0442) (0.0037,0.0467)
o (1.5442,1.5442) (0.4235,4.6209) (0.4235,4.4110)
6, (0.0923,0.0999) (0.0017,0.0333) (0.0012,0.0318)
o (2.2215,6.3493) (0.2301,3.1081) (0.2794,3.2139)
1 6, (0.0241,0.0458) (0.0003,0.0336) (0.0002,0.0339)
o (5.9306,5.9306) (0.4149,3.7068) (0.4196,3.7037)
6, (0.0700,0.0778) (0.0007,0.0252) (0.0007,0.0251)
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Fig. 2: MCMC trace plots, histograms, and convergence of o; and 6;, i = 1,2 from Gupta’s and Kundu’s datasets.
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