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Abstract: In this paper, the heat transfer mechanism to the non-Newtonian micropolar slip fluid flow over a stretching sheet

in the presence of the melting heat transfer with heat generation(absorption) have been studied. With appropriate dimensionless

transformations, the boundary layer equations governing the physical problem are reduced to a system of non-linear ordinary differential

equations valid in the melting regime. Solutions of the system are obtained by employing the Chebyshev spectral method. Numerical

solutions are obtained for different values of the material parameter, slip parameter, heat generation(absorption) parameter, local Eckret

number, melting parameter, microrotation parameter and thermal conductivity parameter. From this solutions we find that, the velocity

increases with the increase of the material parameter, local Eckret number and melting parameter the opposite is true as slip parameter

and heat generation(absorption) parameter. Also, the angular velocity increases with the increase of heat generation(absorption)

parameter and microrotation parameter, while it decreases as the material parameter, slip parameter and local Eckret number. The

temperature increases as the material parameter increases but it decreases as slip parameter, heat generation(absorption) parameter,

local Eckret number, melting parameter and thermal conductivity parameter. Finally, the values of the surface shear stress, the wall

couple stress and the local Nusselt number are introduced tabularly.

Keywords: Melting effect; Micropolar fluid; Heat generation (absorption), Slip velocity, Variable thermal conductivity.

Nomenclature
B0 strength of a uniform magnetic field
cp specific heat at constant pressure
cs heat capacity of the solid surface
C fx local skin-friction coefficient
Ec local Eckret number
M∗ magnetic parameter
f dimensionless velocity
G micro-rotation parameter
G1 micro-rotation constant
h dimensionless microrotation
k gyro-viscosity
K material parameter
k1 permeability
M melting parameter
Mx dimensionless wall couple stress
m0 boundary parameter
mw wall couple stress
N dimensional component of microrotation vector

normal to the X −Y plane

Nux local Nusselt number
Pr Prandtl number
Q0 heat generation or absorption constant
qw heat transfer from the plate
Rex local Reynolds number.
T fluid temperature
T0 solid temperature
Tm temperature of the melting surface
T∞ free stream condition
u,v dimensional components of velocities along

and perpendicular to the plate, respectively
x,y dimensional distances along and perpendicular to

the plate, respectively
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Greek symbols
α slip parameter
γ heat generation or absorption parameter
θ dimensionless temperature
κ∞ thermal conductivity of the ambient fluid
λ latent heat fluid
λ ∗ the slip coefficient
µ dynamic viscosity
ρ fluid density
τw surface shear stress
σ electrical conductivity,
ε thermal conductivity parameter

Superscripts

′ differentiation with respect to η

1 Introduction

In 1964, The basis of the theory of a novel class of
non-Newtonian fluids which called as a continuum theory
of microfluids have been given by Eringen [1]. This class
of fluids takes into accounts the local motions and
deformations of the primitive elements of fluids.
According to the assumptions of this theory, microfluids
sometimes known as the micromorphic or microstructure
theory. On the other hand, he proved that the micropolar
fluids are special case of microfluids. Also, he defined this
type of fluid as the fluids which contain molecular
constituents whose size is not negligible when compared
with the geometrical characteristic length. Eringen [2]
expanded the micropolar fluids theory which takes into
account the local motions and deformations of the
primitive elements of fluids by taking into consideration
the influence of microrotation of these constituents. This
theory may be used to provide an explanation for the flow
of polymeric fluids, colloidal fluids, liquid crystals,
animal blood and the equations governing the flow of
micropolar fluid involve the microrotation vector and the
gyration parameter in addition to the classical velocity
vector field. After that, Eringen [3] has generalized the
micropolar fluid theory to take into consideration the
thermal impacts, which is scientifically called the theory
of thermomicrofluids. Based on the pioneering work of
[3], many studies have been carried out in the past to
analyze the characteristics of the boundary layer flow of a
non-Newtonian micropolar fluid under various boundary
conditions [4-6]. Another advantage for the micropolar
fluids is that it can be more suitable in modeling the body
fluids and the cerebro-spinal fluid. Powel [7] has shown
that the fluid flowing in the brain can be modeled
mathematically as a non-Newtonian micropolar fluid. The
number of published papers in the field of micropolar
fluid presently exceeds several hundred papers. As
instance, Takhar et al. [8] analyzed the viscous dissipation
in a steady, incompressible micropolar boundary layer

flow over a stretching sheet. Bhargava et al. [9] derived a
similarity solution for the mixed convection flow of a
continuously moving flat plate placed in a parallel moving
stream of a micropolar fluid. So far, there have been many
studies focusing on the non-Newtonian models
especially; the micropolar fluids model [10-13]. It is
known that MHD flows have received considerable
attention because of their practical applications in power
generation, geophysics and astrophysics [14]. On the
other hand the significance of slip velocity phenomenon
for the boundary layer thickness control in the field of
aerodynamics and space science is well recognized [15].

The technological and engineering applications of the
flow of non-Newtonian thermo micro-polar fluids was the
motivation for a an immense number of recent work. So,
some of recent researches regarding this important topic
under different physical situation such as melting
phenomenon [16], chemical reaction effect [17] and Soret
and Dufour impact [18] are discussed. Hence it is of
interest to make an investigation in order to analyze the
influence of the viscous dissipation, the heat generation
and the slip velocity on the characteristics of an
electrically conducting non-Newtonian micropolar fluid
flow with melting phenomenon. Numerical solutions of
the proposed problem are obtained by using the
Chebyshev spectral method for the variable thermal
conductivity that is proportional linearly to the
temperature. The results are presented for a range of
values of all material parameters of the fluid.

2 Formulation of the problem

We are consider the flow of an incompressible micropolar
fluid towards a horizontal plate. It is assumed that the
plate constitutes the interface between the liquid phase
and the solid phase during melting inside the porous
matrix at the steady state. The x−axis being along the
plate and the y− axis normal to it respectively. The plate
is at constant temperature Tm at which the material of the
porous matrix melts. The liquid phase temperature
T∞(> Tm) and the temperature of the solid far from the
interface in T0(< Tm). The flow is steady, Laminar and
two-dimensional. Under the usual boundary-layer and the
Boussinesq approximations , the governing equations
taking in the presence of heat generation(absorption) at
the energy equation for a micropolar fluid, which can be
written as:

∂u

∂x
+

∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= (

µ + k

ρ
)

∂ 2u

∂y2
+

k

ρ

∂N

∂y
−

σB2
0

ρ
u, (2)

G1
∂ 2N

∂y2
− (2N+

∂u

∂y
) = 0, (3)

u ∂T
∂x

+ v ∂T
∂y

= 1
ρcp

∂
∂y
(κ ∂T

∂y
)+ Q0

ρcp
(T −T∞)

c© 2022 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 16, No. 1, 35-44 (2022) / www.naturalspublishing.com/Journals.asp 37

+
1

ρcp

∂u

∂y
[(µ + k)

∂u

∂y
+ kN], (4)

where u and v are the velocity components in the x and y

directions; respectively. N is the component of the
micro-rotation vector normal to the x− y plane, T is the
fluid temperature, µ is the dynamic viscosity, k is the
gyro-viscosity (or vortex viscosity), ρ is the fluid density,
σ is the electrical conductivity,B0 is the strength of a

uniform magnetic field, G1 = γ∗

k
is the microrotation

constant, κ = κ∞(1 + εθ ) is the variable thermal
conductivity of the fluid, ε thermal conductivity
parameter, cp is the specific heat at constant pressure and
Q0 is the heat generation or absorption constant.

We assume that the boundary conditions are the
following:

u = ax+λ ∗[(µ + k) ∂u
∂y

+ kN], N =−m0
∂u
∂y
, T =

Tm, at y = 0,

(5)

u → 0, N → 0, T → T∞, as y → ∞

and

κ(
∂T

∂y
)y=0 = ρ [λ + cs(Tm −T0)]v(x,0), (6)

where m0 (0 ≤ m0 ≤ 1) is the boundary parameter.If
m0 = 0, we obtain N = 0 which is the no-spin condition
i.e. the microelements in a concentrated particle flow
close to the wall are not able to rotate (as stipulated by
Jena and Mathur [19]). The case m0 = 1/2, represents the
weak concentration of microelements. The case
corresponding to m0 = 1 is used for the modelling of
turbulent boundary layer flow (see Peddison and Mc Nitt
[20]), λ ∗ is the slip coefficient, λ is the latent heat fluid
and cs is the heat capacity of the solid surface. Eq.(6)
states that the heat conducted to the melting surface is
equal to the heat of melting plus the sensible heat required
to raise the solid temperature T0 to its melting temperature
Tm (see Epstein and Cho [21] and Bachok et al. [22]).

We introduce the following dimensionless variables :

η = ( a
ν )

1/2y, N = ax( a
ν )

1/2h(η),

u = ax f
′

(η), v =−(aν)1/2 f , (7)

θ (η) = T−Tm
T∞−Tm

.

Through Eq. (7), the continuity equation (1) is
automatically satisfied and Eqs. (2)-(4) will give then:

(1+K) f
′′′

+ f f
′′

− f
′2 +Kh

′

−M∗ f
′

= 0, (8)

Gh
′′

− (2h+ f
′′

) = 0, (9)

1
Pr
(1+ εθ )θ

′′

+ 1
Pr

εθ
′2 + f θ

′

+γ(θ − 1)+Ec[(1+K) f
′′2 +Kh f

′′

] = 0. (10)

The transformed boundary conditions are then given
by:

f
′

= 1+α[(1+K) f
′′

+Kh], Pr f +M(1+ εθ )θ
′

= 0,

h =−m0 f
′′

, θ = 0, at η = 0, (11)

f
′

→ 0, h → 0, θ → 1, as η → ∞,

where primes denote differentiation with respect to η ,

K = k
µ is the material parameter, M∗ =

σB2
0

ρcp
is the

magnetic parameter, α = λ ∗ρ(aν)1/2 is the slip

parameter, Ec =
u2

w

cp(T∞−Tm)
is the local Eckret number,

G = G1a/ν is the microrotation parameter, Pr = µcp/κ∞

is the Prandtl number, γ = Q0
aρcp

is the heat generation

(γ > 0) or absorption (γ < 0) parameter and M is the
dimensionless melting parameter which is defined as

M =
cp(T∞ −Tm)

λ + cs(Tm −T0)
. (12)

The melting parameter is a combination of the two
Stefan numbers c f (T∞ −Tm)/λ and cs(Tm −T0)/λ for the
liquid and solid phases, respectively.

The physical quantities of interest are the local
skin-friction coefficient C fx , the dimensionless wall
couple stress Mx and the local Nusselt number Nux , which
are defined respectively; as:

C fx =
−2τw

ρ(uw)2 ,

Mx =
mw

ρaνuwx2
, (13)

Nux =
xqw

κ(T∞−Tm)
,

where the surface shear stress τw, the wall couple stress
mw and the heat transfer from the plate qw are defined by:

τw = [(µ +K) ∂u
∂y

+KN]y=0, mw = γ∗( ∂N
∂y
)y=0

, qw =−[κ
∂T

∂y
]y=0. (14)

Using the similarity variables (13), we get:

1
2
C fxRe

1/2
x = (1+K(1−m0)) f

′′

(0),

MxRex = KGh
′

(0) (15)

NuxRe
−1/2
x =−θ

′

(0),

where Rex = ( uwx
ν ) is the local Reynolds number.
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3 Method of solution

The system of boundary layer equations (8)-(11) have the
domain 0 ≤ η ≤ η∞, where η∞ is one end of the user
specified computational domain. Using the algebraic
mapping:

χ = 2
η

η∞
− 1,

the unbounded region [0,∞) is mapped into the finite
domain [1,−1], and we can transform the problem
expressed by equations (8)-(11) to the system:

(1+K) f
′′′

(χ)+ (η∞
2
)( f (χ) f

′′

(χ)− f
′2(χ))

+(
η∞

2
)2[Kh

′

(χ)−M∗ f
′

(χ)] = 0, (16)

Gh
′′

(χ)− (2(
η∞

2
)2h(χ)+ f

′′

(χ)) = 0, (17)

1
Pr
(1+ εθ (χ))θ

′′

(χ)+ 1
Pr

εθ
′2(χ)+ (η∞

2
) f (χ)θ

′

(χ)+

(η∞
2
)2γ(θ (χ)− 1)

+Ec((1+K)(
2

η∞
)2 f

′′2(χ)+Kh(χ) f
′′

(χ)) = 0. (18)

The transformed boundary conditions are given by:

Pr f (−1)+M(1+ εθ (−1))( 2
η∞

)θ
′

(−1) = 0, f
′

(−1) =

(η∞
2
)+α(1+K(1−m0))(

2
η∞

) f
′′

(−1), f
′

(1) = 0

h(−1) =−m0(
2

η∞
)2 f

′′

(−1), h(1) = 0 (19)

θ (−1) = 0, θ (1) = 1,

Our technique is accomplished by starting with a
Chebyshev approximation for the highest order

derivatives, f
′′′

, h
′′

and θ
′′

and generating approximations

to the lower order derivatives f
′′

, f
′

, f , h
′

, h, θ
′

and θ as
follows:

Setting f
′′′

= φ(χ), h
′′

=ψ(χ) and θ
′′

= ζ (χ), then by
integration we obtain:

f
′′

(χ) =
∫ χ

−1
φ(χ)dχ +C

f
1 . (20)

f
′

(χ) =

∫ χ

−1

∫ χ

−1
φ(χ)dχdχ +C

f
1 (χ + 1)+C

f
2 . (21)

f (χ) =
∫ χ
−1

∫ χ
−1

∫ χ
−1 φ(χ)dχdχdχ

+C
f
1

(χ + 1)2

2
+C

f
2 (χ + 1)+C

f
3 . (22)

h
′

(χ) =

∫ χ

−1
ψ(χ)dχ +Ch

1 . (23)

h(χ) =

∫ χ

−1

∫ χ

−1
ψ(χ)dχdχ +Ch

1(χ + 1)+Ch
2. (24)

θ
′

(χ) =

∫ χ

−1
ζ (χ)dχ +Cθ

1 . (25)

θ (χ) =

∫ χ

−1

∫ χ

−1
ζ (χ)dχdχ +Cθ

1 (χ + 1)+Cθ
2 . (26)

We obtain, from the boundary condition (19):

C
f
1 = −1

2+α(1+K(1−m0))(
2

η∞
)
(η∞

2
)−

1

2+α(1+K(1−m0))(
2

η∞
)

∫ 1
−1

∫ χ
−1 φ(χ)dχdχ ,

C
f
2 = (η∞

2
)+α(1+K(1−m0))(

2
η∞

)C
f
1 ,

C
f
3 = M

2Pr
( 2

η∞
)
∫ 1
−1

∫ χ
−1 ζ (χ)dχdχ −

M
2Pr

( 2
η∞

),

Ch
1 =−

1
2

∫ 1
−1

∫ χ
−1 ψ(χ)dχ −

1
2
Ch

2 ,

Ch
2 = m0

2+α(1+K(1−m0))(
2

η∞
)
( 2

η∞
)2

∫ 1
−1

∫ χ
−1 φ(χ)dχdχ +

m0

2+α(1+K(1−m0))(
2

η∞
)
( 2

η∞
),

Cθ
1 = 1

2
−

1
2

∫ 1
−1

∫ χ
−1 ζ (χ)dχdχ ,

Cθ
2 = 0.

We can give approximations to equations (20)-(26) as
follows:

fi(χ) = ∑n
j=0 l

f
i jφ j + d

f
i , f

′

i (χ) = ∑n
j=0 l

f 1
i j φ j+

d
f 1
i , f

′′

i (χ) =
n

∑
j=0

l
f 2
i j φ j + d

f 2
i . (27)

hi(χ) =∑n
j=0 lθ

i jψ j+∑n
j=0 lh

i jφ j+dh
i , h

′

i(χ)=∑n
j=0 lθ1

i j ψ j

+
n

∑
j=0

lh1
i j φ j + dh1

i , (28)

θi(χ) =
n

∑
j=0

lθ
i jζ j + dθ

i , θ
′

i (χ) =
n

∑
j=0

lθ1
i j ζ j + dθ1

i , (29)

for all i = 0(1)n, where

lθ
i j = b2

i j −
(χi+1)

2
b2

n j, dθ
i = (χi+1)

2
,

lθ1
i j = bi j −

1
2
b2

n j, dθ1
i = 1

2
,

lh
i j =

m0

2+α(1+K(1−m0))(
2

η∞
)
( 2

η∞
)2(1− (χi+1)

2
)b2

n j, dh
i =

−
m0

2+α(1+K(1−m0))(
2

η∞
)
( 2

η∞
)[ (χi+1)

2
− 1],

lh1
i j =−

m0

2(2+α(1+K(1−m0))(
2

η∞
))
( 2

η∞
)2b2

n j, dh1
i =

−
m0

2(2+α(1+K(1−m0))(
2

η∞
))
( 2

η∞
),
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l
f
i j = b3

i j − ( (χi+1)2

2(2+α(1+K(1−m0))(
2

η∞
))
+

α(1+K(1−m0))(
2

η∞
)(χi+1)

2+α(1+K(1−m0))(
2

η∞
)

)b2
n j, l

f̄
i j =

M
2Pr

( 2
η∞

)b2
n j,

d
f
i =−( (χi+1)2

2(2+α(1+K(1−m0))(
2

η∞
))
+

2+α(1+K(1−m0))(
2

η∞
)(χi+1)

2+α(1+K(1−m0))(
2

η∞
)

− (χi+ 1))(η∞
2
)− M

2Pr
( 2

η∞
),

l
f 1
i j = b2

i j − ( (χi+1)

2+α(1+K(1−m0))(
2

η∞
)
+

α(1+K(1−m0))(
2

η∞
)

2+α(1+K(1−m0))(
2

η∞
)
)b2

n j, l
f̄ 1
i j = 0,

d
f 1
i =

−( (χi+1)

2+α(1+K(1−m0))(
2

η∞
)
+

α(1+K(1−m0))(
2

η∞
)

2+α(1+K(1−m0))(
2

η∞
)
− 1)(η∞

2
),

l
f 2
i j = bi j −

1

2+α(1+K(1−m0))(
2

η∞
)
b2

n j, l
f̄ 2
i j = 0, d

f 2
i =

−1

2+α(1+K(1−m0))(
2

η∞
)
(η∞

2
),

where χi =−cos( iπ
n
) are the Chebyshev points.

b2
i j = (χi − χ j)bi j,

and bi j are the elements of the matrix B, which are given
in Ref. [23].

One can transform the system of equations (16)-(18) to
the following system of nonlinear equations in the highest
derivatives by using equations (27)-(29), into the following
Chebyshev spectral equations:

(1+K)φi +(η∞
2
)[(∑n

j=0 l
f
i jφ j +∑n

j=0 l
f̄
i jζ j +

d
f
i )(∑

n
j=0 l

f 2
i j φ j +∑n

j=0 l
f̄ 2
i j ζ j + d

f 2
i )

−(∑n
j=0 l

f 1
i j φ j +∑n

j=0 l
f̄ 1
i j ζ j + d

f 1
i )2]+

(η∞
2
)2[K(∑n

j=0 lθ1
i j ψ j +∑n

j=0 lh1
i j φ j + dh1

i )

−M∗(
n

∑
j=0

l
f 1
i j φ j +

n

∑
j=0

l
f̄ 1
i j ζ j + d

f 1
i ))] = 0, (30)

Gψi−(2(η∞
2
)2(∑n

j=0 lθ
i jψ j +∑n

j=0 lh
i jφ j +dh

i )+(∑n
j=0 l

f 2
i j φ j

+
n

∑
j=0

l
f̄ 2
i j ζ j + d

f 2
i )) = 0, (31)

1
Pr
(1+ ε(∑n

j=0 lθ
i jζ j + dθ

i ))ζi +
1

Pr
ε(∑n

j=0 lθ
i jζ j + dθ

i )
2 +

(η∞
2
)(∑n

j=0 l
f
i jφ j +∑n

j=0 l
f̄
i jζ j + d

f
i )(∑

n
j=0 lθ1

i j ζ j + dθ1
i )+

(η∞
2
)2γ(ε(∑n

j=0 lθ
i jζ j + dθ

i )− 1)+Ec[(1+

K)( 2
η∞

)2(∑n
j=0 l

f 2
i j φ j +∑n

j=0 l
f̄ 2
i j ζ j + d

f 2
i )2

+K(∑n
j=0 l

f 2
i j φ j +∑n

j=0 l
f̄ 2
i j ζ j + d

f 2
i )(∑n

j=0 lθ
i jψ j +∑n

j=0 lh
i jφ j + dh

i )] = 0.

(32)
This system is then solved using Newton’s iteration

method with n = 12, the computer program was executed
in mathematica 4 running on a PC.

2 4 6 8

Η

0.2

0.4

0.6

0.8

f'

K=0,0.5,1,1.5,2

Fig. 1: Velocity profiles f ′(η) for different values of K with

ε = 0.2,M∗ = 0.1,α = 0.1,G = 2.0,Ec = 0.5,M = 2.0,Pr =
1.0,m0 = 0.5 and γ = 0.2

4 Results and discussion

The investigations of the effect of melting phenomenon
and the slip velocity on the non-Newtonian micropolar
fluid flow and heat transfer along a horizontal stretching
sheet which exposed to a magnetic field carried out in the
preceding sections enable us to come in with the
following results. So, we can show the effects of the
various governing parameters such as the material
parameter, the slip parameter, the heat generation
(absorption) parameter, the local Eckret number, the
melting parameter, the microrotation parameter and
thermal conductivity parameter on the velocity, the
angular velocity and the temperature profiles in Figures
1-16. The effects of the material parameter K on the

velocity profiles f
′

has been illustrated in Fig. 1. It is seen

from this figure that the velocity distribution f
′

through
the boundary layer region increases with the increase of K

away from the surface, while the opposite is observed
along the sheet. Therefore, according to the same figure,
this causes enlargen behavior for the momentum
thickness as K increases.

The effect of the material parameter K on the angular
velocity profiles h is shown in Figure 2. It is observed that
the dimensionless angular velocity decrease as K increase
near the surface and the opposite trend is noted away
from it. On the other hand with higher values of material
parameter K, the values of the angular velocity along the
sheet h(0) tends to be more smaller.

Figure 3 represents the effect of material parameter K

on the dimensionless temperature profiles θ (η) with heat
transfer index. It is evident that within the thermal
boundary layer the heating of the fluid layers takes place
with an increase in material parameter.

Figure 4 shows the distribution of dimensionless
velocity f ′(η) with different values of slip velocity
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2 4 6 8

Η

0.05

0.1

0.15

0.2

0.25

0.3

0.35

h

K=0,0.5,1,1.5,2

Fig. 2: Angular velocity profiles h(η) for different values of K

with ε = 0.2,M∗ = 0.1,α = 0.1,G = 2.0,Ec = 0.5,M = 2.0,Pr =
1.0,m0 = 0.5 and γ = 0.2
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Fig. 3: Temperautre profiles θ (η) for various values of K with

ε = 0.2,M∗ = 0.1,α = 0.1,G = 2.0,Ec = 0.5,M = 2.0,Pr =
1.0,m0 = 0.5 and γ = 0.2

parameter α . The graph shows that higher value of α
results in smaller velocity distribution throughout the
momentum boundary layer. On the other hand with higher
values of α , both the boundary layer thickness and the
velocity along the sheet f ′(0) tends to small behavior.

The effect of the slip velocity parameter α on the
dimensionless angular velocity h(η) is shown in Figure 5.
The higher value of slip velocity parameter of the
micropolar fluid exhibits a smaller angular velocity along
the sheet h(0). Hence the increase with increasing α .

Fig. 6 illustrates the effects of the slip velocity
parameter α on the dimensionless temperature profiles
θ (η). It is observed that the temperature distribution
θ (η) along the boundary layer decreases with the
increase of α .
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Fig. 4: Velocity profiles f ′(η) for different values of α with

ε = 0.2,M∗ = 0.1,K = 1.5,G = 2.0,Ec = 0.5,M = 2.0,Pr =
1.0,m0 = 0.5 and γ = 0.2
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Fig. 5: Angular velocity profiles h(η) for different values of α
with ε = 0.2,M∗ = 0.1,K = 1.5,G = 2.0,Ec = 0.5,M = 2.0,Pr =
1.0,m0 = 0.5 and γ = 0.2

Fig. 7 shows the variation of velocity profiles for
various values of the heat generation parameter (γ > 0)

and the absorption parameter (γ < 0). It is seen that f
′

decreases with the increase of the heat generation
parameter (γ > 0) and the absolute value of the heat
absorption parameter (γ < 0).

The angular velocity profiles for different values of
the heat generation parameter (γ > 0) and the absorption
parameter (γ < 0) has been illustrated in Fig. 8, which
shows that h increases with the increase of both heat
generation parameter (γ > 0) and absorption parameter
(γ < 0) near the surface and the reverse is true at large
distance from the surface.

It is noticed that the temperature profiles decrease as
ether heat generation parameter (γ > 0) or the absolute
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Fig. 6: Temperature profiles θ (η) for different values of α with

ε = 0.2,M∗ = 0.1,K = 1.5,G = 2.0,Ec = 0.5,M = 2.0,Pr =
1.0,m0 = 0.5 and γ = 0.2
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Fig. 7: Velocity profiles f ′(η) for different values of γ with

ε = 0.2,M∗ = 0.1,K = 1.5,G = 2.0,Ec = 0.5,M = 2.0,Pr =
1.0,m0 = 0.5 and α = 0.1

value of the heat absorption parameter (γ < 0) increase as
illustrated in Fig. 9.

The effects of the local Eckret number Ec on the
velocity, the angular velocity and the temperature are
displayed in Figs. 10, 11 and 12, respectively. Firstly, we
must refer here that the viscous dissipation phenomenon
means the transformation for some of kinetic energy to an
internal energy in the form of induced heat source due to
viscous stresses. This impact is foreseeable especially in
fluid having large velocity gradients or with highly

turbulence levels. It is seen from Fig. 10 that f
′

increases
as the local Eckret number Ec increases.

From Fig. 11 it is shown that h decreases as the local
Eckret number Ec increases, while h decreases at large
distance from the surface.
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Fig. 8: Angular velocity profiles h(η) for different values of γ
with ε = 0.2,M∗ = 0.1,K = 1.5,G = 2.0,Ec = 0.5,M = 2.0,Pr =
1.0,m0 = 0.5 and α = 0.1
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Fig. 9: Temperature profiles θ (η) for different values of γ with

ε = 0.2,M∗ = 0.1,K = 1.5,G = 2.0,Ec = 0.5,M = 2.0,Pr =
1.0,m0 = 0.5 and α = 0.1

Fig. 12 show the effect of the local Eckret number Ec

on the temperature profiles θ . It is found that as the local
Eckret number Ec increases θ decreases.

It is seen from Fig. 13 that with the increase in the
melting parameter M, fluid velocity increases. Hence, the
thicker the boundary layer is, the greater the velocity
distribution in the momentum boundary layer is.

Fig. 14 presents the effect of the melting parameter M

on θ . It is observed that the temperature decreases as M

increases. This is in agreement with physical fact that
increasing the melting parameter causes higher
acceleration to the fluid flow which in turn, increases its
motion and causes decreases in the temperature profiles.

The effects of the microrotation parameter G on the
angular velocity h illustrated in Fig. 15. From this figure,
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Fig. 10: Velocity profiles f ′(η) for different values of Ec with

ε = 0.2,M∗ = 0.1,K = 1.5,G = 2.0,γ = 0.2,M = 2.0,Pr =
1.0,m0 = 0.5 and α = 0.1
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Fig. 11: Angular velocity profiles h(η) for different values of Ec

with ε = 0.2,M∗ = 0.1,K = 1.5,G = 2.0,γ = 0.2,M = 2.0,Pr =
1.0,m0 = 0.5 and α = 0.1

it is notice that h increases with the increase of G in an
similar way through the boundary layer region.

Fig. 16 displays the effect of thermal conductivity
parameter ε . It is observed that the temperature decreases
as ε increases. Here, we must refer that the thermal
conductivity of a fluid is basically dependent on some
factors. These factors include the thermal properties of
the fluid, the gradient of the temperature, and the
thickness of the boundary layer that the heat follows.

Table 1 illustrates the effects of α , ε , Ec, G, K, M and
γ on the local skin-friction coefficient in terms of f

′′

(0),

the dimensionless wall couple stress in terms of h
′

(0) and

the local Nusselt number in terms of −θ
′

(0). From this
Table it is observed that the local skin-friction coefficient,
the dimensionless wall couple stress and the local Nusselt
number increase with increasing α . Moreover, it is found
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Fig. 12: Temperature profiles θ (η) for different values of Ec

with ε = 0.2,M∗ = 0.1,K = 1.5,G = 2.0,γ = 0.2,M = 2.0,Pr =
1.0,m0 = 0.5 and α = 0.1
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Fig. 13: Velocity profiles f ′(η) for different values of M with ε =
0.2,M∗ = 0.1,K = 1.5,G = 2.0,γ = 0.2,Ec = 0.5,Pr = 1.0,m0 =
0.5 and α = 0.1
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Fig. 14: Temperature profiles θ (η) for different values of M

with ε = 0.2,M∗ = 0.1,K = 1.5,G = 2.0,γ = 0.2,Ec = 0.5,Pr =
1.0,m0 = 0.5 and α = 0.1
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Fig. 15: Angular velocity profiles h(η) for different values of G

with ε = 0.2,M∗ = 0.1,K = 1.5,M = 2.0,γ = 0.2,Ec = 0.5,Pr =
1.0,m0 = 0.5 and α = 0.1
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Fig. 16: Temperature profiles θ (η) for different values of ε with

G = 2.0,M∗ = 0.1,K = 1.5,M = 2.0,γ = 0.2,Ec = 0.5,Pr =
1.0,m0 = 0.5 and α = 0.1

that, increasing ε leads to a increase in the local
skin-friction coefficient and the dimensionless wall
couple stress, while the local Nusselt number decreases as
ε increases. Also, it is noted that the local skin-friction
coefficient and the dimensionless wall couple stress
increases as Ec increases , while the local Nusselt number
decreases as Ec increases. However, it is shown that the
local skin-friction coefficient, the dimensionless wall
couple stress and the local Nusselt number increase with
increasing G. It is also found that the local skin-friction
coefficient and the dimensionless wall couple stress
increase with increasing K, but the local Nusselt number
decreases as K increases. Also, it is noted that increasing
values of M leads to increasing the values of the local
skin-friction coefficient, the dimensionless wall couple
stress and the local Nusselt number This is because

increasing the melting parameter M increases the thermal
boundary layer thickness which results in a reduction in
temperature gradient at the surface. Finally, we can see
that the local skin-friction coefficient, the dimensionless
wall couple stress increase with increasing of the heat
generation parameter and the heat absorption parameter ,
while the local Nusselt number decrease with increasing
the heat generation parameter and the heat absorption
parameter.

5 Conclusions

The problem of the flow of a micropolar fluid with
melting heat transfer taking into account the presence of
heat generation(absorption) has been investigated. The
governing equations of the problem have been
transformed into a system of coupled non-linear ordinary
differential equations using similarity transformations
which is solved numerically by using the Chebyshev
spectral method.

Table 1: Values of f
′′

(0), h
′

(0) and −θ
′

(0)
with m0 = 0.5, M∗ = 0.1 and Pr = 1

α ε Ec G K M γ f
′′

(0) h
′

(0) −θ
′

(0)
.0 .2 .5 2 1.5 2 .2 -.6383 -.12062 -.2688
.1 .2 .5 2 1.5 2 .2 -.4195 -.07567 -.1331
.3 .2 .5 2 1.5 2 .2 -.2553 -.04376 -.0123
.1 .2 .5 2 1.5 2 .2 -.4195 -.0757 -.1331
.1 .5 .5 2 1.5 2 .2 -.4195 -.0756 -.1332
.1 1 .5 2 1.5 2 .2 -.4182 -.0752 -.1391
.1 .2 .5 2 1.5 2 .2 -.4195 -.0757 -.1331
.1 .2 1 2 1.5 2 .2 -.4097 -.0724 -.1797
.1 .2 2 2 1.5 2 .2 -.4003 -.0693 -.2253
.1 .2 .5 1 1.5 2 .2 -.4211 -.0857 -.1347
.1 .2 .5 2 1.5 2 .2 -.4195 -.0757 -.1331
.1 .2 .5 3 1.5 2 .2 -.4183 -.0695 -.1321
.1 .2 .5 2 0 2 .2 -.6313 -.1445 -.0795
.1 .2 .5 2 .5 2 .2 -.5342 -.1108 -.1016
.1 .2 .5 2 1 2 .2 -.4680 -.0899 -.1195
.1 .2 .5 2 1.5 2 .2 -.4195 -.0757 -.1331
.1 .2 .5 2 2 2 .2 -.3819 -.0653 -.1433
.1 .2 .5 1 1.5 .5 .2 -.4348 -.0809 -.2483
.1 .2 .5 2 1.5 1 .2 -.4274 -.0784 -.1924
.1 .2 .5 3 1.5 2 .2 -.4195 -.0757 -.1331
.1 .2 .5 2 0 2 .3 -.4486 -.0858 -.0008
.1 .2 .5 2 .5 2 .2 -.4195 -.0757 -.1331
.1 .2 .5 2 1 2 0 -.3854 -.0646 -.3004
.1 .2 .5 2 1.5 2 -.2 -.3659 -.0585 -.4044
.1 .2 .5 2 2 2 -.3 -.3584 -.0563 -.4465

The results indicate that the numerical values of the
local skin-friction coefficient, the dimensionless wall
couple stress and The local Nusselt number increase as
the slip parameter, the microrotation parameter and the
melting parameter increase. While the local skin-friction
coefficient, the dimensionless wall couple stress increase
as the thermal conductivity parameter, the Eckret number,
the material parameter and the heat generation
(absorption) parameter increase. But The local Nusselt
number decreases with increasing the thermal
conductivity parameter, the Eckret number, the material
parameter and the heat generation (absorption) parameter.
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