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Abstract: In this paper, we introduce and study the new class of (r,s)-fuzzy generalized closed sets called (r,s)-fuzzy g*p-closed and

(r,s)-fuzzy g*p-open sets. Also, fuzzy g*p-continuous mappings and fuzzy-T*p axioms in double fuzzy topological spaces in S̆ostak

sense are introduced and characterized.
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1 Introduction and preliminaries

In 1986, Atanassov [1] introduced the concept of
intuitionistic fuzzy sets. The idea of intuitionistic fuzzy
topological spaces was introduced by Coker [2]. The
notion of intuitionistic gradation of openness of fuzzy sets
was introduced by Samanta and Mondal [3] and it has
been developed in many directions [4,5,6,7,8,9,10,11,
12,13,14,15,16]. Thakur and Chaturvedi [17] defined the
intuitionistic fuzzy generalized closed set in intuitionistic
fuzzy topological space. Recently, different
mathematicians worked and studied in different forms of
intuitionistic fuzzy-g-closed set and its topological
propertiesn [18,19,20,21,22,23,24,25]. The name
(intuitionistic) was replaced with the name (double) by
Gutierrez Garcia and Rodabaugh [26]. In this paper, we
introduce and define some new concept in fuzzy
topological spaces in S̆ostak sense such as (r,s)-fuzzy
g*p-closed sets. We also introduced the concepts of
(r,s)-fuzzy g*p-open sets, and obtain some of their
characterization and properties. Moreover, we introduce
double fuzzy g*p-continuous mappings with some of its
properties. As an application of this set we introduce
double fuzzy–T*p-space, double fuzzy–T**p-space. and
double fuzzy-αT*p-space.

Throughout this paper, let X be a nonempty set, I =
[0,1], I0 = (0,1] and I1 = [0,1). For α /∈ I , α(x) = α for

each x ∈ X . The set of all fuzzy subsets of X are denoted
by IX .

Definition 1.1 .[3] A double fuzzy toplogy on X is an
ordered pair (τ,τ∗) of mappings from IX to I such that

(1) τ(λ )+ τ∗(λ )≤ 1,∀ λ ∈ IX

(2) τ(0) = τ(1) = 1, τ∗(0) = τ∗(1) = 0.
(3) τ(λ1 ∧ λ2) ≥ τ(λ1)∧ τ(λ2) and τ∗(λ1 ∧ λ2) ≥

τ∗(λ1)∨ τ∗(λ2), ∀ λ1,λ2 ∈ IX

(4) τ(∨i∈△λi) ≥ ∧i∈△τ(λi) and

τ∗(∨i∈△λi)≥ ∨i∈△τ∗(λi), ∀ λi ∈ IX , i ∈△.
The trible (X ,τ,τ∗) is called a double fuzzy

topological space (dfts, for short).

τ and τ∗ may interpreted as gradation of openness and
gradation of nonopenness, respectively.

Definition 1.2. [3] The operators cl τ∗
τ , int τ∗

τ : IX ×
I0 × I1 → IX defined as , for λ ∈ IX and r ∈ I0, s ∈ I1 ,

cl τ∗

τ (λ ,r,s) = ∧{µ ∈ IX : λ ≤ µ , τ(1− µ)≥ r,

τ∗(1− µ)≥ s}.

iint τ∗

τ (λ ,r,s) = ∨{µ ∈ IX : µ ≤ λ ,τ(µ)≥ r, τ∗(µ)≥ s}.

Definition 1.3. [8] Let (X ,τ,τ∗) be a dfts. For λ ∈ IX

and r ∈ I0, s ∈ I1. Then, λ is called:

(1)(r,s)-fuzzy semi-closed set if λ ≥

intτ∗
τ (clτ∗

τ (λ ,r,s),r,s).
(2)(r,s)-fuzzy regular closed set if λ =

cl τ∗
τ (int τ∗

τ (λ ,r,s),r,s).
(3)(r,s)-fuzzy preclosed set if λ ≥

cl τ∗
τ (int τ∗

τ (λ ,r,s),r,s).
(4)(r,s)-fuzzy α-closed set if λ ≥

cl τ∗
τ (int τ∗

τ (cl τ∗
τ (λ ,r,s),r,s),r,s).
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(5)(r,s)-fuzzy semi-preclosed set if λ ≥

int τ∗
τ (cl τ∗

τ (int τ∗
τ (λ ,r,s),r,s),r,s).

The complements of the above mentioned closed set
are open, respectively.

Definition 1.4. [8] Let (X ,τ,τ∗) be a dfts. For λ ,µ ∈
IX and r ∈ I0, s ∈ I1. Then:

(1) scl τ∗
τ (λ ,r,s) = ∧{µ ∈ IX : λ ≤ µ , µ is

(r,s)−fuzzy semi-closed set }.

(2) pcl τ∗
τ (λ ,r,s) = ∧{µ ∈ IX : λ ≤ µ , µ is

(r,s)−fuzzy preclosed set }.

(3) αcl τ∗
τ (λ ,r,s) = ∧{µ ∈ IX : λ ≤ µ , µ is

(r,s)−fuzzy α−closed set }.

(4) spcl τ∗
τ (λ ,r,s) = ∧{µ ∈ IX : λ ≤ µ , µ is

(r,s)−fuzzy semi-preclosed set }.

Definition 1.5. Let (X ,τ,τ∗) be a dfts. For λ ∈ IX and
r ∈ I0, s ∈ I1. Then, λ is called:

(1) (r,s)-fuzzy g-closed (resp., (r,s)-fuzzy g*-closed

and (r,s)-fuzzy rg-closed) set if cl τ∗
τ (λ ,r,s) ≤ µ ,

whenever λ ≤ µ and µ is (r,s)-fuzzy open (resp.,
(r,s)-fuzzy g- open and (r,s)-fuzzy regular open) in
(X ,τ,τ∗) [6,10,22].

(2) (r,s)-fuzzy gpr-closed (resp., (r,s)-fuzzy
gp-closed and (r,s)-fuzzy sgp-closed) set if

pcl τ∗
τ (λ ,r,s) ≤ µ , whenever λ ≤ µ and µ is (r,s)-fuzzy

regular (resp. (r,s)-fuzzy open and (r,s)-fuzzy semi-open)
in (X ,τ,τ∗)[11,18,24].

(3) (r,s)-fuzzy gsp-closed (resp., (r,s)-fuzzy

gspr-closed ) set if spcl τ∗
τ (λ ,r,s) ≤ µ , whenever λ ≤ µ

and µ is (r,s)-fuzzy open (resp., (r,s)-fuzzy regular open)
in (X ,τ,τ∗)[20,22].

(4) (r,s)-fuzzy αg-closed set if αcl τ∗
τ (λ ,r,s) ≤ µ ,

whenever λ ≤ µ and µ is (r,s)-fuzzy α−open in
(X ,τ,τ∗).[27]

(5) (r,s)-fuzzy sg-closed set if scl τ∗
τ (λ ,r,s) ≤ µ ,

whenever λ ≤ µ and µ is (r,s)-fuzzy semi-open in
(X ,τ,τ∗).[23]

Definition 1.6. Let (X ,τ,τ∗) and (Y,η ,η∗) be dfts’s.
Then the function f : (X ,τ,τ∗)→ (Y,η ,η∗) is called:

(1) F-gp-continuous iff f−1(µ) is (r,s)- fuzzy gp-
closed set of X , for all (r,s)- fuzzy closed set µ of Y [18].

(2) F-gpr-continuous iff f−1(µ) is (r,s)- fuzzy gpr-
closed set of X , forall (r,s)- fuzzy closed set µ of Y [24].

(3) F-g*-continuous iff f−1(µ) is (r,s)- fuzzy
g*-closed set of X , for all (r,s)- fuzzy closed set µ of Y

[10].

Definition 1.7. A dfts (X ,τ,τ∗) is called::

(1) F-T1
2
-space if every (r,s)-fuzzy g-closed set is

(r,s)-fuzzy closed set [17].

(2) F-preregular-T1
2
-space if every (r,s)-fuzzy

gpr-closed is (r,s)-fuzzy closed [24].

(3) F-semi-preregular-T1
2
-space if every (r,s)-fuzzy

gp-closed is (r,s)-fuzzy closed [18].
(4) F-pT1

2
-space if every (r,s)-fuzzy gspr-closed set is

(r,s)-fuzzy closed set [20].

2 (r,s)-fuzzy g*P-closed set

Definition 2.1. Let (X ,τ,τ∗) be a dfts, λ ,µ ∈ IX , r ∈
I0,s ∈ I1. A fuzzy set λ is called:

(1) (r,s)-fuzzy g*p-closed set if pcl τ∗
τ (λ ,r,s)≤ µ ,

whenever λ ≤ µ and µ is (r,s)-fuzzy g-open set.
(2) (r,s)- fuzzy g*p-open set if 1−λ is (r,s)-fuzzy

g*p-closed set.

Theorem 2.2.
(1) Every (r,s)-fuzzy preclosed set is (r,s)-fuzzy g*p-

closed set.
(2) Every (r,s)-fuzzy α-closed set is (r,s)-fuzzy g*p-

closed set.
(3) Every (r,s)-fuzzy closed set is (r,s)-fuzzy

g*p-closed set.
(4) Every (r,s)-fuzzy regular closed set is (r,s)-fuzzy

g*p-closed set.
(5) Every (r,s)-fuzzy g*-closed set is (r,s)-fuzzy g*p-

closed set.
(6) Every (r,s)-fuzzy g*p-closed set is (r,s)-fuzzy gpr-

closed set.
(7) Every (r,s)-fuzzy g*p-closed set is (r,s)-fuzzy gp-

closed set.
(8) Every (r,s)-fuzzy g*p-closed set is (r,s)-fuzzy

gspr-closed set.
(9) Every (r,s)-fuzzy g*p-closed set is (r,s)-fuzzy gsp-

closed set.
(10) Every (r,s)-fuzzy g*p-closed set is (r,s)-fuzzy

sgp-closed set.

Proof. (1) Let λ is (r,s)-fuzzy preclosed set and
λ ≤ µ with µ is (r,s)-fuzzy g-open set in X . Since λ is
(r,s)-fuzzy preclosed set, we get that, λ =

pcl τ∗
τ (λ ,r,s) ≤ µ , whenever λ ≤ µ and µ is (r,s)-fuzzy

g-open set in X . Hence, λ is (r,s)-fuzzy g*p-closed set.
(2) As in (1) and by the fact,

pcl τ∗
τ (λ ,r,s)≤ αcl τ∗

τ (λ ,r,s).
(3) As in (1) and by the fact,

pcl τ∗
τ (λ ,r,s)≤ cl τ∗

τ (λ ,r,s).
(4) By (3) and the fact, every (r,s)-fuzzy regular closed

set is (r,s)-fuzzy closed set.
(5) By the definition of (r,s)-fuzzy g*-closed set and

the fact, pcl τ∗
τ (λ ,r,s)≤ cl τ∗

τ (λ ,r,s).
(6) Let λ is (r,s)-fuzzy g*p-closed set and λ ≤ µ with

µ is (r,s)-fuzzy regular open set in X . Since every
(r,s)-fuzzy regular open set is (r,s)-fuzzy g-open set, µ is
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(r,s)-fuzzy g-open set. By the definition of (r,s)-fuzzy

g*p-closed set, pcl τ∗
τ (λ ,r,s)≤ µ . Hence, λ is (r,s)-fuzzy

gpr-closed set.
(7) As in (6) and by the fact, every (r,s)-fuzzy open set

is (r,s)-fuzzy g-open set.
(8) As in (6) and by facts, every (r,s)-fuzzy regular

open set is (r,s)-fuzzy g-open set and spcl τ∗
τ (λ ,r,s) ≤

pcl τ∗
τ (λ ,r,s).
(9) As in (8) and by the fact, every (r,s)-fuzzy open set

is (r,s)-fuzzy g-open set.
(10) As in (6) and by the fact, every (r,s)-fuzzy semi-

open set is (r,s)-fuzzy g-open set.

However, the converse of above theorem is not true in
general, as shown in the following examples.

Example 2.3. Let X = {a,b,c}. Define λ1, λ2 ∈ IX

as follows, λ1 = {0.1,0,0} and λ2 = {1,0.8,0.6}. Define
fuzzy topologies τ, τ∗ : IX → I as follows:

τ(µ) =







1 if µ = 0, 1 ,
1
2

if µ = λ1, λ2,
0 otherwise,

,

τ∗ (µ) =







0 if µ = 0, 1 ,
1
2

if µ = λ1, λ2,
1 otherwise,

Then, (1) the fuzzy set ρ = {0.7,0.6,0} is

( 1
2
, 1

2
)-fuzzy g*p-closed set but it is neither ( 1

2
, 1

2
)-fuzzy

preclosed set nor ( 1
2
, 1

2
)-fuzzy α-closed set.

(2) the set ν = 0,6 is ( 1
2
, 1

2
)-fuzzy g*p-closed set but it

is neither ( 1
2
, 1

2
)-fuzzy closed set nor ( 1

2
, 1

2
)-fuzzy regular

closed set.

Example 2.4. Let X = {a,b,c}. Define λ ∈ IX as
follows, λ = {0.6,0,0}. Define fuzzy topologies
τ, τ∗ : IX → I as follows:

τ(µ) =







1 if µ = 0, 1 ,
2
3

if µ = λ ,
0 otherwise,

,

τ∗ (µ) =







0 if µ = 0, 1 ,
1
3

if µ = λ ,
1 otherwise,

Then, the fuzzy set ρ = {0.7,0.7,0} is ( 2
3
, 1

3
)-fuzzy

gp-closed set and ( 2
3
, 1

3
)-fuzzy gpr closed set but it is not

( 2
3
, 1

3
)-fuzzy g*p-closed set.

Example 2.5. Let X = {a,b,c,d}. Define λ1, λ2,λ3

∈ IX as follows, λ1 = {0.7,0.6,0,0}, λ2 = {0,0,0.7,0.6}
and λ3 = {0.7,0.6,0.7,0.6} . Define fuzzy topologies
τ, τ∗ : IX → I as follows:

τ(µ) =







1 if µ = 0, 1 ,
3
5

if µ = λ1, λ2,λ3,
0 otherwise,

,

τ∗ (µ) =







0 if µ = 0, 1 ,
2
5

if µ = λ1, λ2,λ3,
1 otherwise,

Then, the fuzzy set ρ = {0.7,0,0,0} is ( 3
5
, 2

5
)-fuzzy

gspr-closed set but it is not ( 3
5
, 2

5
)-fuzzy g*p-closed set.

Example 2.6. Let X = {a,b,c}. Define λ1, λ2 ∈ IX as
follows, λ1 = {0.9,0.8,1} and λ2 = {0.8,0.5,0}. Define
fuzzy topologies τ, τ∗ : IX → I as follows:

τ(µ) =







1 if µ = 0, 1 ,
5
7

if µ = λ1, λ2,
0 otherwise,

,

τ∗ (µ) =







0 if µ = 0, 1 ,
2
7

if µ = λ1, λ2,
1 otherwise,

Then, the fuzzy set ρ = {0,0.5,0} is ( 5
7
, 2

7
)-fuzzy g*-

closed set but it is not ( 5
7
, 2

7
)-fuzzy g*p-closed set.

Example 2.7. Let X = {a,b,c,d}. Define
λ1, λ2,λ3,λ4 ∈ IX as follows, λ1 = {0.9,0,0,0},
λ2 = {0,0.8,0,0}, λ3 = {0.9,0.8,0,0} and
λ4 = {0.9,0.8,0.7,0}. Define fuzzy topologies
τ, τ∗ : IX → I as follows:

τ(µ) =







1 if µ = 0, 1 ,
4
5

if µ = λ1, λ2,λ3,λ4,
0 otherwise,

,

τ∗ (µ) =







0 if µ = 0, 1 ,
1
5

if µ = λ1, λ2,λ3,λ4,
1 otherwise,

Then, the fuzzy set υ = {0,0,0.5,0} is ( 4
5
, 1

5
)-fuzzy

sgp-closed set but it is not ( 4
5
, 1

5
)-fuzzy g*p-closed set.

Example 2.8. Let X = {a,b}. Define λ ∈ IX as
follows, λ = {0.5,0.2}. Define fuzzy topologies
τ, τ∗ : IX → I as follows:

τ(µ) =







1 if µ = 0, 1 ,
1
2

if µ = λ ,
0 otherwise,

,

τ∗ (µ) =







0 if µ = 0, 1 ,
1
3

if µ = λ ,
1 otherwise,

Then, the fuzzy set ρ = {0.2,0.6} is ( 1
2
, 1

3
)-fuzzy

gsp-closed set but it is neither ( 1
2
, 1

3
)-fuzzy g*p-closed set.

Lemma 2.9. Let (X ,τ,τ∗) be a dfts and λ ∈ IX . Then,

λ is (r ,s)-fuzzy g*p-closed set iff λ q µ =⇒ pcl τ∗
τ (λ ,r,s)

q µ for every (r ,s)-fuzzy g-closed set µ of X .
Proof. Necessity Let µ be an (r ,s)-fuzzy g-closed

set of X and λ q µ Then, λ ≤ 1− µ
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and 1 − µ is (r ,s)-fuzzy g-open in X . Therefore,

pcl τ∗
τ (λ ,r,s) ≤ 1 − µ , because λ is (r ,s)-fuzzy

g*p-closed. Hence, pcl τ∗
τ (λ ,r,s)q µ .

Sufficiency Let ρ be an (r,s)-fuzzy g-open set of X

such that λ ≤ ρ . Then,

λ ≤ 1− ρ and 1− ρ is (r,s)-fuzzy g-closed set in X .

Hence by hypothesis pcl τ∗
τ (λ ,r,s) q (1− ρ). Therefore,

pcl τ∗
τ (λ ,r,s) ≤ ρ . Hence, λ is (r,s)-fuzzy g*p-closed set.

Remark 2.10. The intersection of two (r,s)-fuzzy
g*p-closed sets in (X ,τ,τ∗) may not be (r,s)-fuzzy
g*p-closed set.

Example 2.11. Let X = {a,b,c}. Define λ ∈ IX as
follows, λ = {1,0,0}. Define fuzzy topologies
τ, τ∗ : IX → I as follows:

τ(µ) =







1 if µ = 0, 1 ,
5
7

if µ = λ ,
0 otherwise,

,

τ∗ (µ) =







0 if µ = 0, 1 ,
2
7

if µ = λ ,
1 otherwise,

Then, the fuzzy sets ρ = {1,1,0} and υ = {1,0,1}

are ( 5
7
, 2

7
)-fuzzy g*p-closed sets, but λ = ν ∧ ρ is not

( 5
7
, 2

7
)-fuzzy g*p-closed set, because λ ≤ λ and λ is

( 5
7
, 2

7
)-fuzzy g-open set, but pcl τ∗

τ (λ , 5
7
, 2

7
)=1 � λ .

Theorem 2.12. Let λ be an (r,s)-fuzzy g*p-closed set

in a dfts (X ,τ,τ∗) and λ ≤ µ ≤ pcl τ∗
τ (λ ,r,s). Then, µ is

(r,s)-fuzzy g*p-closed in X .

Proof Let ρ be an (r,s)-fuzzy g-open set in X such
that µ ≤ ρ . Then, λ ≤ ρ and since λ is (r,s)-fuzzy

g*p-closed, pcl τ∗
τ (λ ,r,s) ≤ ρ . Now µ ≤

pcl τ∗
τ (λ ,r,s) =⇒ pcl τ∗

τ (µ ,r,s) ≤ pcl τ∗
τ (λ ,r,s) ≤ ρ .

Consequently, µ is (r,s)-fuzzy g*p-closed.

Theorem 2.13. Let λ be an (r,s)-fuzzy g*p-open set

in a dfts (X ,τ,τ∗) and pint τ∗
τ (λ ,r,s) ≤ µ ≤ λ . Then µ is

(r,s)-fuzzy g*p-open in X .

Proof. Suppose λ is an (r,s)-fuzzy g*p-open in X

and pint τ∗
τ (λ ,r,s) ≤ µ ≤ λ . Then, pcl τ∗

τ (1 − λ ,r,s) ≥
(1− µ) ≥ (1− λ ) and (1− λ ) is (r,s)-fuzzy g*p-closed
it follows from Theorem 2.12, (1− µ) is (r,s)-fuzzy g*p-
closed. Hence, µ is (r,s)-fuzzy g*p-open.

Theorem 2.14. An (r,s)-fuzzy set λ of a dfts (X ,τ,τ∗)

is (r,s)-fuzzy g*p-open if µ ≤ pcl τ∗
τ (λ ,r,s). whenever, µ

is (r,s)-fuzzy g-closed and µ ≤ λ .
Proof. Obvious.

Theorem 2.15. Let (X ,τ,τ∗) be dfts. For λ ,µ ∈ IX

and r ∈ I0,s ∈ I1. Then, a fuzzy generalized closure
operator GCp∗ : IX × I0 × I1 → IX defined as follows:

GC
p∗
(λ ,r,s) = ∧{µ ∈ IX : λ ≤ µ

and

µ is (r,s)-fuzzy g*p-closed set}.

The operator GC
p∗

satisfies the following properties.

(1) GC
p∗
(0,r,s)= 0.

(2) λ ≤ GC
p∗
(λ ,r,s)

(3) GC
p∗
(λ ,r,s)∨GC

p∗
(µ ,r,s) = GC

p∗
(λ ∨µ ,r,s).

(4)GC
p∗
(GC

p∗
(λ ,r,s),r,s) = GC

p∗
(λ ,r,s).

(5) If λ is (r,s)-fuzzy g*p-closed set, then

GC
p∗
(λ ,r,s) = λ .

(6) GC
p∗
(λ ,r,s)≤ cl τ∗

τ (λ ,r,s).

(7) GC
p∗
(cl τ∗

τ (λ ,r,s),r,s) = cl τ∗
τ (GC

p∗
(λ ,r,s),r,s) =

cl τ∗
τ (λ ,r,s).

Proof. (1), (2) and (5) are easily proved from the

definition of GC
p∗
.

(3) Since λ ≤ λ ∨ µ and µ ≤ λ ∨ µ ,therefore,

GC
p∗
(λ ,r,s)∨GC

p∗
(µ ,r,s) ≤ GC

p∗
(λ ∨µ ,r,s).

Suppose, GC
p∗
(λ ,r,s) ∨ GC

p∗
(µ ,r,s)

� GC
p∗
(λ ∨ µ ,r,s). There are x ∈ X and t ∈ (0,1) such

that:
GC

p∗
(λ ,r,s)(x)∨GC

p∗
(µ ,r,s)(x)

< t < GC
p∗
(λ ∨µ ,r,s)(x).

Since GC
p∗
(λ ,r,s)(x) < t and GC

p∗
(λ ,r,s)(x) < t,

there are (r,s)-fuzzy-g*p-closed sets ρ ,ν with λ ≤ ρ and
µ ≤ ν such that, ρ(x)< t and ν(x) < t.

Since λ ∨ µ ≤ ρ ∨ ν and ρ ∨ ν is
(r,s)-fuzzy-g*p-closed set, therefore,

GC
p∗
(λ ∨µ ,r,s)(x)≤ (ρ ∨ν)(x)< t. It is a contradiction.

(4) From (2), we only show

GC
p∗
(λ ,r,s)≥ GC

p∗
(GC

p∗
(λ ,r,s),r,s).

Suppose GC
p∗
(λ ,r,s) � GC

p∗
(GC

p∗
(λ ,r,s),r,s)

There are x ∈ X and t ∈ (0,1) such that:

GC
p∗
(λ ,r,s)(x)< t < GC

p∗
(GC

p∗
(λ ,r,s),r,s)(x).

Since GC
p∗
(λ ,r,s)(x) < t, there is

(r,s)-fuzzy-g*p-closed set ρ with λ ≤ ρ such that

GC
p∗
(λ ,r,s)(x) < ρ(x) < t, then,

GC
p∗
(λ ,r,s)≤ GC

p∗
(ρ ,r,s) = ρ .

Again, GC
p∗
(GC

p∗
(λ ,r,s),r,s) ≤ GC

p∗
(ρ ,r,s) = ρ .

Hence, GC
p∗
(GC

p∗
(λ ,r,s),r,s)(x) ≤ ρ(x) < t. It is a

contradiction.

(6) Since cl τ∗
τ (λ ,r,s) is (r,s)-fuzzy closed set, we

have cl τ∗
τ (λ ,r,s) is (r,s)-fuzzy-g*p-closed set. Hence,

GC
p∗
(λ ,r,s)≤ cl τ∗

τ (λ ,r,s).

(7) GC
p∗
(cl τ∗

τ (λ ,r,s),r,s) = cl τ∗
τ (λ ,r,s), it’s a trivial

case.

We only show that, cl τ∗
τ (GC

p∗
(λ ,r,s),r,s) =

cl τ∗
τ (λ ,r,s).
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Since, λ ≤ GC
p∗
(cl τ∗

τ (λ ,r,s),r,s), therefore,

cl τ∗
τ (GC

p∗
(λ ,r,s),r,s) ≥ cl τ∗

τ (λ ,r,s).

Suppose, cl τ∗
τ (GC

p∗
(λ ,r,s),r,s)
 cl τ∗

τ (λ ,r,s). There
are x ∈ X and t ∈ (0,1) such that:

cl τ∗
τ (GC

p∗
(λ ,r,s),r,s)(x) > t > cl τ∗

τ (λ ,r,s)(x).

Since cl τ∗
τ (λ ,r,s)(x) < t, by the definition of cl τ∗

τ ,
there exists an (r,s)-fuzzy closed set, ρ ∈ IX with λ ≤ ρ
such that,

cl τ∗
τ (GC

p∗
(λ ,r,s),r,s)(x)

> t > ρ(x)≥ .cl τ∗
τ (λ ,r,s)(x)

On the other hand, since ρ = cl τ∗
τ (ρ ,r,s) is

(r,s)-fuzzy-g*p-closed set, λ ≤ ρ implies,

GC
p∗
(λ ,r,s) ≤ GC

p∗
(ρ ,r,s)

= GC
p∗
(cl τ∗

τ (ρ ,r,s),r,s)

= cl τ∗

τ (ρ ,r,s) = ρ .

Thus, cl τ∗
τ (GC

p∗
(λ ,r,s),r,s)≤ ρ . It is a contradiction.

Theorem 2.16. Let (X ,τ,τ∗) be dfts. For λ ,µ ∈ IX

and r ∈ I0,s ∈ I1. Then, a fuzzy generalized interior
operator GI p∗ : IX × I0 × I1 → IX defined as follows:

GI
p∗
(λ ,r,s) = ∨{µ ∈ IX : µ ≤ λ

and

µ is (r,s)-fuzzy g*p-open set}.

Then, GI
p∗
(1−λ ,r,s) = 1− GC

p∗
(λ ,r,s).

Proof. For each, λ ,µ ∈ IX and r ∈ I0,s ∈ I1 we have

GI
p∗
(1−λ ,r,s)

= ∨{µ ∈ IX : µ ≤ (1−λ )

and µ is (r,s)-fuzzy g*p-open }

= 1−∧{1− µ : λ ≤ 1− µ

and 1− µ is (r,s)-fuzzy g*p-closed set}

= 1−∧{ρ : λ ≤ ρ

and ρ is (r,s)-fuzzy g*p-closed set}

= 1−GC
p∗
(λ ,r,s).

3 Double fuzzy g*p-continuous mapping

Definition 3.1. A mapping f : (X , τ,τ∗) → (Y,η ,η∗) is
called DF-g*p-continuous iff f−1(µ) is (r,s)-fuzzy g*p-
closed set, ∀ µ ∈ IY ,r ∈ I0,s ∈ I1 with η(1− µ) ≥ r and
η∗(1− µ)≤ s.

Remark 3.2. From the above definition and knowns
results we have the following diagram of implications:

DF-continuous
⇓

DF-g*-continuous =⇒ DF-g*p-continuous
⇓ ⇓

DF-gpr-continuous ⇐= DF-gr-continuous

However, converses of the above implications are not
true in general as following examples show.

Example 3.3. Let X = {a,b} and Y = {x,y}. Define
λ ∈ IX and µ ∈ IY as follows,
λ = {0.5,0.6},µ = {0.7,0.8} Define fuzzy topologies
τ, τ∗ : IX → I and η , η∗ : IY → I as follows:

τ(ρ) =







1 if ρ = 0, 1 ,
1
2

if ρ = λ ,
0 otherwise,

,

τ∗ (ρ) =







0 if ρ = 0, 1 ,
1
2

if ρ = λ ,
1 otherwise,

η(ν) =







1 if ν = 0, 1 ,
1
2

if ν = µ ,
0 otherwise,

,

η∗ (ν) =







0 if ν = 0, 1 ,
1
2

if ν = µ ,
1 otherwise,

Then the mapping f : (X , τ,τ∗) → (Y,η ,η∗) defined
by f (a) = x and f (b) = y is DF-g*p- continuous but not
DF-continuous.

Example 3.4.. Let X = {a,b} and Y = {x,y}. Define
λ ∈ IX and µ ∈ IY as follows,
λ = {0.5,0.4},µ = {0.5,0.3} Define fuzzy topologies
τ, τ∗ : IX → I and η , η∗ : IY → I as follows:

τ(ρ) =







1 if ρ = 0, 1 ,
7
12

if ρ = λ ,
0 otherwise,

,

τ∗ (ρ) =







0 if ρ = 0, 1 ,
5
12

if ρ = λ ,
1 otherwise,

η(ν) =







1 if ν = 0, 1 ,
7
12

if ν = µ ,
0 otherwise,

,

η∗ (ν) =







0 if ν = 0, 1 ,
5

12
if ν = µ ,

1 otherwise,

Then the mapping f : (X , τ,τ∗) → (Y,η ,η∗) defined
by f (a) = x and f (b) = y is DF-g*p- continuous but not
DF-g*-continuous.

Example 3.5.. Let X = {a,b,c,d,e} and
Y = {p,q,r,s, t}. Define λ1, λ2, λ3,∈ IX and µ ∈ IY as
follows, λ1 = {0.9,0.8,0,0,0},
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λ2 = {0,0,0.8,0.7,0}, λ3 = {0.9,0.8,0.8,0.7,0}
µ = {0.9,0,0,0,0} Define fuzzy topologies
τ, τ∗ : IX → I and η , η∗ : IY → I as follows:

τ(ρ) =







1 if ρ = 0, 1 ,
1
2

if ρ = λ1, λ2, λ3,
0 otherwise,

,

τ∗ (ρ) =







0 if ρ = 0, 1 ,
1
2

if ρ = λ1, λ2, λ3,
1 otherwise,

η(ν) =







1 if ν = 0, 1 ,
1
2

if ν = µ ,
0 otherwise,

,

η∗ (ν) =







0 if ν = 0, 1 ,
1
2

if ν = µ ,
1 otherwise,

Then, the mapping f : (X , τ,τ∗)→ (Y,η ,η∗) defined
by f (a) = p, f (b) = q, f (c) = r, f (d) = s and f (e) = t

is DF-gpr- continuous but not DF-g*p-continuous.

Example 3.6.. Let X = {a,b,c} and Y = {x,y,z}.
Define λ1, λ2,∈ IX and µ ∈ IY as follows,
λ1 = {0.9,0,0}, λ2 = {0.9,0.8,0}, µ = {0,0.8,0}
Define fuzzy topologies τ, τ∗ : IX → I

and η , η∗ : IY → I as follows:

τ(ρ) =







1 if ρ = 0, 1 ,
2
3

if ρ = λ1, λ2,
0 otherwise,

,

τ∗ (ρ) =







0 if ρ = 0, 1 ,
1
3

if ρ = λ1, λ2,
1 otherwise,

η(ν) =







1 if ν = 0, 1 ,
2
3

if ν = µ ,
0 otherwise,

,

η∗ (ν) =







0 if ν = 0, 1 ,
1
3

if ν = µ ,
1 otherwise,

Then, the mapping f : (X , τ,τ∗)→ (Y,η ,η∗) defined
by f (a) = x, f (b) = y and f (c) = z is DF-gp- continuous
but not DF-g*p-continuous.

Theorem 3.7. Let f : (X , τ,τ∗) → (Y,η ,η∗) be DF-
g*p-continuous. Then, the following statements are hold.:

(1) f (GC
p∗
(λ ,r,s)) ≤ cl τ∗

τ ( f (λ ),r,s), ∀ λ ∈ IX and
r ∈ I0,s ∈ I1.

(2) GC
p∗
( f−1(µ),r,s) ≤ f−1(cl τ∗

τ (µ ,r,s)), ∀ µ ∈ IY

and r ∈ I0,s ∈ I1.
(3) GI

p∗
( f−1(µ),r,s) ≥ f−1(int τ∗

τ (µ ,r,s)), ∀ µ ∈ IY

and r ∈ I0,s ∈ I1.

Proof. (1) Since f is a DF-g*p-continuous,

f−1(cl τ∗
τ (µ ,r,s)) is (r.s)-fuzzy-g*p-closed set and

λ ≤ f−1( f (λ )) ≤ f−1(cl τ∗
τ ( f (λ ),r,s)), therefore,

GC
p∗
(λ ,r,s) ≤ GC

p∗
( f−1(cl τ∗

τ ( f (λ ),r,s)),r,s) =

f−1(cl τ∗
τ ( f (λ ),r,s)). Hence,

f (GC
p∗
(λ ,r,s))≤ cl τ∗

τ ( f (λ ),r,s),

(2) For each µ ∈ IY . Let λ = f−1(µ). By (1),

f (GC
p∗
( f−1(µ),r,s)) ≤ cl τ∗

τ ( f ( f−1(µ)),r,s) ≤

cl τ∗
τ (µ ,r,s). Then,

GC
p∗
( f−1(µ),r,s) ≤ f−1(cl τ∗

τ (µ ,r,s)),
(3) Let µ = 1 − ν By (2) we have,

GC
p∗
( f−1(1 − ν),r,s) ≤ f−1(cl τ∗

τ (1 − ν,r,s)). Then,

GC
p∗
(1 − f−1(ν),r,s) ≤ f−1(1 − int τ∗

τ (ν,r,s)). Hence,

GI
p∗
( f−1(µ),r,s)≥ f−1(int τ∗

τ (µ ,r,s)).

Theorem 3.8. If f : (X , τ,τ∗)→ (Y,η ,η∗) is DF-g*p-
continuous, then for each (r,s)-fuzzy open set µ of Y and
each fuzzy point xt of X such that f (xt )qµ , there is an
(r,s)-fuzzy g*p-open set λ of X such that xtqλ and f (λ )≤
µ

Proof. Let xt be a fuzzy point of X and µ be an (r,s)-
fuzzy open set of Y such that f (xt)qµ . Put λ = f−1(µ)
, then by hypothesis λ is (r,s)-fuzzy g*p-open set of X

such that xtqλ and f (λ ) = f ( f−1(µ)) ≤ µ .

Theorem 3.9. Let f : (X , τ,τ∗)→ (Y,η ,η∗) be a DF-
g*p-continuous and let g : (Y,η ,η∗)→ (Z,σ ,σ∗),

(1) If g is a DF-continuous, then g ◦ f : (X , τ,τ∗)→
(Z,σ ,σ∗) is a DF-g*p-continuous.

(2) If g is a DF-g-continuous and (Y,η ,η∗) is a DF-
T 1

2
-space, then g ◦ f is a DF-g*p-continuous.

Proof. (1) Let λ be an (r,s)-fuzzy closed set of Z and g

is a DF-continuous. Then, g−1(λ ) is (r,s)-fuzzy closed set
of Y . Therefore, (g◦ f )−1(λ )= f−1(g−1(λ )) is (r.s)-fuzzy
g*p–closed set in X . Hence, g◦ f is a DF-g*p-continuous.

(2) Let λ be an (r,s)-fuzzy closed set of .Z and g is a
DF-g*p-continuous. Then, g−1(λ ) is (r,s)-fuzzy g-closed
set of Y . Since, (Y,η ,η∗) is a DF-T 1

2
-space, we have,

g−1(λ ) is (r,s)-fuzzy closed set. Therefore, (g ◦ f )−1(λ )
is (r,s)-fuzzy g*p-closed set in X . Hence, g ◦ f is a DF-
g*p-continuous.

4 Applications of (r,s)-fuzzy g*p-closed sets

In this section we introduce DF-T*p-space, DF-αT*p and
DF-αT**p as an application of (r,s)-fuzzy g*p-closed
set. We have derived some characterizations of
(r,s)-fuzzy g*p-closed sets.

Definition 4.1. A dfts (X , τ,τ∗) is called:
(1) DF-T*p-space if every (r,s)-fuzzy g*p-closet set

is (r,s)-fuzzy closed.
(2) DF-αT*p-space if every (r,s)-fuzzy g*p-closet set

is (r,s)-fuzzy preclosed.
(3) DF-αT**p-space if every (r,s)-fuzzy g*p-closet

set is (r,s)- fuzzy α-closed.

Remark 4.2. (1) Every DF-αT**p-space is
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DF-αT*p-space.
(2) Every DF-T*p-space is DF-αT*p-space.
(3) Every DF-T*p-space is DF-αT**p-space.
(4) Every DF-pre regular T 1

2
-space is DF-αT*p-space.

(5) Every DF-semi-preregular T 1
2
-space is DF-αT*p-

space.
(6) Every DF-pT 1

2
-space is DF-αT*p-space.

In general, the converse of the above remark is not true
as shown in the following examples.

Example 4.3. Let X = {a,b}. Define λ ∈ IX as
follows, λ = {0.5,0.4}. Define fuzzy topologies
τ, τ∗ : IX → I as follows:

τ(µ) =







1 if µ = 0, 1 ,
1
2

if µ = λ ,
0 otherwise,

,

τ∗ (µ) =







0 if µ = 0, 1 ,
1
3

if µ = λ ,
1 otherwise,

Then, (X , τ,τ∗) is DF-αT*p-space but not
DF-αT**p–space.

Example 4.4. Let X = {a,b,c}. Define λ ,ρ ∈ IX as
follows, λ = {0.7,0.3,1.0} and ρ = {0.7,0,0} Define
fuzzy topologies τ, τ∗ : IX → I as follows:

τ(µ) =







1 if µ = 0, 1 ,
5
6

if µ = λ ,ρ ,
0 otherwise,

,

τ∗ (µ) =







0 if µ = 0, 1 ,
1
6

if µ = λ ,ρ ,
1 otherwise,

Then, (X , τ,τ∗) is DF-αT*p-space but not DF-T*p–

space.

Example 4.5. Let X = {a,b,c}. Define λ ∈ IX as
follows, λ = {0.6,0.3,1.0}. Define fuzzy topologies
τ, τ∗ : IX → I as follows:

τ(µ) =







1 if µ = 0, 1 ,
3
4

if µ = λ ,
0 otherwise,

,

τ∗ (µ) =







0 if µ = 0, 1 ,
1
4

if µ = λ ,
1 otherwise,

Then, (X , τ,τ∗) is DF-αT**p-space but not DF-T*p–

space.

Example 4.6. Let X = {a,b}. Define λ ,ρ ∈ IX as
follows, λ = {0.7,0.3} and ρ = {0.7,0,0} Define fuzzy
topologies τ, τ∗ : IX → I as follows:

τ(µ) =







1 if µ = 0, 1 ,
5
8

if µ = λ ,ρ ,
0 otherwise,

,

τ∗ (µ) =







0 if µ = 0, 1 ,
3
8

if µ = λ ,ρ ,
1 otherwise,

Then, (X , τ,τ∗) is DF-αT*p-space but not DF-pre

regular T 1
2
-space.

Example 4.7. Let X = {a,b,c,d}. Define λ ,ρ ∈ IX

as follows, λ = {0.7,0.3,1.0,0} and ρ = {0.7,0,0,0.5}
Define fuzzy topologies τ, τ∗ : IX → I as follows:

τ(µ) =







1 if µ = 0, 1 ,
1
2

if µ = λ ,ρ ,
0 otherwise,

,

τ∗ (µ) =







0 if µ = 0, 1 ,
1
2

if µ = λ ,ρ ,
1 otherwise,

Then, (X , τ,τ∗) is DF-αT*p-space but not DF-T*p-

space..

Example 4.8. Let X = {a,b,c}. Define λ ∈ IX as
follows, λ = {0.5,0.4,1.0}. Define fuzzy topologies
τ, τ∗ : IX → I as follows:

τ(µ) =







1 if µ = 0, 1 ,
6

11
if µ = λ ,

0 otherwise,

,

τ∗ (µ) =







0 if µ = 0, 1 ,
5
11

if µ = λ ,
1 otherwise,

Then, (X , τ,τ∗) is DF-αT*p-space but not DF-pT 1
2
-

space.

5 Conclusion

The theory of fuzzy sets has several applications in
different directions. In our Theoretical work we
introduced the concepts of (r,s)-fuzzy g*p-closed sets
and (r,s)-fuzzy g*p-open sets. Also, we investigate and
studied some of their characterization and properties.
Moreover, we introduced DF-g*p-continuous mappings
with some of its properties. As an application of this set
we introduced DF-T*p-space, DF-T**p-space and
DF-αT*p-space.
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