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Abstract: The effects of magnetic field on boundary layer nano-fluid flow over stretching sheet have been investigated. Different

factors affecting the nano-fluid’s motion and particles have been studied, mainly the changes in the stretching sheet caused by an

external magnetic field with nano-particles such as Cu. Therefore, we modified and improved a model to study boundary layers nano-

fluid flow. That model’s partial differential equations (PDEs) will be transformed into a non-linear higher-order system of ordinary

differential equations (h-order ODEs) using similarities transformation. The obtained system will be approximated using an efficient

and accurate spectral residual method. This method is a generalization of the spectral monic Chebyshev approximation for h-order

ODEs. The obtained results are graphically represented. Various effects of different parameters, Prandtl, Lewis, Brownian motion,

and thermophoresis, with the magnetic field’s parameter, are reported. The reported effects on streamwise velocity, volume friction,

temperature, and stream function behavior of nano-particles have been studied.
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1 Introduction

The magnetic field and its effects on a nano-fluid over a
stretching sheet are significant to investigate. We have a
lot of industry dependent on several effects over surface
flow over a stretching layer. Some of these industries
depend on the magnetic field, such as fusing metals in an
electric furnace. Also, in the process of cooling the first
wall inside a containment vessel of a nuclear reactor in
which hot plasma is removed from the wall [1] by W.
Ibrahim, B. Shankar, and M.M. Nandeppanavar. Other
industries depend on many parameters in addition to a
magnetic parameter such as production processes,
glass-fiber processing, rubber products manufacture,
extrusion, melt-spinning, etc. Furthermore, via a
surrounding nano-fluid, a thin polymer layer forms a
permanently dynamic surface at an irregular speed by H.
S. Takhar, A.J. Chamkha, and G. Nath [2]. Experiments
have shown that a stretching surface quickness is almost
proportional to the distance from the nozzle by [3] J.
Vleggaar.

In [4], M. Turkyilmazoglu studied how to control the
momentum and heat transfers in the boundary layer flow

of various fluids over a stretching sheet by applying
magnetic fields. In [5], Kumaran et al. have stated that the
magnetic field makes the streamlines steeper, resulting in
a thinner boundary layer. In [6], Gbadeyan et al. studied
the effect of boundary layer flow of a nano-fluid past a
stretching sheet with a convective boundary condition in
the presence of magnetic field and thermal radiation.
Hamad et al. [7] investigated the effects of the magnetic
field on the free convection flow of a nano-fluid past over
a vertical semi-infinite flat plate. The
magnetohydrodynamic boundary layer flow of nano-fluid
over an exponentially stretching permeable sheet has been
investigated by K. Bhattacharyya and G. C. Layek [8]. In
[9] W.A. Khan and I. Pop have investigated the nano-fluid
behavior and surveyed different effects of the parameter
in their paper. Hence, we will expand this study by adding
an external influence, that is, the magnetic field, to study
the behavior of nano-fluid.

The models that govern the fluid flow are non-linear
partial and ordinary differential equations. Therefore, the
need to get approximated solutions is a must. Recently,
several authors investigated several methods for solving
those kinds of equations [10,11,12,13]. Spectral methods
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are considered as one of the most accurate methods that
deal with the BVPs [14,15,16]. Throughout this
discussion, a generalization of the spectral monic
Chebyshev approximation for h-order ODEs [17] will be
investigated.

The target of this work is to head our study in a
meaningful direction. So, we will shed light on this study
on nano-fluids that are affected by a magnetic field. This
study of the influence of the magnetic field with some
other simple treatments on liquids enables us to reduce a
part of the costly effects. This reduction in the cost will
cause a magnificence increasing in the profit. Also, the
magnetic field forms a large number of our scientific
studies in various areas of sciences such as mathematics,
physics, and others. In addition, the effect of the magnetic
field’s parameter in the boundary layer over a stretched
sheet embedded in a stratified medium will be studied.
Other additional factors that are very important in
industry, science, and engineering are included in this
investigation. Moreover, each parameter affecting the
flow of the nano-fluid to achieve more accuracy has been
investigated. The governing PDEs are converted to
third-order ODEs by the similarity transformation.
Numerical calculations up to the desired degree of
precision for different values of the dimensionless
parameters of the problem under consideration were
carried out. We will extend an accurate numerical analysis
method to review the actual results of our effects. This
method is the spectral monic Chebyshev’s method [17].

2 Basic equations (Proposed Model)

In this section, the effect of the magnetic field on the
two-dimensional boundary layers flow of nano-fluids will
be discussed. Generally, through this article, the
nano-fluid will be assumed to be an incompressible
nano-fluid boundary layer’s steady two-dimensional flow
across a stretching surface with a linear velocity
u = uw(x) = bx, where b is a constant and x is coordinate
measured along the stretching surface. The flow is
estimated at y ≥ 0, where y is the perpendicular
coordinate measured to the stretching surface. It is
understood that the temperature is T = T (x,y) in the
nano-fluid. The volume fraction of the nano-particle is
C = C(x,y) taking constant values at the stretching sheet
Tw and Cw, respectively. T , C are the ambient values in
nano-fluid, are denoted respectively by T∞ and C∞. The
governing equations are:

ux + vy = 0 (1)

uux + vuy =−
Px

ρ
+υ(uxx + uyy)−

σB2
0

ρ
u (2)

uvx + vvy =−
Py

ρ
+υ(vxx + vyy)−

σB2
0

ρ
v (3)

uTx + vTy = α (Txx +Tyy)+

τ

[

DB(CxTx +CyTy)+
DT

T∞

(

(Tx)
2 +(Ty)

2
)

]

(4)

uCx + vCy = DB (Cxx +Cyy)+
DT

T∞
(Txx +Tyy) (5)

The boundary conditions are:

at y = 0 :

u = uw(x) = bx, C =Cw, T = Tw, v = 0.

as y → ∞ :

C =C∞, T = T∞, u = v = 0 ,

(6)

where:

•u = u(x,y) is the velocity’s component in x

direction.
•v = v(x,y) is the velocity’s component in y

direction.
•P = P(x,y) is the fluid pressure coefficient.
•ρ is the density fluid coefficient.
•α is the thermal diffusivity.
•υ is the viscosity of kinematic.
•b is a positive constant.
•DB is coefficient of the Brownian diffusion.
•DT is coefficient of thermophoretic diffusion.
•ρc is the expansion coefficient of volumetric

volume.
•ρp is the particles’ density.

•τ =
(ρc)p

(ρc) f
is the ratio between the nano-particles

material’s effective heat capacity and the fluid’s
heat capacity with the density ρ .

•B0 is strength of magnetic field.
•σ is Stefan-Boltzmann constant.

Consider the following similarities equations:

ψ =
√

bυ xF(η) , Θ(η) =
T −T∞

TW −T∞
,

Φ(η) =
C−C∞

CW −C∞
, η =

√

b/υ y ,

(7)

where ψ is a stream function and typically defined as u is
a partial derivative for a stream function with respect to y

(u = ∂ψ
∂y

) and v is a negative partial derivative for a stream

function with respect to x (v =− ∂ψ
∂x

).
By applying the similarities (7) to Eqs. (1)-(5) and the

boundary conditions (6), Noted that, the outer (inviscid)
flow pressure is P = P

0
(constant), to get:

F ′′′+FF ′′−F ′2 −MF ′ = 0 (8)

Θ ′′+Pr Nt

(

Θ ′2 +
FΘ ′

Nt
+

Nb

Nt
Θ ′Φ ′

)

= 0 (9)
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Nt Θ ′′+Nb
(

Φ ′′+LeFΦ ′)= 0 (10)

subject to the boundary conditions

F = 0, F ′ = 1, Θ = 1, Φ = 1 at η = 0.

F ′ = 0, Θ = 0, Φ = 0 at η → ∞
(11)

Where primes denote the differentiation with respect to η
and the parameters are defined by:

Pr =
υ

α
, M =

σB2
0

bρ
, Le =

υ

DB

,

Nt = τ
DT (Tw −T∞)

υT∞
,

Nb = τ
DB(Cw −C∞)

υ
.

(12)

Here we have some symbols for different parameters such
as: M the Magnetic parameter, Pr the Prandtl number, Le

the Lewis number, Nb the Brownian’s motion and Nt the
thermophoresis. In this analysis, the quantities of
practical interest are the Nusselt number Nu and the
Sherwood number Sh, which are recognized as:

Nu =
xqw

k(Tw −T∞)
, Sh =

xqm

DB(Cw −C∞)
(13)

where qw denote to the wall heat and qm is the mass fluxes.
Using transformation equations (7), we obtain

Nu
√

Rex

=−Θ ′(0),
Sh

√
Rex

=−Φ ′(0) (14)

where Rex is the local Reynolds number and it’s value
defined by Rex = xυ−1uw(x) based on the stretching
velocity uw(x). The reduced Nusselt number and
Sherwood number are Nur = −Θ ′(0) and Shr = −Φ ′(0),
respectively.

3 Numerical method for solving problem

The similarity transformation (7) converted the partial
differential equations (1-5) with their boundary
conditions (6) to an ordinary differential equations system
(8-11). Due to the nonlinearity of the obtained system, the
acquired systems cant be solved analytically. So, a
numerical method has to be used to approximate the
solution. As mentioned previously, several fluid models
are approximated numerically of integer [18,19] and
fractional [20] cases. Recently, many researchers have
used the spectral methods because of their efficient and
accurate results [21]. Some methods are dealing with
h-order ODEs [17,22]. Through this work, we shall apply
the standard spectral collocation method [21] or as
recently colled pseudo-Garliken [23,24]. The process
investigated in [17] will be our target. In this method,

Monic Chebyshev polynomials were used as the trial
functions.

This method can solve linear and also nonlinear
h-order BVPs. It doesn’t need to reduce the order of the
equations to lower ones. At the same time, it gives high
accuracy in the results. Now we can represent these
results graphically to clarify and discuss them.

In this method, the unknown function of the ODE
”y(η)” will be represented as the spectral expansion:

y(η) =
N

∑
n=0

anQn(η) , (15)

where φn(η); n = 0,1,2, · · · are the monic Chebyshev
polynomials over the interval [−1,1] that defined in terms
of Chebyshev polynomials, Tn(η), as:

Qn(η) =

{

1 , n = 0,

21−nTn(η) , n ≥ 1.
(16)

For more details about Chebyshev and monic Chebyshev
polynomials in several domains that that reader may need,
kindly refer to [17,24,25].

Now, shift the domain of the Eqs. (8-10) and its
boundary conditions (11) to the Monic Chebyshev
polynomials’ domain using any suitable transformation.
According to the expansion (15), let:

F(η) =
N

∑
n=0

βnQn(η) , (17)

Θ(η) =
N

∑
n=0

γnQn(η) , (18)

Φ(η) =
N

∑
n=0

δnQn(η) . (19)

Substitute from equations (17-19) into the system of
ordinary equations, after the shitting , to get a system of
algebraic equations. This system can be solved by any
solver to to get the unknowns βn, γn and δn.

4 Results and discussion

The influence of a magnetic field on the behaviour of
nano-fluids will be explored in this paper. The influence
and modification of the nano-fluid will be noted for many
parameters such as the Prandtl number, Lewis number,
Brownian motion parameter, thermophoresis parameter,
and so on. The expression of ”nano-fluid behaviour,” that
is, the influence of various parameters on temperature,
nano-particle volume fraction, and streamwise velocity, is
well recognized. In the beginning, it showed the effect of
the first parameter on which our research paper is based,
the magnetic field. Figure (1) shows the effect for
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Fig. 1: Effectiveness M over F ′(η) with η when Pr =
Le = 1, Nb = Nt = 0.1.

different values of magnetic parameters over the
streamwise velocity F ′(η) at Pr = Le = 1,
Nb = Nt = 0.1, and M = 0,1,2,3,4,5. The magnetic field
resists the streamwise velocity and transport process. In
fact, increasing M contributes to the growth of Lorentz’s
strength. It is known about Lorentz’s force and what we
do to measure it generated in a moving nanofluid due to
exposure to a changing magnetic field. Whereas,
according to Faraday’s law, when a conducting metal or
liquid moves within a magnetic field, induced currents
called eddy currents are generated; these currents, in turn,
generate secondary magnetic fields according to
Ampere’s and Maxwell’s law. The interaction of eddy
currents with secondary magnetic fields generates Lorentz
forces that oppose the direction of movement of the
nanofluid or the carrier metal and impede its movement.
According to Newton’s third law (law of action and
reaction), a force equal to the Lorentz force is generated
with an amplitude and opposite direction that affects the
main magnetic field. This body force decelerates the
boundary layer flow, thickens the momentum boundary
layer, and hence increases the absolute value of the
velocity gradient at the surface. We will find more
significant opposition to the transport phenomenon
through Lorentz’s greater force. Therefore, the magnetic
field reduces the velocity of the nano-fluid. It’s clear that
the streamwise velocity F ′(η) doesn’t be affected by the
parameters Pr, Le, Nb, and Nt as showed in Figure (22),
the Prandtl number effectiveness with the constants
M = Le = 1, Nb = Nt = 0.1, and Pr = 1,2,4.

In figures (2) and (3), Pr = Le = 1, Nb = Nt = 0.1,
and M = 0,1,2,3,4,5, the effect of the magnetic field was
studied on both the temperature and the size of the
nano-particle fraction. That found the temperature was
getting high, and it seemed that Lorentz’s strength had a
hand in this. So we increased the scrutiny and found that
due to Lorentz’s force, it works to slow down and reduce

the nano-fluid’s movement and increases its resistance.
We can say this is the reason to increases the temperature
rise. Consequently, the temperature is directly
proportional to the magnetic field. This also affects the
size of the nano-particle fraction, which increases the
thickness of the boundary layer.
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Fig. 2: Effectiveness of M over Θ(η) with η when Pr =
Le = 1, Nb = Nt = 0.1.
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Fig. 3: Effectiveness of M over Φ(η) with η when Pr =
Le = 1, Nb = Nt = 0.1.

In Figures (4) and (5) with M = 2, Le = 1,
Nb = Nt = 0.1, and Pr = 2,4,6,8,10, the effects of
Prandtl number Pr on the temperature and nanoparticles
volume fraction are represented. It’s clear that the prandtl
number is inversely proportional to the thermal boundary
layer thickness and thermal diffusivity. For large values of
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Fig. 4: Effectiveness of Pr over Θ(η) with η when Le= 1,
Nb = Nt = 0.1, M = 2.
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Fig. 5: Effectiveness of Pr over Φ(η) with η when Le =
1,Nb = Nt = 0.1, M = 2.

Pr, the nano-particles’ volume fraction surpasses near the
sheet. The diameter of the nano-particles’ volume
boundary layer decreases. Therefore, the nano-particles’
volume fraction Φ(η) is higher in the fluid adjacent to the
sheet than the value at the wall for higher values of
Prandtl number with zero rate of change for
thermophoretic particle deposition.

The effect of Nb is reviewed on the nano-particles’
fluid temperature and the fraction size. It is clear that the
size of the fraction in the nano-particles is inversely
proportional to the Nb. increases, we found a lot of
decrease in the fraction size of the nano-particles. That is
reflected in the nano-particles’ volume boundary layer
thickness decreases where it also decreases. The
Brownian movement takes place in the nano-fluids system
due to the presence of nano-particles, and the Brownian

motion is caused by the increase in Nb and, therefore, the
fluid changes characteristic of heat transfer. All this is
illustrated in Figuers (6) and (7) when M = Pr = Le = 1,
Nt = 0.1, and Nb = 0.2,0.4,0.7,1,1.3.
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Fig. 6: Effectiveness of Nb over Θ(η) with η when Pr =
Le = M = 1, Nt = 0.1.
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Fig. 7: Effectiveness of Nb over Φ(η) with η when Pr =
Le = M = 1, Nt = 0.1.

The Nt thermophoresis parameter is a crucial
parameter for the analysis of temperature allocation and
volume fraction of nano-particles in nano-fluids flow. In
Figures (8) and (9), M = Le = 1, Nb = 0.1, and
Nt = 0.2,0.3,0.5,0.8,1, the effect of the thermophoresis
parameter Nt is shown on the temperature Θ(η) and the
volume fraction of the nano-particles Φ(η). If Nt rises,
the temperature of the fluid rises also. The nano-particles’
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Fig. 8: Effectiveness of Nt over Θ(η) with η when Pr =
Le = M = 1, Nb = 0.1.

volume fraction directly proportional to Nt. We note that
is the overshoot is happened located near the wall. Rising
Nt enables the intensity of thermophoresis to increase. It’s
known that is any material tends to move from hot areas
to more minor hot spots (meaning more precisely to cold
places). It is the same happened with nano-particles is
moving from hot to cold spots. This raises the magnitude
of nano-particles temperature performance and fractional
volume performance. At last, the thickness of the
nano-particles volume boundary layer gets extraordinarily
high for a little rising value of the thermophoresis
parameter.

After our study of this proposed model, we found that
the local Nusselt number Nu and the local Sherwood
number Sh also affect the behavior of the nano-fluid.
Some of their effects are presented as an example, but not
a limitation. Different values of M, Pr, Le, Nb, Nt,
−Θ ′(0), and −Φ ′(0) are plotted in Figures (10-21) for
various values of the parameters.

The value of the local Nusselt number and the local
Sherwood number is represented in Figure (10-13) with
various magnetic parameter values, M = 0,1,2,3, and
fixed parameters values Pr = Le = 1, Nt = 0.1, and
Nb = 0.1. When the magnetic field increases and is more
robust, both the local Nusselt number and the local
Sherwood are affected by this increase in the opposite
way. Also, the values of −Θ ′(0), and −Φ ′(0) are
depicted against the Brownian motion parameter Nb and
the thermophoresis parameter Nt for various values of M

in Figures (10) to (13).

Another graph that established the substantial Lorentz
force that resulted in a flow field for a significant magnetic
field decreases the values of the local Nusselt number and
the local Sherwood number.

With the changeability of the other parameters, the
effect of the Prandtl number Pr with the different values

(Pr = 1,2,4) and Lewis number Le with the various
values (Le = 0.5,1,2) on the local Nusselt number Nu

and the local Sherwood number Sh are shown in Figures
(14) to (21). It is obvious to note that, the Prandtl number
is directly proportional to the local Nusselt number and
inversely proportional to the local Sherwood number.

When the Prandtl number rises, so does the heat
transfer rate. There is a difference between the Prandtl
number and Lewis number effects; because Their effects
are entirely opposite to each other over the Nusselt
number and Sherwood number. The Lewis number affects
the Nusselt number (reduction) and the Sherwood number
(increment).

For small values of the Lewis number, the Brownian
diffusion effect is significant, and accordingly, the
increased heat transfer rate is found (more significant
Nusselt number, Figure (18)). Figures (10) to (21) show
the changes in the local Nusselt and Sherwood numbers
for the Brownian motion parameter Nb and the
thermophoresis parameter Nt. For a high rate of the
Brownian motion, that is, for increasing Nb, the values of
−Θ ′(0) reduce, and those of −Φ ′(0) increase. But the
increase in the thermophoresis parameter Nt causes a
reduction in both, the local Nusselt number and the local
Sherwood number.
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Fig. 9: Effectiveness of Nt overΦ(η) with η when Pr =
Le = M = 1, Nb = 0.1.

5 Conclusions

In this work, the effects of the magnetic field on
nano-fluids have been studied. Similarity equations
transform the nano-fluid’s movement equations system
and the boundary conditions to a system of ODEs. That
system can be solved numerically using a spectral method
based on monic Chebyshev polynomials. This numerical
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Table 1: symbols

u & v Component of velocity in x,y directions ∞ Condition at the free stream

CW nanoparticle volume fraction at the stretching

surface

w Condition at the wall

C∞ ambient nanoparticle volume fraction 0 Condition at the initial

C Nanoparticles volume fraction x derivative with respect to coordinate along the

sheet

DT thermophoretic diffusion coefficient y derivative with respect to coordinate

perpendicular to the sheet

DB Brownian diffusion coefficient

F(η) dimensionless Streamwise function

Le Lewis number * Greek symbols *

Nb Brownian motion parameter η similarity variable

Nt thermophoresis parameter Θ(η) dimensionless temperature

Nu Nusselt number Φ(η) rescaled nanoparticle volume fraction

Pr Prandtl number ψ stream function

Tw temperature at the stretching surface ρ density of the fluid

T temperature σ Stefan-Boltzmann constant

T∞ Ambient temperature α thermal diffusivity

Rex local Reynolds number

uw velocity of the stretching sheet

b Positive integer constant

P Pressure
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Fig. 10: Variation of −Θ ′(0) with Brownian motion
parameter Nb when Pr = Le = 1, Nt = 0.1.

method has proven its effectiveness in solving our system
of equations with high accuracy. Severals graphs present
the results to facilitate visualization of the effects on the
nano-fluid. The model used for the nano-fluid
incorporates the effects of the magnetic field, Brownian
motion, and thermophoresis. The ODEs are presented,
which depend on M, Pr, Le, Nb, and Nt. A significant
change in the behavior of nano-fluid has been observed;
the most important of this with the rising magnetic field,
transport rates are decreasing, raising on temperature, and
increasing the thickness of the boundary layer.
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Fig. 11: Variation of −Θ ′(0) with thermophoresis
parameter Nt when Pr = Le = 1, Nb = 0.1.
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Fig. 13: Variation of −Φ ′(0) with thermophoresis
parameter Nt when Pr = Le = 1, Nb = 0.1.
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Fig. 14: Variation of −Θ ′(0) with Brownian motion
parameter Nb when M = Le = 1, Nt = 0.1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Nt

−
θ’

(0
)

 

 

Pr=0

Pr=1

Pr=2

Fig. 15: Variation of −Θ ′(0) with thermophoresis
parameter Nt when M = Le = 1, Nb = 0.1.
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Fig. 16: Variation of −Φ ′(0) with Brownian motion
parameter Nb when M = Le = 1, Nt = 0.1.
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Fig. 17: Variation of −Φ ′(0) with thermophoresis
parameter Nt when M = Le = 1, Nb = 0.1.
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Fig. 18: Variation of −Θ ′(0) with Brownian motion
parameter Nb when M = Pr = 1, Nt = 0.1.
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Fig. 19: Variation of −Θ ′(0) with thermophoresis
parameter Nt when M = Pr = 1, Nb = 0.1.
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Fig. 20: Variation of −Φ ′(0) with Brownian motion
parameter Nb when M = Pr = 1, Nt = 0.1.
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Fig. 21: Variation of −Φ ′(0) with thermophoresis
parameter Nt when M = Pr = 1, Nb = 0.1.
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Fig. 22: Effectiveness of Pr over F ′(η) with η when M =
Le = 1, Nb = Nt = 0.1.
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