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Abstract: Special functions that are generated by a Fourier transform over a circle, also provide discrete counterparts, where the circle

is substituted by N equidistant points over that circle, with the finite Fourier transform over them. This process was applied to Bessel

and Mathieu functions in [Appl. Math. Inf. Sci. 15, 307–315 (2021)]. The resulting discrete Bessel functions, BN
n(x), n∈ {0,1, . . . ,N−1},

satisfy the linear and Graf quadratic relations of their continuous counterparts, and provide a very close numerical approximation with

limN→∞ BN
n(x) = Jn(x). In this paper, the N ×N matrices B = ‖Bn,m‖, for Bn,m := BN

n(xm) over xm ∈ {0,1, . . . , N−1}, are used to define

transform kernels between N functions of position fm and of Bessel mode f̃n, which are efficient for the Fourier analysis of discrete

signals with fm ∝ m−1/2 decay.

Keywords: Bessel functions, Fourier analysis, Discrete transforms, Numerical approximation and analysis

1 Introduction: discrete Bessel functions

In Fourier analysis a strategy to approximate a function
defined through the Fourier integral transform over a circle
by an N-point cyclic finite Fourier transform, is to replace
integrals by finite sums over N := 2 j+1 ( j integer or half-
integer) equidistant points ϕk on the circle, with

1

2π

∫ π

−π
dϕ f (ϕ) −→

1

N

j

∑
k=− j

f (ϕk),

ϕ −→ ϕk := 2π k/N so dϕ −→ ϕk+1 −ϕk = 2π/N.
(1)

The Bessel functions of the first kind and integer orders
Jn(x), are defined by such a Fourier transform [1, Eq.
8.411.1], as

Jn(x) :=
1

2π

∫ π

−π
dϕ exp(ixsin ϕ)

[
Cn cos(nϕ)− iSn sin(nϕ)

]
,

Cn := |cos( 1
2
nπ)|=

{
1, n even,
0, n odd,

Sn := |sin( 1
2
nπ)|=

{
0, n even,
1, n odd.

(2)

In Ref. [2] the authors proposed in this way to
discretize the Bessel function from its integral definition
to the N-point sum; however, their results were
incomplete for not having respected the difference

between the even and odd orders, which take values over
different sets of points over the circle. Based on (1) and
(2) we proposed in [3] that the correct definition of the
discrete Bessel functions should be

BN
n(xm) :=

1

2 j+1

j

∑
k=− j

exp(ixm sinϕk) (3)

×
[
Cn cos(nϕk)− iSn sin(nϕk)

]
,

=
1

2 j+1

j

∑
k=− j

exp(ixm sinϕk)

{
cosnϕk, n even,

−i sinnϕk, n odd,

where n ∈ {0,1, . . . , N−1 = 2 j} are integers while x is a
real number. Here we shall be interested in using the
integer values xm = m, whose range we can set to be
m ∈ {− j,− j+1, . . . , j} or {0,1, . . . , N−1 = 2 j}, due to
the symmetries and modularities of the discrete Bessel
functions

BN
n(m) = (−1)nBN

−n(m) = (−1)mBN
n(−m),

BN
2n(e

iπk2m) = e2iπkmBN
2n(2m), BN

n (0) = δn,0,

BN
2n+1(e

iπk(2m+1)) = e(2m+1)iπkBN
2n+1(2m+1),

(4)

BN
n(m) = BN

n+N(m) = BN
n(m+N) real, (5)

where the first three lines are directly inherited from the
continuous Bessel functions (for k even all phases are
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unity so the equalities are trivial), while the last line
assumes that m is discrete and integer-spaced. In any case,
for continuous argument x, it is clear that, for growing N,

lim
N→∞

BN
n(x) = Jn(x), (6)

is a pointwise limit.
Physically, Fourier-Bessel analysis originates from

the radial part of two-dimensional Fourier analysis, where
solutions of the wave equation in cylindrical coordinates
yield the functions known collectively as cylinder
functions. Among these, Bessel functions of the first kind
and of integer order, Jn(x), are the coefficient functions
for a plane wave generating function [1, 8.511.3],

eixsinϕ = J0(x) + 2
∞

∑
n=1

J2n(x)cos(2nϕ) (7)

+ 2i
∞

∑
n=0

J2n+1(x)sin((2n+1)ϕ),

for x ∈ R real and ϕ ∈ S 1 on the circle. The discrete
counterpart for N points over the circle, which is
equivalent to (4), can be used to define the discrete Bessel
functions BN

n(x) by their generating function as

eixsinϕk = BN

0(x) + 2
N−1

∑
n=1

BN

2n(x)cos(2nϕk) (8)

+ 2i
N−1

∑
n=0

BN
2n+1(x)sin((2n+1)ϕk),

where x ∈ R and ϕk = 2πk/N ∈ S 1
N , i.e., with plane

waves only in the N directions of S
1

N . For instance, N = 3
discrete Bessel wavefields will exhibit the C3 plane
rotation symmetry of graphene.

In the following Sect. 2 we show that the discrete
BN

n(m) functions exhibit exact counterparts of some
properties satisfied by the continuous Bessel functions
Jn(x). These include linear relations that we can prove
straightforwardly and the quadratic relation known as
Graf’s formula [4] here placed in the Appendix, since
they were not explicitly proven in Ref. [3].

Although we should expect that the discrete Bessel
functions approximate their continuous counterparts, it is
rather surprising to see how closely they do. In Sect. 3 we
compare them numerically in a region of the grid of
integer indices (n,m). The point-to-point differences
between the two in n = j and 0 ≤ m ≤ N−1 are of the
order of 10−16 for N > 91; they are smallest for values of
m close to zero.

The N ×N-matrix BN = ‖BN
n(xm)‖ formed in (4) will

be used in Sect. 4 as the kernel that defines the finite

Bessel transform. This transform is analogous to the finite
N-point Fourier transform as approximant to the Fourier
(series) transform over the circle. The finite Bessel
transform intertwines N-point functions of position

fm ≡ f (xm) with N Bessel-mode functions f̃n.
Discrete analogues of continuous functions have both

computational and analytical interest. In the Bessel case,

from an early definition in Ref. [5] to recent work based
on difference equations, postulated analogues to the
differential equation [6,7] have resulted in definitions that
are not equivalent to those of Ref. [2] nor to the one we
study here. In the concluding Sect. 5 we emphasize that
the present discrete analogue and its associated transform
are both physically natural and can be numerically useful.

2 Linear and Graf discrete Bessel identities

The discrete Bessel functions BN
n(m) obey analogues of

several well-known identities satisfied by the continuous
Bessel functions Jn(x); these were stated without explicit
proof in Ref. [3]. For simplicity we shall omit the upper
N-index, understanding that N = 2 j + 1, allowing the
position coordinate xm ≡ m to be any real number, and
also using the so-called

Neumann factor: εn := 2− δn,0 =

{
1, n = 0,
2, n 6= 0.

(9)

It is then straightforward to use symmetry and covariance
relations, (4) and (5), to prove that the sum of even orders
of the discrete Bessel functions is

2 j

∑
n=−2 j

B2n(m)=
2 j

∑
n=0

ε2n B2n(m)=B0(m)+2
j

∑
n=1

B2n(m)= 1,

(10)
which compare with the corresponding equation in [1, Eq.
8.512.1]. This is a particular case (for ϕk = 0) of the linear
discrete Bessel summations for odd and even orders,

j

∑
n=0

B2n+1(m)sin((2n+1)ϕk)=
1
2

sin(msinϕk), (11)

j

∑
n=0

εnB2n(m)cos(2nϕk)=cos(msin ϕk), (12)

which are proven, as for the continuous functions, in the
four cases of k and n even or odd, using the trigonometric
sum identities in [1, Eqs. 1.342.2].

Regarding quadratic expressions, a sum found by
Neumann in 1867 for integer orders, and extended by
Graf in 1893 to all real orders, has been known since as
Graf’s formula [4, Sec. 7.6.2, Eq. (6)]. Its group-theoretic
origin is the linear transformation of spherical harmonics
Yℓ,m(θ ,φ) by Wigner-d functions under rotations around
the y-axis, contracted for ℓ → ∞ [8]. In that limit both
spherical harmonics and Wigner d-functions become
Bessel functions, yielding

∞

∑
n=−∞

Jn(x)Jn′−n(x
′) = Jn′(x+ x′). (13)

This relation contains the displacement and convolution
of arguments and of indices. The discrete Bessel
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functions Bn(m) in (4) satisfy the corresponding discrete

Graf formula

2 j

∑
n=−2 j

Bn(m)Bn′∓n(m
′) = Bn′(m±m′), (14)

for N = 2 j+1. Several related expressions are easy to
reach for particular cases, such as

for n′ = 0,
2 j

∑
n=0

εnBn(m)Bn(m
′) = B0(m−m′), (15)

for m = m′,

2 j

∑
n=−2 j

Bn(m)Bn′+n(m) = Bn′(0) = δn′,0.

(16)

n′ = 0 and m = m′,B0(m)2 +
2 j

∑
n=1

Bn(m)2 = 1. (17)

The proof of this relation is detailed in the Appendix.

3 The discrete-to-continuous approximations

In this section we illustrate the approximate equalities
Bn(m)=̃Jn(m) and report the differences in the grid
(n,m), with n ∈ {0,1, . . . ,N−1} and m real. The graphs
presented here include those shown in Ref. [3], plus
several new ones that pertain related functions beyond the
original set. The merit of the approximation is estimated
by the mean quadratic error,

∆N
n :=

1

N

N−1

∑
m=0

(
Jn(m)−BN

n(m)
)2

. (18)

A discrete system of N = 2 j + 1 points {xm}
2 j
m=0 is a

space spanned by the basis set of N independent functions
Jn(xm). The graphs in Fig. 1 contain intervals of m beyond
[0,2 j], and up to 4 j = 2N − 2. Good matches between
discrete and continuous Bessel values in the grid (n,m)
are seen to lie in the first quadrant for n+m ≤ 3 j. In the
interval [0,2 j], the mean square error between the values
is ∆N

n < 10−16 for j = 18 and n ≤ j.
To have examples of how the mean square error of the

discrete Bessel functions decreases as the number of points
N in the approximation increases, we include Fig. 2. In
the left-hand plot, we can see that for j = 18 the mean
square error ∆N

n in (18) becomes of order 10−16, and for
n = j ≈ 50 the error is of order 10−32. In the right-hand
side, the orders n are fixed while the number N of points is
increased; the error is then reduced to the order of 10−32.

When we enlist other well known formulas that are
valid for continuous Bessel functions, and replace them
by their discrete version we also find matches with similar
approximations. Among them we find

2∑
j
n=0(−1)nB2n+1(m) =̃ sin(m),

∑
j
n=0 εn(−1)nB2n(m) =̃ cos(m),

(19)

that can be compared with [1, Eqs. 8.514.1,2]. We point
to the fact that in (19), the argument of sine and cosine is
integer m ∈ {− j,− j+1, . . . , j}. In Fig. 3 we compare the
functions of discrete m with the continuous functions of
m; mean square errors are of the order ≈ 10−6. For other
expressions, in Fig. 4 we show, for n = 1 and m ∈ [− j, j],
the approximations

∑
j

k=0 B1(mcosϕk)cosϕk =̃ sinm
m

=: sincm,

∑
j
k=0 B1(mcosϕk) =̃

1−cosm
m

=: coscm.

(20)

that also hold with a mean square error less than 10−6.

4 The Finite Bessel transform

Bessel functions appear in the expansion of
two-dimensional wave functions into plane waves
arriving from all directions on a circle. Replacing the
Fourier series over the full circle by the finite Fourier
transform over N points, restricts the the set of formant
plane waves to N of them lying on N discrete, equidistant
directions on that circle.

A set of N linearly independent vectors can be used as
a basis to define an N-dimensional vector space. Let us
introduce an N × N discrete and finite Bessel matrix

B = ‖Bn,m‖, Bn,m := Bn(m), where the orders n and
positions m are in the ranges n,m ∈ {0,1, . . . ,N−1}, both
integer and real. The numerical verification that detB 6= 0
for a range of N’s supports the conjecture that the set is
linearly independent, so we can assume that the unique
inverse matrix C := B−1 exists.

Thus, given a vector of functions f = ‖ f (xm)‖ of N

position arguments f (xm) ≡ fm, the matrix B will

transform this into the vector f̃ = Bf of components

f̃ (n) ≡ f̃n of N Bessel mode arguments, and the inverse
matrix C will then return the original function of
positions,

f̃n :=
N−1

∑
m=0

Bn,m fm, fm =
N−1

∑
n=0

Cm,n f̃n, BC = CB = 1.

(21)

The transform function f̃n is the projection of f (xm) on
Bn(xm) under the natural finite inner product that sums
over the N positions,

(f1, f2)N :=
N−1

∑
m=0

f 1∗(m) f 2(m). (22)

In Fig. 5 we show the density plot of the transform
kernel B = ‖Bn,m‖ on the (n,m) grid, and of its inverse
kernel C = ‖Cm,n‖. The plot for the kernel B of course
resembles closely similar plots of the Bessel functions
Jn(m): it has large diagonal elements, vanishingly small

values in the lower-left region, and oscillating ∼ m−1/2
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Fig. 1: Comparison of values of the discrete Bessel functions B
2 j+1
n (m) (open circles) and the continuous Bessel functions Jn(m) (lines) in

the same ranges. We show the cases for j ∈ {10, 30, 50}, (i.e., N ∈ {21, 61, 101} discrete points), for Bessel orders n ∈ {0, 10, 30, 50},

over the argument range m ∈ [0, 4 j=2N − 2]. The continuous lines are heavy black where the point-to-point difference between the

discrete interpolation and the continuous Bessel values is less than 10−16 and replaced by dashed gray lines where it is greater.

Fig. 2: Left: Mean square error ∆N
n between the discrete and continuous Bessel functions BN

n(m) for n = j ∈ {10, . . . ,100}. Right: The

mean square error is reduced for n ∈ {16, 82, 151} as the number of points increases as before.
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Fig. 3: Comparison of the left-hand sides of Eqs. (19) for integer m ∈ [0,100] (open circles), and sin(m) and cos(m) for continuous m

(line) in the same range; here, j = 50 and N = 101.

Fig. 4: Comparison of values of the discrete and continuous Bessel functions, left- and right-hands of Eqs. (20), as before with open

circles and continuous lines, in the same range for j = 50, N = 101.

decrease in the upper right part. The determinant of B is
nonzero but it quickly becomes very small: for
N = {5, 11, 21, 51}, we find
detB<̃{5.7×10−4, 2.1×10−18, 5.3×10−68, 2×10−288}.
Although this does not negate the existence of the finite
Bessel transform (21), it will effectively reduce the
numerical stability of computations for larger N’s,
precluding the existence of a proper N → ∞ limit. On the
other hand, the inverse transform kernel C also shown in
Fig. 5, does not seem to have a clear structure for which
we could surmise an analytic form.

The finite Bessel transform of a Kronecker delta
function of positions, f m◦(xm) = δm,m◦ , will be a vector of

discrete Bessel functions f̃n = Bn(m◦) at m◦. Conversely,
the inverse finite Bessel transform of a Kronecker delta of
modes, f̃ n◦

n = δn,n◦ will be the vector Bn◦(m) of discrete
Bessel function values of order n◦. In the continuum, the
diffusion of a Dirac delta yields Gaussian bell functions.
These Gaussians have several important properties under
the Fourier integral transform, chief among them is their
self-reproduction with inverse width (see e.g. [1, Eq.

6.618.1]) while translations multiply the transform
function by a linearly oscillating phase. In Fig. 6 we
chose a finite Gaussian function on integer positions,
fm ∼ exp[−(m−m◦)

2/2ω ] centered on m◦ and of width
ω . Their finite Bessel transforms, shown in Fig. 6, display
roughly the same self-reproduction property of this and
other bell-shaped functions, which are real, their
maximum corresponding roughly with the top of the
original bell; being real, translation of the center of the
Gaussian does not lead to phase oscillations as the two
functions are and remain real. In that figure we see that
the wider the original bell, the smoother its finite Bessel
transform, which is also smoother for m ≈ 0 than for
m ≈ N−1. These results have been validated by
numerical experimentation because analytic expressions
are not readily available.

The finite Bessel transform f 7→ f̃ = Bf is not unitary,
nor its inverse. Letting k stand for m or n, their inner

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


728 K. Uriostegui, K.B. Wolf: The finite Bessel transforms

Fig. 5: Left: The discrete Bessel elements Bn,m of the matrix B, for N = 43 ( j = 21) closely approximate the values of the Bessel

function Jn(m) on the integer grid region 0 ≤ m,n ≤ N−1. Both the continuous and the discrete Bessel functions are small in the

lower left m < n triangle, exhibit a maximum around m ≈ n with B0(0) = 1, and oscillate with decreasing amplitude as ∼ m−1/2 in the

upper-right region m > n. Right: The inverse finite Bessel transform kernel C of elements Cm,n, with gray tones adjusted to the large

values of the matrix elements. In both images, the horizontal direction corresponds to the position m and the vertical direction to the

order n of the function.

Fig. 6: Left: The discrete Gaussian function exp[−(m−m◦)
2/2ω] for N = 51 points, centered on m◦ = 21 and of widths ω = 2, 4 and

8. Right: The finite Bessel transforms of these discrete Gaussian functions.

products (22) relate as

N−1

∑
k=0

f 1∗
k f 2

k′ =: (f1, f2)N =(Cf̃1,Cf̃2)N =
N−1

∑
k,k′=0

f̃ 1∗
k (C†C)k,k′ f̃ 2

k′ .

(23)
Hence the finite Bessel map can be seen as a unitary
transformation from the position space with inner product
(·, ·)N in (22) to a second finite space with a
nondegenerate metric C†C. Convolution also inherits the
structure common to all nonsingular transforms: if

f̃1 = Bf1 and f̃2 = Bf2, then the finite Bessel transform of

fm := f 1
m f 2

m is

f̃n =
N−1

∑
k,k′=0

Cn;k,k′ f̃ 1
k f̃ 2

k′ , Cn;k,k′ :=
N−1

∑
m=0

Bn,mCm,k Cm,k′ .

(24)

Conversely, if f1 = B̃f1 and f2 = B̃f2, then the finite inverse

Bessel transform of f̃n := f̃ 1
n f̃ 2

n is

fm =
N−1

∑
k,k′=0

Bm;k,k′ f 1
k f 2

k′ , Bm;k,k′ :=
N−1

∑
n=0

Cm,n Bk,n Bk′,n.

(25)
This convolution structure is common to the well-known
Fourier structure and, extended to other function bases,
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also encompasses the coupling of angular momenta by
Clebsch-Gordan coefficients.

5 Concluding remarks

After trigonometric functions, cylinder —and in
particular Bessel— functions can be seen as the most
important in mathematical physics. These Bessel
functions also have important group-theoretic properties
as irreducible representation matrix elements for the
Euclidean groups of rotations and translations [9].

Trigonometric functions are the basis for three distinct
transforms: the Fourier integral transforms, Fourier series,
and the finite Fourier transforms. The three relate through
continuous limits and discretizations of the real line R,
the integers Z , and on ZN , the integers modulo N. Such
a discretization of the generating functions was used here
for Jn(m) on Z to define Bn(m) on ZN . As we mentioned
before, the position m need not be integer; as occurs in the
finite Fourier case, the N phases on the circle can be shifted
freely. The values of the discrete Bessel functions in the
figures can be similarly defined on an m-line in [0,N−1]
or extended beyond. On the other hand, the order n cannot
but be integer, because for non-integer n > 0, |J−n(0)| is
infinite.

We may claim, together with Ref. [2], that a probable
application of the discrete Bessel functions (4) is the
discretization of radial wave propagation with

∼ r−1/2-decay on scattering in two dimensions, because
the basis of discrete Bessel functions Bn(m) has that
decrease property. One may expect these to provide a
more significant set of mode functions than if the
transform used had been the finite Fourier transform,
whose oscillation amplitude is constant over the position
range.

Finally, we remark that known and named series or
integral transforms with kernels involving Bessel
functions are quite distinct from the proposed finite
Bessel transform in Eqs. (21). The fractional Hankel-n
transform kernel [10] contains the factor
∼ (pq)1/2Jn(pq), between function spaces f (q) and f̃ (p);
the two-dimensional Fourier-Bessel series with the drum
harmonics has the kernel ∼ Jn(kn,mr)einφ in polar
coordinates, for integer n,m, and with kn,m being the
frequencies allowed by circular and radial boundary
conditions. Further series detailed in Watson’s treatise
[11] are the Neumann-c series with kernel ∼ Jn+c(r), the
Kapteyn-c series with ∼ Jn+c((n+c)r), and the
Schlömlich-c series with Jn(cr), which transform between

functions fn with n integer and f̃(c)(r) on continuous r. As
can be seen, none of these has the simple structure of the
discrete N ×N Bessel matrix that was introduced in Eqs.
(21).

Appendix: Proof of the finite Graf summation

To prove the discrete and finite Graf summation formula
(14), one can directly replace the discrete functions from
(4), respecting the parity and periodicity properties (4) for

the N terms in the finite sum, as ∑
j
− j or ∑

2 j
0 . The left-hand

side of this expression is

2 j

∑
n=−2 j

Bn(m)Bn′−n(m
′) (26)

=
1

(2 j+1)2

2 j

∑
n=−2 j

j

∑
k,k′=− j

expi(msin ϕk +m′ sinϕk′)

×
[
Cn′−n cos((n′−n)ϕk′)− iSn′−n sin((n′−n)ϕk′)

]

×
[
Cn cos(nϕk)− iSn sin(nϕk)

]
,

The sum over n shifts over to the two factors that house
the parities in (4), which then separate into two cases, for
n′ even and n′ odd, reconstructing the right-hand side of
the discrete Graf formula (14).

For n′ even, and n′ odd, the sum over n becomes,
respectively

2 j

∑
n=−2 j

[
CnCn′−n cos(nϕk)cos((n′−n)ϕk′)

+SnSn′−n sin(nϕk)sin((n′−n)ϕk′)
]

(27)

= (2 j+1)cos(n′ϕk)δk,k′ ,

−i
2 j

∑
n=−2 j

[
CnSn′−n cos(nϕk)sin((n′−n)ϕk′)

+SnCn′−n sin(nϕk)cos((n′−n)ϕk′)
]

(28)

=−i(2 j+1)sin(n′ϕk)δk,k′ .

This brings the left-hand side of (14) closer to Bn′(m+m′),
as

2 j

∑
n=−2 j

Bn(m)Bn′−n(m
′) (29)

=
1

2 j+1

j

∑
k,k′=− j

expi(msin ϕk +m′ sinϕk′)

×
[
C̃

k,k′

n′
cos(n′ϕk)− iS̃

k,k′

n′
sin(n′ϕk)

]
,

where (27) and (28) contribute to the new coefficients

C̃
k,k′

n′
=

{
0, n′ odd,
δk,k′ , n′ even,

S̃
k,k′

n′
=

{
δk,k′ , n′ odd,
0, n′ even.

(30)
These factors placed in the double sum (26) reduce terms
to those with k = k′ into a single sum, where the two
exponents join to render (m+m′)sin ϕk, and the left-hand
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side of (14) has become indeed

1

2 j+1

j

∑
k=− j

exp(i (m+m′
)sinϕk)

×
[
Cn′ cos(n′ϕk)− iSn′ sin(n′ϕk)

]
= Bn′(m+m′).

(31)
The symmetries (4) indicate that the 4 j+1 summands

in ∑
2 j
n=−2 j can be reduced to N = 2 j + 1 summands by

introducing the Neumann factor εn in (9), Thus, for n′ = 0
and m =−m′, Eq. (14) can be written in the forms

∑
2 j
n=−2 j

[
Bn(m)

]2

= ∑
2 j
n=0 εn

[
Bn(m)

]2

=
[
B0(m)

]2

+ 2∑
2 j
1

[
Bn(m)

]2

= 1,

(32)

that correspond to well-known formulas for Bessel
functions with infinite sums. The basic Graf formula that
is valid for the discrete Bessel functions yields several of
its versions under the symmetries listed in (4). All
formulas in Sects. 2 and 3 have been verified numerically
for a wide sample of particular cases.
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