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Abstract: The unexpected continuing mushrooming tendency of the COVID-19 epidemic calls for alarm in the entire globe especially

with the cropping up of more divergent contagious variants being witnessed. On top of the many non-pharmaceutical measures put

in place for containment of the pandemic, pharmacological measures have been incorporated in the battle against the SARS-CoV-2

especially with the commencement of vaccination in the early December 2020. This study develops a deterministic compartmental

model that incorporates vaccination as a measure to combat the spread of COVID-19 epidemic. We use the model particularly to assess

the potential impact of vaccination in shattering the chain of transmission of the virus in South Africa. Verification of the model is

carried out by performing its best fit to cumulative COVID-19 positive cases data as reported by the government of the Republic of

South Africa utilizing the maximum likelihood estimation algorithm implemented in fitR package. With some vaccines already being

under utility while other are being developed, we consider two major vaccine efficacy scenarios. One scenario accounts for general

hypothetical vaccines with 20%,50%,65% and 85% case efficacy. The other scenario considers the Johnson and Johnson’s Janssen

vaccine with its distinctive efficacy levels as reported to act against the 501Y.V2 variant. The sensitivity analysis and simulations for the

model reveal that the cumulative infections decline drastically with increased extent of vaccination at each level of the vaccine efficacy.

The study fundamentally discovers that vaccinating approximately 20% of the population with a vaccine of at least 60% efficacy would

be sufficient in elimination of the pandemic over relatively shorter time. Moreover, with J&J vaccine maintaining its efficacious level

against the 501Y.V2 variant, it would be the best vaccine to shortly eradicate the COVID-19 epidemic in South Africa.
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1 Introduction

Severe Acute Respiratory Syndrome-Corona-virus-2
(SARS-CoV-2) the agent initiator of the COVID-19
pandemic [1,2,3,4] has never been experienced before in
the human geographical setting [5]. Since its first report
in the late December 2019 in Wuhan China [3,6,7,8], the
world has been seriously battling with the epidemic
confirming that the pandemic has been one of the greatly
taxing global health emergencies in the modern history
[9]. By June 3, 2021, over 172 million COVID-19
associated cumulative infections with more than 3.7
million fatalities have been confirmed in the whole world.
Strangely, the disease has been presenting itself in wave
after wave as observed in many countries globally
probably due to the mutational characteristic of the
causative agent. This tendency of the virus has
remarkably contributed to its long-unexpected delayed

clearance from the human host. This fact makes the
pandemic to keep on being deep-rooted and sustainable
mushrooming in many global regions.

Many non-pharmaceutical measures put in place
world-wide have significantly been of aid in containing
the spread of the virus [10]. Rigorous scientific research
has also been conducted since early 2020 with more than
50 companies joining in to develop anti-COVID-19
vaccines [11]. Based on the history of deadly diseases
encountered in humans before, pharmacological measures
serve better in prevention and eradication of such
diseases. In line with this fact, there has been campaigns
for adoption of the approved COVID-19 vaccines
available. Some of these vaccines include
Pfizer-BioNTech, Moderna, Oxford-AstraZeneca and
Johnson and Johnson’s Janssen (J&J) [11,12]. These
vaccines have received authorization for emergency use
by regulatory bodies in various countries [12]. Some of
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these regulatory bodies are the UK Medicine and Health
Products Regulatory Agency (MHRA), US Food and
Drug Administration (FDA) and Europe Medicine
Agence (EMA) [13].

Pfizer-BioNTech vaccine was firstly approved for use
in UK on December 2, 2020 with the
Oxford-AstraZeneca and Moderna vaccines being
approved on December 20, 2020 and January 8, 2021
respectively [11]. Evaluation of mass vaccination
campaigns and clinical trials have established that
Pfizer-BioNTech, Oxford-AstraZeneca and Moderna
vaccines can provide high levels of protection against
COVID-19 moderate to severe symptomatic conditions
especially with 2 shots administered after 3 to 4 weeks
apart [14,15,16,17]. However, vaccines delivery has been
taxing due to the supply inadequacy and restricted
capacity of distribution in most countries world-wide led
by developing countries [12]. About 92 low- and
middle-income countries are procuring the COVID-19
vaccines via the COVAX Advance Market Commitment
(AMC) Facility which is a world-wide risk-sharing
mechanism for the collaborative procurement of the
COVID-19 vaccines [18]. The countries reinforced by the
COVAX Facility are scheduled to pay for the procured
vaccines once they have been licensed by the World
Health Organization (WHO). These countries are
encouraged to vaccinate the fore-line health care worker
in the first priority. The COVAX Facility further aims to
provide vaccines for vaccinating about 20% of the
countries’ population especially those at high risk.

The single-dose J&J vaccine was firstly rolled out on
February 18, 2021 in the Republic of South Africa. This
was based on the reason that the vaccine was found to
work better against the contagious South African
COVID-19 variant (501Y.V2) unlike the
Oxford-AstraZeneca vaccine which had been procured
before by the government of the Republic of South Africa
[19]. The US Food and Drug Administration (FDA) [20]
confirmed previously that J&J vaccine had 57% efficacy
against the more contagious 501Y.V2 variant. Amazingly,
their further clinical trials re-confirmed that the vaccine
was 64% efficacious, it could offer 73% protection
against moderate to severe COVID-19 infections 14 days
after vaccination and could offer 82% protection 28 days
after receiving the dose. This report was posted online by
US FDA on February 24, 2021. As of April 24, 2021, the
Republic of South Africa had vaccinated about 479,768
people with J&J vaccine [19]. These were majorly the
front-line health care workers which were prioritized to
be vaccinated in phase 1 of the Sisonke vaccination
program. This accounts for approximately 1% of the
Republic of South Africa total population [19].

COVID-19 has continuously animated the scientific
research arena with more insight being drawn to the
understanding of its transmission dynamics and control
measures in prolific effort to diminish the epidemic. To
achieve such, scientists have greatly used mathematical
modeling tool with extension of the SIR and SEIR

compartmental mathematical models [21,22,23,24,25,
26,27]. Inference by [28] heed that mathematical
modeling is a utility tool for provision of realistic
discernment into the transmission dynamics and
containment of escalating infectious disease such as
COVID-19. Moreover, [29,30] report that mathematical
modeling technique has a long tract record of utilization
as a tool used to examine policy. It is recently being
adapted extensively to study the dynamics of the
COVID-19 epidemic especially modeling of
anti-COVID-19 vaccines’ impacts and administration
strategies as adopted in different countries in the entire
globe.

For instance, in [31], modified SEIR compartmental
model is used to assess the impact of an hypothetical
imperfect anti-COVID-19 vaccine on the control of the
pandemic. They derived an analytical expression for the
minimum percentage of un-vaccinated susceptible
individuals who needed to be vaccinated in order to
achieve-induced community herd immunity. In [18], a
mathematical model which aimed at simulating different
vaccine allocation strategies in India is developed. The
model is used to assess these vaccine allocation strategies
while varying potential vaccine characteristics. Further,
an evaluation of the relative COVID-19 cases and deaths
under varying control measures is considered. In [29],
mathematical modeling is employed to examine the
possible outcomes of different vaccination scenarios. The
distinction between projection against infections, onward
transmission and disease, and differential protection
effects on the elderly is considered. In [13], a
compartmental mathematical model is developed and
used to study the COVID-19 transmission dynamics with
mass vaccination strategy. Social distancing and testing
against the COVID-19 pandemic as part of containing its
spread is also factored in. In [12], a mathematical model
incorporating evaluation of the COVID-19 vaccination
strategies with delayed second dose administration is
done. In [11], an existing age-structured and
regionally-structured mathematical model of
SARS-CoV-2 dynamics matched to UK data is adapted.
The model is further used to study vaccination and
non-pharmaceutical interventions against the spread of
the COVID-19 epidemic.

In this belt, this study seeks to develop a deterministic
compartmental mathematical model incorporating an
anti-COVID-19 vaccine in significant contribution to
battle the COVID-19 epidemic. We use the model
specifically to assess the potential impact of vaccination
in shattering the chain of transmission of the
SARS-CoV-2 in South Africa. The remaining part of the
paper is structured as follows: We devote Section 2 to
model formulation. In Section 3, we analyze the model
properties proving positivity and boundedness, local and
global stability of disease free equilibrium. In Section 4,
we present results analysis and discussion including
model validation, sensitivity analysis, and numerical
simulations. Finally, in Section 5 we give the conclusion.
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2 Model Formulation

We give the descriptive formulation of the hereby
proposed compartmental deterministic model
incorporating vaccination against the COVID-19
pandemic. We subdivide the cumulative human
population N(t) into six discordant classes specifically
the susceptible class (S(t)) , the susceptible-vaccinated
class (SV (t)), the latent class (E(t)), the infectious class of
individuals who are symptomatic (Is(t)), the infectious
class of individuals who are asymptomatic (IA(t)) and the
class of individuals who are removed from the chain of
transmission of the disease (R(t)). Therefore, the total
human population over time t for the proposed model is

N(t) = S(t)+ SV(t)+E(t)+ Is(t)+ IA(t)+R(t). (1)

The flow diagram for the proposed model is depicted
by Figure 1. The model assumes that the vaccinated
individuals can be removed from the disease’s
transmission cycle following their highly boosted
immunity and their wise choices of continuing to adhere
to the containment protocols put in place. The resultant
model system of ordinary differential equations is

dS

dt
= π − (γ +ω + µ)S (2)

dSV

dt
= ωS− ((1−α)Λγ +αΛ + µ)SV (3)

dE

dt
= γS+(1−α)ΛγSV − (η + µ)E (4)

dIs

dt
= ρηE − (φ + µ)Is (5)

dIA

dt
= (1−ρ)ηE− (ψ + µ)IA (6)

dR

dt
= αΛSV +φ Is +ψIA− µR (7)

where

γ = β (ξ Is + IA) (8)

is the force of infection with ξ < 1 being the modification
parameter since generally the asymptomatic individuals
are assumed to be more infectious than the symptomatic
individuals. The other model parameters are defined in
Table 1.

3 Model Properties

We point out that the model describes human population,
and therefore it is very key to analyze the model’s
properties in preservation of the epidemiological
meaningfulness [32]. Due to this paramount reason, we
present the analysis of the model (2) - (7) basic features.

Fig. 1: The proposed model assimilating vaccination against

COVID-19.

3.1 Positivity of the Solution

We demonstrate that the model’s solution prevail positive
for all t ≥ 0. We state and prove a Lemma as follows

Lemma 3.1
Let S(0)≥ 0, SV (0)≥ 0, E(0)≥ 0, Is(0)≥ 0, IA(0)≥

0 and R(0) ≥ 0. Then the solution S(t) > 0, SV (t) > 0,
E(t)> 0, Is(t)> 0, IA(t)> 0 and R(t)> 0 exist ∀ t ≥ 0.

Proof
Suppose that the solution of the model (2) - (7) is not
positive for all t ≥ 0. Then there exist a first time t∗ > 0
such that

t∗ = inf{t | S(t) = 0 or SV (t) = 0 or E(t) = 0 or Is(t) = 0 or IA(t) = 0 or R(t) = 0}.

If S(t∗) = 0, then ∀ t ∈ (0, t∗), S(t) > 0, SV (t) > 0,

E(t) > 0, Is(t) > 0, IA(t) > 0 and R(t) > 0,
dS(t∗)

dt
< 0.

However, from (2)
dS(t∗)

dt
= π > 0 (since all the model

parameters are defined to be positive). This contradicts

the initial assumption that
dS(t∗)

dt
< 0. Hence S(t) > 0 for

all t ≥ 0. Adapting similar argument, it can be proved that
SV (t), E(t), Is(t), IA(t) and R(t) are positive for all t ≥ 0.

3.2 The Invariant Region

We next ascertain that the model’s solution is bounded
and hold out in the positive region for all t ≥ 0. This is
accomplished by proving that the biological feasible
region predefined here as

DR =

{
(S,SV ,E, Is , IA,R) ∈ R

6
+ : S+SV +E + Is + IA +R ≤

π

µ

}
(9)

is positively invariant with respect to the model (2) - (7).
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Table 1: Parameter description for the model (2) - (7) and their estimated values.

Symbol Parameter Description Value per day Source

π Recruitment rate 11244 [5]

β Effective contact rate 1.0598 [5]

ω Measure of vaccination (0,1) Variable

α Measure of vaccine efficacy (0,1) Variable

αΛ ((1−α)Λ) Rate at which susceptible-vaccinated individuals are

removed (become latent)

Λ = 0.9 Fitted

ρη ((1−ρ)η) Symptomatic (asymptomatic) development by the latent

individuals

ρ = 0.27 η =

0.1961

Fitted [13,18]

ξ Infectious rate by the symptomatic individuals 0.3214 [31]

φ Removal rate by the symptomatic individuals 0.1429 [31]

ψ Removal rate by the asymptomatic individuals 0.3115 Fitted

µ Natural death rate 0.0001 Fitted

Noticing that

dN

dt
= π − µN. (10)

We obtain

N(t) =
π

µ

(
1− e−µt

)
+N0e−µt , (11)

where N0 = N(0).
Using comparison theorems on ODEs (11) (see [33])

yields

lim
t→∞

N(t) ≤
π

µ
. (12)

Equation (12) hints that N ≤ π
µ , ∀t ≥ 0. We deduce that N

is bounded thus culminating that the feasible region DR

is positively invariant and attracting. Hence it is in order
to consider the dynamics of the model (2) - (7) in DR for
all t ≥ 0. The model can now be considered as
epidemiologically and mathematically well posed in the
DR [34].

3.3 The Model Stability Analysis

We establish that the proposed model has a unique disease
free equilibrium (DFE) E ∗ with

E
∗ = (S∗,S∗V ,0,0,0,R

∗) (13)

where

S∗ =
π

ω + µ
,

S∗V =
πω

(ω + µ)(αΛ + µ)
,

R∗ =
αΛπω

µ(ω + µ)(αΛ + µ)
. (14)

3.3.1 The Disease Free Equilibrium Local Stability

We compute the basic reproduction number of the model
in order to analyze the local stability of the DFE. It
represents the average secondary number of infections
that result from one infected individual when introduced
in a totally susceptible population. We denote the basic
reproduction by R0 and adopt the next generation matrix
(NGM) technique for its computation [32].

From the model (2) - (7) the Jacobian for secondary
infections F and transfer of infections V are respectively
given by

F =




0
βξ π

(ω+µ)

(
1+

(1−α)ωΛ
αΛ+µ

)
βπ

(ω+µ)

(
1+

(1−α)ωΛ
αΛ+µ

)

0 0 0

0 0 0


 , (15)

and

V =




η + µ 0 0
−ρη φ + µ 0

−(1−ρ)η 0 ψ + µ


 , (16)

FV−1 =




β π
(ω+µ)(η+µ) ℓ

{
ρηξ
φ+ψ + (1−ρ)η

ψ+µ

}
β πξ

(ω+µ)(φ+µ) ℓ
β π

(ω+µ)(ψ+µ) ℓ

0 0 0

0 0 0


 (17)
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where

ℓ = 1+
(1−α)ωΛ

αΛ + µ
. (18)

Hence the basic reproduction number for the model is

R0 =
β π

(ω + µ)(η + µ)
ℓ

{
ξ ρη

φ +ψ
+

(1−ρ)η

ψ + µ

}
. (19)

The DFE of the model is locally asymptotically stable
if R0 < 1. The basic reproduction number R0 displays
the contributions of the symptomatic and the
asymptomatic individuals to the infections and can be
written as R0 = R0s + R0A where

R0s = β π
(ω+µ)(η+µ)ℓ

{
ξ ρη
φ+ψ

}
and

R0A = β π
(ω+µ)(η+µ)ℓ

{
(1−ρ)η

ψ+µ

}
.

3.3.2 The Disease Free Equilibrium Global Stability

We verify the model’s DFE global stability employing the
approach used by [35]. We state and prove a Lemma in this
case.

Lemma 3.3.2
Let the model be expressible in the form,

dX
dt

= F(X,Y), dY
dt

= G(X,Y), G(X,0) = 0, where vector
X represents the uninfected classes and vector Y is the
disease classes of the model. The fixed point E ∗ = (X∗,0)
for the model is globally asymptotically stable (g. a. s) if
and only if R0 < 1 and the following conditions are
satisfied

C1 : dX
dt

= F(X,0), X∗ is globally asymptotically stable.

C2 :G(X,Y) = ZY− G̃(X,Y), G̃(X,Y) ≥ 0 for (X,Y) ∈

R
6
+ where Z = ∂G

∂Y
E ∗ and R

6
+ is the region where the

model makes biological sense.

Proof

From the model system (2) - (7), we heed that
X = (S,SV ,R)

T and Y = (E, Is, IA)
T . The model’s DFE is

E ∗ = (X∗,0) =(
π

ω+µ ,
πω

(ω+µ)(αΛ+µ) ,
αΛπω

µ(ω+µ)(αΛ+µ) ,0,0,0
)

as set up by

(13). The point E ∗ = (X∗,0) is g. a. s if R0 < 1, thus

dX
dt

= F(X,0) =




π − (ω + µ)S
ωS− (αΛ + µ)SV

αΛSV − µR

0


 hence the

condition C1 is plainly satisfied. For condition C2

ZY =




−(η + µ) 0 0

ρη −(φ + µ) 0
(1−ρ)η 0 −(ψ + µ)








E

Is

IA



 (20)

and

G(X,Y) =




β (ξ Is + IA)S+(1−α)β (ξ Is+ IA)SV

ρηE − (φ + µ)Is

(1−ρ)ηE− (ψ + µ)IA


 .(21)

From the identity that G(X,Y) = ZY− G̃(X,Y), then
it indicates that

G̃(X,Y) =




β (ξ Is + IA)
(
1− S

N

)
+(1−α)β (ξ Is + IA)

(
1−

SV
N

)

0

0


 . (22)

We note that since 0 ≤ SV ≤ S ≤ N, then G̃(X,Y) ≥ 0
hence condition C2 is satisfied. Thus we conclude that the
DFE of the model is globally asymptotically stable
whenever R0 < 1.

4 Results Analysis and Discussion

4.1 Model Validation

Owing to the fact that fitting of any developed model to
real data is a paramount aspect particularly for the
authentication of the model’s use for scenario testing via
numerical simulations, we perform the fitting of the
model (2) - (7). The data utilized is the cumulative
COVID-19 positive cases as reported by the government
of the Republic of South Africa in the period between
10th of June 2020 and 31st of July 2020 [19]. We adopt
the Maximum likelihood estimation (MLE) algorithm
implemented in fitR package to fit the model to the data.
The goodness of fit is depicted by Figure 2.

obs

0 10 20 30 40 50

1e+05

2e+05

3e+05

4e+05

5e+05

time

v
a
lu
e

Fig. 2: The model (2) - (7) fit to cumulative COVID-19 positive

reported cases (10 June - 31 July 2020) in South Africa.

The black-dotted line represents the reported data for COVID-

19 positive cases whereas the red-continuous line shows the

goodness of fit. Parameter values used are as listed in Table 1

with ω = 0.00001 and α = 0.00001.
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4.2 Sensitivity Analysis

For the purpose of ascertaining the impact(s) of any
parameter(s) of research engrossment on the dependent
variable, sensitivity analysis is undertaken. The cardinal
parameters of regard for this research are ω and α for the
measure of vaccination and the vaccine efficacy
respectively. We define to have poor vaccination and poor
vaccine efficacy if both parameters approach zero
whereas perfect vaccination and perfect vaccine efficacy
is achieved when both parameters draw closely to unity
thus 0 < ω < 1 and 0 < α < 1. We carry out sensitivity
analysis for our model to establish the effects of the
aforementioned parameters on the basic reproduction
number R0. This is done graphically using (19).

Figure 3 illustrates how the basic reproduction
number varies with the measure of vaccination ω and
measure of vaccine efficacy α . The figure establishes that
R0 decreases with increase in both the parameters ω and
α . Distinctively it obliques that R0 decreases sharply
drawing very close to 0 as ω and α assume their extreme
values unity (perfect vaccination and vaccine efficacy).
This solitary trend fundamentally stipulates that the
increased vaccination against COVID-19 using high
efficacious vaccine to the general public, would greatly
diminish the basic reproduction number and thus
stabilizing the DFE to an extent of the pandemic
eradication over time.

In addition, considering that the so far approved
vaccines for use are currently under very high demand
creating scantiness especially in developing countries
worldwide and thus delaying the availability of the
vaccines, and also the fact that developing a vaccine takes
relatively longer time, we consider endorsing a vaccine
with a degree of efficacy in bits at varying proportion of
vaccination. This is evidenced in Figures 4 and 5. Figure
4 adopts general hypothetical vaccines with different
efficacy whereas Figure 5 considers specifically Johnson
and Johnson’s Janssen vaccine firstly rolled out in South
Africa with efficacy as reported by US Food and Drug
Administration (see Section 1). Both the figures show
how R0 values grow small as ω advances near its extreme
value 1 at rising levels of α . The figures reveal incredible
shift of R0 values at different endorsement of vaccine
efficacy. A stipulation from these fundamental
observations disclose that vaccinating nearly 20% of the
population with a vaccine of at least 60% efficacy would
suffice to shortly stabilize the disease free equilibrium
hence eliminating the COVID-19 pandemic over
relatively shorter time.

4.3 Numerical Simulations

We carry out numerical simulations using the model
principally to test for different scenarios with respect to
the parameters of scrutiny for this research work. As
aforementioned, the principal parameters of interest here

Fig. 3: Variation of the basic reproduction number with ω
(measure/ extent of vaccination) and α (measure of vaccine

efficacy). Parameter values used are listed in Table 1.

for the proposed model are ω denoting the extent of
vaccination to the general public and α for the measure of
vaccine efficacy. We simulate all the six classes of the
model but narrow down our attention to the symptomatic
and asymptomatic infectious classes which abundantly
add up to the cumulative infections for COVID-19
epidemic as reported. We consider two major sets of
vaccine efficacy scenarios namely the general
hypothetical vaccine efficacy array of Four levels and a
specific vaccine efficacy level scenario for Johnson and
Johnson’s Janssen (J&J) vaccine as previously reported to
act against the South African COVID-19 variant
(501Y.V2). Report released on February 24, 2020 by the
US Food and Drug Administration indicated that J&J
vaccine was 64% efficacious against moderate to severe
COVID-19 infections caused by 501Y.V2 variant as
opposed to the initial 57% efficacy established during the
earlier clinical trials. Furthermore, the report also
revealed that the vaccine efficacy against severe
COVID-19 cases was 73%, 14 days after vaccination and
increased to 82% at least 28 days after vaccination. This
solitary trend for J&J vaccine is completely amazing and
thus we found it worthwhile to consider in our model
numerical simulations.

Figure 6 illustrates the trajectory of all the six classes
of the model (2) - (7) at the instant when the measure of
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Fig. 4: Variation of the basic reproduction number with ω
(measure of vaccination) at rising levels of vaccine efficacy α
for a general hypothetical vaccine efficacy scenarios. Parameter

values used are listed in Table 1.

vaccination ω and the measure of vaccine efficacy α
levels are extremely minimal. This figure clearly predicts
higher plateau numbers of latent cases, symptomatic
infectious cases and higher asymptomatic infectious cases
summing up to extremely high COVID-19 infections.
This trend implies that without the vaccination program,
the epidemic would continue escalating hence surging the
peak number of the cumulative infections.

Figure 7 demonstrates the trajectory of all the six
classes of the model (2) - (7) at the instant when the
measure of vaccination ω = 10% and the measure of
vaccine efficacy α = 60%. This figure depicts very low
plateau numbers of latent cases, symptomatic infectious
cases as well as low asymptomatic infectious cases
resulting in extreme decline in COVID-19 infections.
This tendency absolutely divulges that at least 10% of the
population vaccinated using a vaccine of 60% efficacy
would be very effective reversing the plateau number of
COVID-19 epidemic infections. This inference is wholly
in concurrence with the solitary threshold observation
established by Figures 4 - 5.

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4

ω

R
_

0
 
v
a

lu
e

s

α values

α = 0.57

α = 0.64

α = 0.73

α = 0.82

Fig. 5: Variation of the basic reproduction number with ω
(measure of vaccination) at rising levels of vaccine efficacy α
for a specific vaccine efficacy scenarios. Parameter values used

are listed in Table 1.

4.3.1 General Vaccine Efficacy Scenarios: α = 20%,
α = 50%, α = 65%, and α = 85%

For this case, we consider Four levels of vaccine efficacy
α particularly, α = 20%, α = 50%, α = 65%, and
α = 85%. We then simulate the symptomatic and
asymptomatic infectious model’s classes (Is(t) and IA(t)
respectively) at instances when the extent of vaccination
ω is 0.01,0.04,0.08,0.12,0.2,0.3 (gradually increasing
percentages of vaccination). The trajectory tendency for
this hypothetical scenario is vividly depicted by Figures 8
− 15. We used the parameter values listed in Table 1. The
figures establish accelerated diminishing peak numbers of
COVID-19 cumulative infections as the measure of
vaccination ω increases at each level of individual
vaccine efficacy α scenario. Fundamentally, it is clearly
observed that the higher the vaccine efficacy, the lower
the percentage of vaccination required to eradicate the
epidemic shortly. Uniquely, it is revealed that the plateau
number of cumulative infections completely diminish
over relatively shorter time when the measure of
vaccination is at least 20% with 60% vaccine efficacy.

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


708 M. Kinyili et al.: Assessing the impact of vaccination on COVID-19 in South Africa

I_s I_A R

S S_V E

0 50 100 150 0 50 100 150 0 50 100 150

0e+00

5e+05

1e+06

2.0e+07

2.5e+07

3.0e+07

3.5e+07

0

3000

6000

9000

0e+00

2e+05

4e+05

6e+05

1.0e+07

1.5e+07

2.0e+07

0e+00

1e+05

2e+05

3e+05

4e+05

time

v
a
lu
e

Fig. 6: Trajectory simulations of all the six classes of the model

(2) - (7) when the measure of vaccination ω and the vaccine

efficacy α values are extremely minimal. Parameter values used

are listed in Table 1.

4.3.2 Specific Vaccine Efficacy Scenarios: α = 57%,
α = 64%, α = 73%, and α = 82%

For this case, we consider the specific trend efficacy
levels for the Johnson and Johnson’s Janssen vaccine as it
was reported to act against the South African COVID-19
variant (501Y.V2) (see Section 1). Based on the report,
Four levels of J&J vaccine efficacy namely, α = 57%,
α = 64%, α = 73%, and α = 82% are tested. We once
again simulate the symptomatic and asymptomatic
infectious classes (Is(t) and IA(t) respectively) of the
model at instances when the measure of vaccination ω is
0.01,0.04,0.08,0.12,0.2,0.3 (gradually increasing
percentages of vaccination). The trajectory clear-cut
tendency for this specific scenario is illustrated by Figures
16 − 23. We used the parameter values listed in Table 1.
The figures depict remarkably accelerated reducing
plateau numbers of COVID-19 cumulative infections as
the measure of vaccination ω increases at each level of
the vaccine efficacy. Distinctively, it is plainly observed
that J&J vaccine would be the best in shortly eliminating
the COVID-19 pandemic in South Africa even when a
minimum 12% of the population is vaccinated.

Moreover, as a consequence of remarkable decline in
the plateau numbers of both symptomatic and
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Fig. 7: Trajectory simulations of all the six classes of the model

(2) - (7) when the measure of vaccination ω = 0.1 and the vaccine

efficacy α = 0.6. Parameter values used are listed in Table 1.
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Fig. 8: Simulations of the model (2) - (7) showing the cumulative

number of Is(t) individuals when α = 20% as ω increases

gradually.
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Fig. 9: Simulations of the model (2) - (7) showing the cumulative

number of IA(t) individuals when α = 20% as ω increases

gradually.
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Fig. 10: Simulations of the model (2) - (7) showing the

cumulative number of Is(t) individuals when α = 50% as ω
increases gradually.

asymptomatic cumulative infections, the peak number for
the latent individuals keep on diminishing for both the
scenarios. This trend is clearly depicted by Figures 24 −
27 for the general hypothetical vaccine efficacy scenario
4.3.1 and Figures 28 − 31 for the specific vaccine efficacy
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Fig. 11: Simulations of the model (2) - (7) showing the

cumulative number of IA(t) individuals when α = 50% as ω
increases gradually.
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Fig. 12: Simulations of the model (2) - (7) showing the

cumulative number of Is(t) individuals when α = 65% as ω
increases gradually.

scenario 4.3.2. This is absolutely in order since as much
as the cumulative infections reduce, then the exposures
also decrease consequentially.

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


710 M. Kinyili et al.: Assessing the impact of vaccination on COVID-19 in South Africa

0 50 100 150

0
2
0
0
0
0

6
0
0
0
0

1
0
0
0
0
0

I_A: α = 0.65

Time (days)

C
u
m

u
la

ti
v
e
 I
_
A

ωvalues

ω= 0.01

ω= 0.04

ω= 0.08

ω= 0.12

ω= 0.2

ω= 0.3

Fig. 13: Simulations of the model (2) - (7) showing the

cumulative number of IA(t) individuals when α = 65% as ω
increases gradually.
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Fig. 14: Simulations of the model (2) - (7) showing the

cumulative number of Is(t) individuals when α = 85% as ω
increases gradually.

5 Conclusion

In this work, we formulated a modified SEIR
deterministic model. The model’s key unique feature was
the incorporation of anti-COVID-19 vaccine with some
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Fig. 15: Simulations of the model (2) - (7) showing the

cumulative number of IA(t) individuals when α = 85% as ω
increases gradually.
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Fig. 16: Simulations of the model (2) - (7) showing the

cumulative number of Is(t) individuals when α = 57% as ω
increases gradually.

degree of efficacy. The model’s paramount properties
were verified to preserve the epidemiological
meaningfulness since the model monitored human
population. This important exercise ascertained that the
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increases gradually.
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Fig. 18: Simulations of the model (2) - (7) showing the
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increases gradually.

solution of the model prevailed positive and bounded for
all non-negative time within a defined feasible region.

Additionally, the developed model was validated by
carrying out its fitting to COVID-19 positive cases
reported data of the Republic of South Africa in the span
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Fig. 19: Simulations of the model (2) - (7) showing the

cumulative number of IA(t) individuals when α = 64% as ω
increases gradually.
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Fig. 20: Simulations of the model (2) - (7) showing the

cumulative number of Is(t) individuals when α = 73% as ω
increases gradually.

from 10th June to 31st July 2020. This authenticated the
utility of the model for sensitivity analysis and further
simulations. On the account that several vaccines have so
far been approved for use while others are still under
development and that such vaccines have varying degree
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Fig. 21: Simulations of the model (2) - (7) showing the

cumulative number of IA(t) individuals when α = 73% as ω
increases gradually.
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Fig. 22: Simulations of the model (2) - (7) showing the

cumulative number of Is(t) individuals when α = 82% as ω
increases gradually.

of protection against the COVID-19 pandemic, we
considered two major vaccine efficacy scenarios. One
scenario accounted for general hypothetical vaccines with
20%,50%,65% and 85% case efficacy. The other scenario
considered a specific vaccine in particular the Johnson
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Fig. 23: Simulations of the model (2) - (7) showing the

cumulative number of IA(t) individuals when α = 82% as ω
increases gradually.
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Fig. 24: Simulations of the model (2) - (7) showing the

cumulative number of E(t) individuals when α = 20% as ω
increases gradually.

and Johnson’s Janssen vaccine with its distinctive efficacy
levels as reported to act against the 501Y.V2 variant by
the US Food and Drug Administration.

Sensitivity analysis done for the model depicted that
the basic reproduction number decreased with increase in

c© 2021 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 15, No. 6, 701-716 (2021) / www.naturalspublishing.com/Journals.asp 713

0 50 100 150

0
5
0
0
0
0

1
5
0
0
0
0

2
5
0
0
0
0

E: α = 0.5

Time (days)

C
u
m

u
la

ti
v
e
 E

ωvalues

ω= 0.01

ω= 0.04

ω= 0.08

ω= 0.12

ω= 0.2

ω= 0.3

Fig. 25: Simulations of the model (2) - (7) showing the

cumulative number of E(t) individuals when α = 50% as ω
increases gradually.
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Fig. 26: Simulations of the model (2) - (7) showing the

cumulative number of E(t) individuals when α = 65% as ω
increases gradually.

both the extent of vaccination and the vaccine efficacy. It
was established that the higher the vaccine efficacy, the
lower the percentage of the susceptible population
required to be vaccinated in eradication of the epidemic
within a shorter span of time.
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Fig. 27: Simulations of the model (2) - (7) showing the

cumulative number of E(t) individuals when α = 85% as ω
increases gradually.
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Fig. 28: Simulations of the model (2) - (7) showing the

cumulative number of E(t) individuals when α = 57% as ω
increases gradually.

The model simulations depicted as follows: In
absence of anti-COVID-19 vaccination, the model
predicted surging peak numbers of both symptomatic and
asymptomatic infectious individual amounting to
extremely high cumulative infections. The total numbers
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Fig. 29: Simulations of the model (2) - (7) showing the

cumulative number of E(t) individuals when α = 64% as ω
increases gradually.
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Fig. 30: Simulations of the model (2) - (7) showing the

cumulative number of E(t) individuals when α = 73% as ω
increases gradually.

of infections declined drastically at each level of vaccine
efficacy as the percentage of vaccination gradually
increased for both of the two aforementioned scenarios.
This solitary trend consequentially resulted in drastic
decline on the cumulative latent cases. In this belt, it was
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Fig. 31: Simulations of the model (2) - (7) showing the

cumulative number of E(t) individuals when α = 82% as ω
increases gradually.

discovered that vaccinating approximately 20% of the
population with a vaccine of at least 60% efficacy would
be sufficient in elimination of the pandemic over
relatively shorter time. Most remarkably, with J&J
vaccine maintaining its efficacious level solitary tendency
against the 501Y.V2 variant, it would be the best vaccine
to shortly eradicate the COVID-19 epidemic in South
Africa. Thus, this study would advocate increased use of
the Johnson and Johnson’s Janssen vaccine in South
Africa as long as it maintain its efficacy level trend.
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