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Abstract: The problem of statistical inference in reliability theory for the competing risks model under accelerated life testing (ALT)

have a great significance. In practice, independent variables are assumed for convenience, which do not agree with the nature of

the problem at hand. In this paper, we consider the constant stress accelerated life testing (CS-ALT) of dependent competing risks

model for generalized inverted exponential distribution (GIED). The dependence structure is described by the copula approach between

variable. Under consideration that units is failing by only two dependent causes of failure under constant stress ALTs and type-I

progressive hybrid censoring scheme (PHCS), the model parameters are estimated with maximum likelihood method by using the

bivariate Pareto copula function. The asymptotic confidence intervals with approximate Bootstrap confidence intervals are constructed.

Under consideration two stress levels the set of real data are analyzed for illustrative purposes. For different measures of Kendall’s tau

and censoring schemes Monto Carlo simulation study is constructed.

Keywords: Generalized inverted exponential distribution; Competing risks model; Copula function; Accelerated life testing;

Progressively hybrid censoring; Maximum likelihood estimation; Bootstrap confidence intervals

1 Introduction

More information about the lifetime of product (systems
or components) in short period of time can be obtained
under ALTs. Hence, the ALTs have attention in a recently
year to present a quickly source of data. In an ALT, the
units are placed under stress levels higher than use to
accelerate the failures of the units. Different types of
ALTs are avialable and the key reference of these types
are presented by [1]. The first type, known by constant
stress ALTs, in which the experimenter run the
experiment under constant stress until the final point of
the experiment. For more surf of constant stress ALTs
see, [2], [3] and [4]. Second type called step stress ALTs,
in which the experimenter run the experiment at different
stress levels and changing at prefixed time or number of
failures. For more surf of step stress ALTs, see [5], [6],
[7], [8], [9] and [10] .The final type, which the stress is

kept with continuously increasing at all experiment steps
is called by progressive stress ALTs. For more details of
progressive stress ALTs, see [11] and [12]. Recently, [13]
have discussed the accelerated competing risks model
from Gompertz lifetime distribution.
The GIED and its properties is presented early as a
generalization of inverted exponential distribution by
[14]. Also, GIED discussed as a special case of
exponentiated Frechet distribution. The random variable
X is called GIE random variable if distributed with
cumulative distribution function (CDF) given by

F(x) = 1− (1− e−λ/x)α , α, λ > 0, x > 0, (1)

where α and λ are called the shape and scale parameters,
respectively. Also, GIED has probability density function
(PDF) and survival function, respectively given by

f (x) = (αλ/x2)e−λ/x(1− e−λ/x)α−1, (2)
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and

S(x) = (1− e−λ/x)α . (3)

Many of the studies examined the characteristics and
inferences of the GIED using different types of data.
Under a complete sample, the properties and reliability
characteristics as well as maximum likelihood estimators
(MLEs) of GIED are derived by [14]. Under progressive
type-II censored sample, the model parameters are
estimate with ML and least squares methods by [15]. The
necessary and sufficient conditions for existence and
uniqueness of the MLEs of the GIE parameters have been
provided by [16]. [17] and [18] discussed the Bayes
estimators of the GIE parameters under hybrid censoring
scheme. [19], provided the estimated stress-strength
parameter P(Y < X) for GIE model under progressive
first-failure censoring scheme. Under adaptive type-II
progressive censoring scheme, the ML and Bayes
estimators of the model parameters are obtained by [20].

Measuring the quality of the life product required to
put some units of the product under life testing
experiment. The obtaining data may be complete or
censoring. The experimenter under some restricted of cost
or time determine the suitable method to obtain the data.
The word complete data is used when information come
from all units under the test. But, censoring data appear
when some but not all lifetime of units is observed. The
oldest common censoring schemes are called type-I and
type-II censoring schemes. If the experimenter reported
the test time and number of failure is random then, we
mean type-I censoring scheme. But, if reported the
number of failure units and the test time is random then,
we mean type-II censoring scheme. When, the
experimenter report to remove units at any step of
experiment which is more suitable for another purposes
then, we mean progressive censoring scheme. For more
details in this topic, interested readers are referred to [22]
and [23]. Hybrid censoring scheme is appear when the
experimenter report the suitable number of failure units
and the test time before the experiment is running.
Different types of hybrid censoring schemes are available
in literature, among them type-I progressive hybrid and
type-II progressive hybrid censoring schemes are
described as follows:

Suppose that, n selected units are putted under the test
and the suitable number of failure units needing for
statistical inferences and the ideal test time are
determined by (m, τ). In type-I progressive hybrid
censoring scheme, the failure time is record until the
min(Tm, τ) is observed. In type-II progressive hybrid
censoring scheme the failure time is record until the
max(Tm, τ) is observed. In progressive type-I hybrid
censoring scheme, suppose censoring scheme R={R1, R2,
..., Rm} is prefixed to satisfies n = m+∑m

i=1 Ri . At each
failure time Ti, then Ri survival units are removed from
the test with i = 1,2, ...,m.

The paper aim to analysis the competing risks model
under dependent GIE failure time when the failure times

are accelerated with constant stress ALTs. And, the
lifetime data is collected under type-I progressive hybrid
censoring scheme (type-I PHCS). The copula approach is
used to describing the dependence structure between
variables. The parameters of the proposed model are
estimated with ML method for point and interval
estimators. Aslo, the bootstrap technique is used to
constructed the approximated confidence intervals. The
developed results are used for analysis some data set.
Also, estimators are assessed and compared with Monto
Carlo simulation study.

The remainder of this paper is planed as the following
sections, the dependent structure of competing risks
model with copula function and bivariate Pareto copula in
Section 2. The model description and its properties in
Section 3. The parameters and Reliability of the system
are estimated with maximum likelihood method as well as
the corresponding asymptotic confidence intervals based
on the observed Fisher’s information matrix are obtained
in Section 4. Bootstrap technique is used to construct the
confidence intervals of the model parameters in Section 5.
Data analysis are presented in Section 6. Simulation study
with numerical comparisons of the estimates are
presented in Section 7. The article concludes in Section 8.

2 Copulas

The problem of modeling the dependence structure
between variable with copula function is convenient way
for dependent competing failure modes. The selected
copula determine what is the type of dependence
structure. More detail about the properties and definition
of copula function are given in [24]. Under consideration
that, the variables Xi distributed with marginal
distributions Fi and the corresponding survival functions
Si = F̄i, i = 1,2, ...,m, respectively. Then, a unique m

dimensional copula C is exists to define the joint
distribution function H(x1, ...,xm) by

H(x1, ...,xm) =C(F1(x1), ...,Fm(xm)). (4)

In contrast, for given m-dimensional copula function C of
the marginal functions Fi, i = 1,2, ...,m, then H present m

joint distribution function given by (4). Also, the
dependence structure of joint distribution function H

depend on the choice of copula function C and the
corresponding marginal functions Fi, i = 1,2, ...,m. The
corollary of Sklar’s theorem is used to construct a copula
function of the continuos marginal functions
Fi, i = 1,2, ...,m. Also, for m-dimensional invariance
distributions marginal functions F−1

i (ui), where
ui = Fi(xi) and i = 1,2, ...,m the copula function defined
by,

C(u1, ...,um) = H(F−1
1 (u1), ...,F

−1
m (um)). (5)

The multivariate survival function S(x1, ...,xm) under
transformation Xi → Fi(Xi) = 1 − Si(Xi) with Sklar’s
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theorem via an appropriate copula C̄ called the survival
copula of (X1, ...,Xm) can be expressed by

S(x1, ...,xm) = C̄(S1(x1), ...,Sm(xm)), (6)

where C̄ called the appropriate survival copula of Xi,
i = 1,2, ...,m. Then, we can say copula functions C and C̄

are relate with marginal distribution functions Fi and
marginal survival functions Si, i = 1, 2, ..., m, with
multivariate distribution and survival functions,
respectively.

2.1 Archimedean copula

The function φ under some situations satisfies

φ(C(u,v)) = φ(u)+φ(v), (7)

is called Archimedean copula. And, the inverse

function φ [−1] define the solution of C to such that

C(u,v) = φ [−1](φ(u)+φ(v)). (8)

When φ(t) = t−1/θ − 1, θ ≥ 1, the Bivariate Pareto
Copula (BPC) is defined by

Cθ (u,v) = (u−1/θ + v−1/θ − 1)−θ (9)

2.2 Measure of association

Different types of copula are available with different
parameters values and so, copula function does not
comparable. Therefore, the compare case under copula
need to define Kendall’s tau as the follows

τ = 4

1
∫

0

1
∫

0

C(u,v)c(u,v)dudv = 4E[C(U,V)]− 1, (10)

Hence, (10) under BPC is reduced to

τ = 4

1
∫

0

φ(t)

φ
′
(t)

dt + 1 = 1/(2θ + 1). (11)

3 The Model Description

Let, n identical independent units are randomly selected
from a life product, this sample are randomly distributed

to (n1, n2 ...,nk), n =
k

∑
l=1

nl to test under k different

constant stress levels. Suppose, the prefixed, integers (m1,
m2 ...,mk), ideal tested times (τ1, τ2 ...,τk) and censoring
schemes (R1, R2 ...,Rk) are proposed. Let nl units are
tested under constant stress level Sl , l = 1,2, ...,k,

respectively. Under consideration that unit fails under one
of two dependent causes of failure denoted by ρ = {1, 2}
with the mechanism of type-I PHCS. The failure time and
corresponding cause of failure is record (Til ,ρil), i = 1, 2,
..., ml , l = 1, 2, ..., k. At each failure time (Til ,ρil), Ril ,
i = 1,2, ...,ml survival units are removed from the test.
The experiment is continual until the min(Tml

,τl), l = 1,
2, ..., k is observed. Suppose that, m∗

l denote to number of
failure units at the τ∗l =min(Tml

,τl), then the remaining

R∗
m∗

l
l = nl − m∗

l − ∑
m∗

l −1

i=1 Ril survival units are removed

from the test. If the min(Tml
,τl) is Tml

then m∗
l = ml and

R∗
m∗

l
l
= Rml l . The observed sample define by tl={

(t1l ,ρ1l),(t2l ,ρ2l), ...,(tm∗
l
l ,ρm∗

l
l)}, where, ρil = {1, 2}

indicate the failure cause. The joint likelihood function at
any stress level l of the observed data is given by

Ll =

m∗
l

∏
i=1

{

[

∂C(u1,u2)

∂u1

|u1=S1l(til ) f1l(til)

]I1(ρil=1)

×

[

∂C(u1,u2)

∂u2

|u2=S2l(til ) f2l(til)

]I2(ρil=2)

Sl(til)
Ril

}

×Sl(τ
∗
l )

nl−m∗
l −∑

m∗
l
−1

i=1 Ril . (12)

And the joint likelihood function is given by

L =
k

∏
l=1

Ll (13)

where

I j(ρil) =

{

1, if ρil = j

0, if ρil 6= j
. (14)

Let nl j = ∑
m∗

l
i=1 I j(ρil) denote to number of units fails under

caused j and stress level Sl .

Model Assumption

1.Over different stress levels Sl , l = 1,2, ...,k, there exist
only two dependence competing failure modes.

2.The failure time Tl j under different stress level Sl ,
l = 1,2, ...,k and cause j is distributed by GIED with
shape and scale parameters λl j and αl j, respectively
with CDFs given by

Fl j(t |αl j,λl j) = 1−

(

1− e−
λl j
t

)αl j

,αl j , λl j > 0, t > 0,

(15)

and the corresponding PDFs

fl j(t |αl j ,λl j) =
αl jλl j

t2
e−

λl j
t

(

1− e−
λl j
t

)αl j−1

.

(16)
3.The shape parameters under different stress level Sl ,

l = 1,2, ...,k are equal and equal to α j . (α1 j = α2 j =
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... = αk j = α j , j = 1,2). Then, the survival function
given by

Sl(t)=

(

(

1− e−
λl1

t

)−α1
θ

+

(

1− e−
λl2

t

)−α2
θ

− 1

)−θ

.

(17)
4.The stress function φ(Sl) of the j−th competing

failure mode satisfies the log linear function of the
parameter λ

logλl j = a j + b jφ(sl), l = 0,1, ...,k; j = 1,2, (18)

where a j,b j > 0 are unknown parameters.

4 ML Estimation

4.1 Point estimation

The likelihood function given by (12) with stress level Sl ,
l = 1,2, ...,k is reduced to

Ll =α
nl1
1 α

nl2
2 λ

nl1
l1 λ

nl2
l2

{

(1− e
−

λl1
τ∗
l )

−
α1
θ

+ (1− e
−

λl2
τ∗
l )−

α2
θ − 1

}−θ(nl−m∗
l −

m∗
l
−1

∑
i=1

Ril)

×
m∗

l

∏
i=1







[

e
−

λl1
til

t2
il

(1− e
−

λl1
til )

−
α1
θ −1

]I1(ρil)

×





e
−

λl2
til

t2
il

(1− e
−

λl2
til )

−
α2
θ

−1





I2(ρil)

×

[

(1− e
−

λl1
til )

−
α1
θ

+ (1− e
−

λl2
til )

−
α2
θ − 1

]−θ(Ril+1)−1
}

. (19)

Under the joint likelihood function given by (13) the
log-likelihood function is

ℓ=
k

∑
l=1

log Ll = n
l1

logα1 + n
l2

logα2 + n
l1

logλ
l1

+n
l2

logλ
l2
−

k

∑
l=1

{

m∗
l

∑
i=1

(θ (Ril + 1)+ 1)

× log

(

(1− e
−

λl1
til )

−
α1
θ
+(1− e

−
λl2
til )

−
α2
θ
− 1

)

+

m∗
l

∑
i=1

I1(ρil) log

[

e
−

λl1
til

t2
il

(1− e
−

λl1
til )

−
α1
θ

−1

]

+

m∗
l

∑
i=1

I2(ρil) log





e
−

λl2
til

t2
il

(1− e
−

λl2
til )

−
α2
θ

−1





− θ (nl −m∗
l −

m∗
l −1

∑
i=1

Ril) log

[

(1− e
−

λl1
τ∗
l )

−
α1
θ

+ (1− e
−

λl2
τ∗
l )

−
α2
θ
− 1

]}

. (20)

After equating the first partially derivative of ℓ with
respect to parameters vector α1, α2, λl1,λl2, θ , l = 1,2, ...k
to zero, we get the likelihood equations as

∂ℓ

∂α1

=
k

∑
l=1

{

n
l1

α1

+
1

θ

m∗
l

∑
i=1

(θ (Ril + 1)+ 1)

×
(1− e

−
λl1
til )

−
α1
θ log(1− e

−
λl1
til )

(1− e
−

λl1
til )

−
α1
θ +(1− e

−
λl2
til )

−
α2
θ − 1

−
m∗

l

∑
i=1

I1(ρil)

θ
log(1− e

−
λl1
til )

+

(

nl −m∗
l −

m∗
l −1

∑
i=1

Ril

)

×
(1− e

−
λl1
τ∗
l )

−
α1
θ log(1− e

−
λl1
τ∗
l )

(1− e
−

λl1
τ∗
l )

−
α1
θ +(1− e

−
λl2
τ∗
l )

−
α2
θ − 1











= 0,

(21)

∂ℓ

∂α2

=
k

∑
l=1

{

n
l2

α2

−
1

θ

m∗
l

∑
i=1

(θ (Ril + 1)+ 1)

×
(1− e

−
λl2
til )

−
α2
θ

log(1− e
−

λl2
til )

(1− e
−

λl1
til )

−
α1
θ +(1− e

−
λl2
til )

−
α2
θ − 1

+

m∗
l

∑
i=1

−
I2(ρil)

θ
log(1− e

−
λl2
til )
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+

(

nl −m∗
l −

m∗
l −1

∑
i=1

Ril

)

×
(1− e

−
λl2
τ∗
l )

−
α2
θ

log(1− e
−

λl2
τ∗
l )

(1− e
−

λl1
τ∗
l )

−
α1
θ +(1− e

−
λl2
τ∗
l )

−
α2
θ − 1











= 0, (22)

∂ℓ

∂λ
l1

=
k

∑
l=1

{

n
l1

λ
l1

+

m∗
l

∑
i=1

(

θ
(

R
il
+ 1
)

+ 1
)

×
α1
θ (1− e

−
λl1
til )

−
α1
θ

−1

e
−

λl1
til

t
il

(

(1− e
−

λl1
til )

−
α1
θ +(1− e

−
λl2
til )

−
α2
θ − 1

)

−

m∗
l

∑
i=1

I1(ρil
)

t
il

−

m∗
l

∑
i=1

I2(ρil
)
(α1

θ + 1
)

e
−

λl1
til

t
il
(1− e

−
λl1
til )

+

(

nl −m∗
l −

m∗
l −1

∑
i=1

R
il

)

α1

τ∗l

×
(1− e

−
λl1
τ∗
l )

−
α1
θ

−1

e
−

λl1
τ∗
l

(1− e
−

λl1
τ∗
l )

−
α1
θ +(1− e

−
λl2
τ∗
l )

−
α1
θ − 1











= 0,

(23)

and

∂ℓ

∂λ
l2

=
k

∑
l=1

{

n
l2

λ
l2

+
α2

θ

m∗
l

∑
i=1

θ (Ril + 1)+ 1

t
il

×
α2
θ (1− e

−
λl2
til )

−
α2
θ

−1

e
−

λl2
til

(1− e
−

λl1
til )

−
α1
θ +(1− e

−
λl2
til )

−
α2
θ − 1

−

m∗
l

∑
i=1

I2(ρil)

til
−

m∗
l

∑
i=1

I2(ρil)
(α2

θ + 1
)

e
−

λl2
til

til(1− e
−

λl2
til )

+

α2

(

nl −m∗
l −

m∗
l −1

∑
i=1

Ril

)

τ∗i

×
(1− e

−
λl2
τ∗
l )

−
α2
θ

−1

e
−

λl2
τ∗
l

(1− e
−

λl1
τ∗
l )

−
α1
θ +(1− e

−
λl2
τ∗
l )

−
α2
θ − 1











= 0.

(24)

The equations (21), (22), (23) and (24) cannot be solved
analytically for α1, α2, λl1,λl2, l = 1,2, ...k. Iterative
techniques such as Newton Raphson can be used to obtain

the estimates α̂1, α̂2, λ̂l1, λ̂l2.

4.2 Approximate confidence intervals (ACIs)

The properity of asymptotic normality distribution of the
MLEs can be used to constructed confidence bounds for

the parameter values. It is known that the asymptotic
distribution of the MLE of α1, α2, λl1, and λl2,
l = 1,2, ...k under some regularity conditions is
approximately distributed as bivariate normal:
(ϕML −ϕ)−→ N2(0, I

−1(ϕ)), where I−1(ϕ) is the inverse
form of the observed information matrix of the unknown
parameters ϕ = (α1,α2,λl1,λl2), given as

I−1(ϕ) =















I11 · · · I1k I1(k+1) I1(k+2)
...

...
...

...
Ik1 · · · Ikk Ik(k+1) Ik(k+2)

I(k+1)1 · · · I(k+1)k I(k+1)(k+1) I(k+1)(k+2)

I(k+2)1 · · · I(k+2)k I(k+2)(k+1) I(k+2)(k+2)















−1

,

(25)
where the elements of the observed information matrix is
negative of the second partial derivatives of (20) with
respected to parameters vector, where

Iil =−

(

∂ 2ℓ

∂λi j∂λl j

)

, i, l = 1, 2, ..., k, j = 1, 2. (26)

Ii(k+1) = I(k+1)i =−

(

∂ 2ℓ

∂λi j∂α1

)

, i = 1, 2, ..., k. (27)

Ii(k+2) = I(k+2)i =−

(

∂ 2ℓ

∂λi j∂α2

)

, i = 1, 2, ..., k. (28)

and

I(k+1)(k+1) =−

(

∂ 2ℓ

∂α1∂α1

)

, I(k+2)(k+2) =−

(

∂ 2ℓ

∂α2∂α2

)

.

(29)
In different cases more serious obtaining the minus
expectation of second derivative of log likelihood.
Therefore, we applied the approximate information
matrixA 100(1− γ)% two-sided approximate confidence
intervals for the parameters α1, α2, λl1, and λl2,
i = 1,2, ...k can be given by

α̂1 ∓Zγ/2

√

var(α̂1) and α̂2 ∓Zγ/2

√

var(α̂2). (30)

and

λ̂l1 ∓Zγ/2

√

var(λ̂l1) and λ̂l2 ∓Zγ/2

√

var(λ̂l2), (31)

Zγ/2 is the percentile of the standard normal distribution

with right-tail probability γ/2.

4.3 Reliability estimation

The estimate of the reliability of the system, at any time t

is given by

Ŝ0(t) =





(

1− e−
λ̂01

t

)

−α̂1
θ

+

(

1− e−
λ̂02

t

)

−α̂2
θ

− 1





−θ

.

(32)
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The estimates of the lifetime λ̂0 j under normal stress S0 is

logλ̂0 j = â j + b̂ jφ(s0).

Putting λ̂l j, j = 1,2 into eq(18), we used the least-square
method to obtain the estimates of a j,b j



























â j =

k

∑
l=1

ln λ̂l j−b̂ j

k

∑
l=1

φ(sl)

k
,

b̂ j =
k

k

∑
l=1

ln λ̂l jφ(sl)−
k

∑
l=1

ln λ̂l j

k

∑
l=1

φ(sl)

k
k

∑
l=1

φ 2(sl)−

(

k

∑
l=1

φ(sl)

)2

. (33)

5 Bootstrap Confidence Interval

The bootstrap technique, not only used in parameters
estimation with point and interval estimate, but can be
used to estimate the bias and variance of an estimators as
well as calibrate hypothesis testing. The bootstrap
technique as given in [25] and [26] has the parametric or
nonparametric forms. In this section, we applied the
parametric bootstrap technique to built confidence
intervals, for more detail see [27] and [28]. The bootstrap
confidence intervals can be obtained according the
following steps

Step 1:For given type-I progressive hybrid censored
sample tl={ (t1l ,ρ1l), (t2l ,ρ2l), ..., (tm∗

l
l ,ρm∗

l
l)} with

Sl , nl , ml , τl and Rl , l = 1, 2, ..., k, compute the

MLEs λ̂l j, α̂ j, j = 1,2.

Step 2:Under the values λ̂l j, α̂ j, j = 1,2 and censoring
parameters nl, ml , τl and Rl , l = 1, 2, ..., k, generate a
type-I progressively hybrid censored sample t∗l ={

(t∗1l ,ρ1l), (t
∗
2l ,ρ2l), ..., (t

∗
m∗

l
l ,ρm∗

l
l)}.

a1. Generate a random sample w1 j, . . . ,wml j, j = 1,2
from Uniform distribution U(0, 1). Let vi j = wi j
1/(i+Riml

+Riml−1+···+Riml−i+1)

Ui j = 1− vml
vml−1...vml−i+1, i = 1, ...,m

l
be uniform

progressive type-II order statistics.
a2. We obtain the failures m∗

l before time τl and the
terminal time τ∗l .

If Uml j ≤ 1 −

(

1− e
−

λl j
τl

)α j

,

m∗
l = ml ,τ

∗
l =

−λl j

log

(

1−(1−Uml j)
1

α j

) ;

If Uml j > 1−

(

1− e
−

λl j
τl

)α j

, m∗
l = Jl ,τ

∗
l = τl , where

Jl is obtained from the inequality

UJl j < 1−

(

1− e
−

λl j
τl

)α j

<U(Jl+1) j,

for 1 ≤ i ≤ m∗
l , l = 1, 2, ..., k we set

t∗il j =
−λi j

log

(

1−(1−Ui j)
1

α j

) , where t∗il =min(t∗il1, t
∗
il2)

Step 3:Based on nl , m∗
l , τ∗l , Rl and t∗l ={ (t∗1l ,ρ1l), (t

∗
2l ,ρ2l),

..., (t∗m∗
l
l ,ρm∗

l
l)}, we compute the MLEs λ̂ ∗

l j, α̂∗
j .

Step 4:Repeat steps 2–3 N times, we obtain N estimates
{

λ̂ ∗η
l j , α̂∗η

j

}

(η = 1, ...,N). Arrange them in

ascending order to obtain the bootstrap sample
{

λ̂
∗[1]
l j , ..., λ̂

∗[N]
l j ; α̂

∗[1]
j , ..., α̂

∗[N]
j

}

.

The approximate 100(1− γ)% confidence interval for

parameters λ̂l j, α̂ j, l = 1,2, ...,k; j = 1,2 are given,
respectively, by

(

λ̂
∗[N γ/2]
l j , λ̂

∗[N (1−γ/2)]
l j

)

(

α̂
∗[N γ/2]
j , α̂

∗[N (1−γ/2)]
j

)

.

6 Data Analysis

6.1 Example 1:

In this section, a real life data from [29] is used to
illustrate the proposed model. Under the laboratory
experiment, the observed data present the lifetime of two
groups of RFM strain male mice putted under a radiation
dose of 300r at an age of 5-6 weeks. The conventional
laboratory environment is applied on the first group of
mice but, the germ-ree environment is applied on the
second group. We consider that, only two major causes of
death Thymic Lymphoma and combined all the other
causes into a single group. The data are displayed in

Table 1. We use transform for this data
(

data
200

)
1
2 , the new

data by using Kolmogorov–Smirnov (K-S) test, the (K-S)
of the case 1 in Data 1 is 0.1845, the (K-S) of the case 2
in Data 1 is 0.1698, the (K-S) of the case 1 in Data 2 is
0.1772 and the (K-S) of the case 2 in Data 2 is 0.1849 see
figures (1-4). So, the dependent distributions considered
for two risk factors of the device failure may follow
generalized inverted exponential distribution at
significance level take the value 0.05. The misleading
results will be obtained under consideration dependent
structure of two competing risks. Hence, we used this
structure between capacitor failure and controller failure
under Bivariate Pareto Copula (BPC). The Type-I PHCS
are generated from the original data in Table 2, with
n1=61, n2=67, m1=40, m2=40, τ1 = 1.8, τ2 = 2.1, R1 =
(101, 04, 101, 04, 11, 029), and R2 = (101, 04, 101, 04, 71,
029,). Let the parameter of Bivariate Pareto Copula θ = 2
or equivalently the Kendall’s τ association τ = 1/5. The
estimates of the unknown parameters, confidence
intervals and bootstrap CIs using Bivariate Pareto Copula
(BPC) are obtained and reported in Table 3.
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Table 1: Autopsy data for 61 RFM conventional male mice which received a radiation dose

of 300r at age 5-6 weeks

Data 1:

case 1 159 189 191 198 200 207 220 235 245 250 256 261 265 266 280

343 356 383 403 414 428 432

case 2 40 42 51 62 163 179 206 222 228 252 249 282 324 333 341

366 385 407 420 431 441 461 462 482 517 517 524 564 567 586

619 620 621 622 647 651 686 761 763

Data 2:

case 1 158 192 193 194 195 202 212 215 229 230 237 240 244 247 259

300 301 321 337 415 434 444 485 496 529 537 624 707 800

case 2 136 246 255 376 421 565 616 617 652 655 658 660 662 675 681

734 736 737 757 769 777 800 807 825 855 857 864 868 870 870

873 882 895 910 934 942 1015 1019

Table 2: Observed Type-I PHC data sets, for two levels of stress

S1 0.4472 0.4583 0.5050 0.5568 0.8916 0.9028 0.9460 0.9721

2 2 2 2 1 2 2 1

0.9950 1 1.0149 1.0677 1.0840 1.1158 1.1180 1.1314

1 1 2 2 1 2 1 1

1.1424 1.1511 1.1832 1.1874 1.2728 1.2904 1.3058 1.3096

1 1 1 2 2 2 2 1

1.3874 1.4195 1.4265 1.4388 1.4629 1.4680 1.4697 1.5182

2 1 2 1 1 2 1 2

1.6186 1.6793 1.7593 1.7621 1.7986

2 2 2 2 2

S2 0.824621 0.8888 0.9798 0.9823 0.9849 1.005 1.0296 1.0368

2 1 1 1 1 1 1 1

1.07005 1.0724 1.0886 1.0955 1.1045 1.1091 1.1113 1.1380

1 1 1 1 1 2 1 1

1.2669 1.2981 1.3711 1.4731 1.6808 1.8138 1.8166 1.8193

1 1 2 1 2 2 2 2

1.8371 1.8802 1.9157 1.9710 2 2.0087 2.0310 2.070

2 1 2 2 1 2 2 2

2.0857 2.0857 2.0893

2 2 2

Table 3. MLEs and 95% CIs of the parameters

Par MLE ACI Boot-P Boot-P CI

α1 8.485 (1.0903,15.8797) 9.0830 (2.8765,16.3486)

α2 26.8558 (0.7284,52.9831) 23.7927 (3.5443,50.3531)

λ11 4.1772 (2.9689,5.3855) 5.4214 (2.3467,5.4798)

λ12 5.00501 (3.6840,6.3261) 4.7026 (2.9895,6.4512)

λ21 4.65926 (3.3145,6.0040) 5.1322 (3.5447,6.2312)

λ22 6.98344 (5.2182,8.7487) 6.9669 (4.1456,8.9845)

6.2 Example 2:

The proposed model and the corresponding developed
methods are tested through numerical example considered
under two-levels of constant stress ALT with two
dependent competing failure modes. Suppose that,
experiment are done under Type-I PHCS, the stress is
taken under temperature: s1 = 30◦C = 303K,
s2 = 60◦C = 333K and the normal stress level is taken
under s0 = 5◦C = 278K. The accelerated function is
defined by ϕ(s) = 1/s. Censoring scheme is presented

with, sample size under each stress level si, i = 1, 2 as
n1 = n2 = 50, m1 = m2 = 40, the pre-fixed sampling
scheme R1 = (110,030), R2 = (110,030). Let the parameter
of Bivariate Pareto Copula θ = 2 or equivalently the
Kendall’s τ association τ = 1/5, the terminal times are
(τ1 = τ2 = 130). The initial values for the shape
parameters are α1 = 0.6, α2 = 0.8, and the the scale
parameters take the values for λi j are given by
logλi j = a j + b jφ(si), i = 1,2; j = 1,2, where a1 = −5,
a2 = −8, b1 = 1600, and b2 = 2700. The value of λi j,
i = 1,2; j = 1,2 is given by: (λ11,λ12,λ21,λ22) =
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Fig. 1: Empirical and fitted survival functions of the case1 in

data1

Fig. 2: Empirical and fitted survival functions of the case2 in

data1

(1.3238,2.4865,0.82267,1.114168).
The Type-I progressively hybrid censoring sample is
generated according to [30], for two competing failure
mode from generalized inverted exponential distribution
GIE(λi j, αi j ). Table 4 has preseted the simulated data sets
and the point estimates and the corresponding confidence
intervals of the model parameters are shown in Table 5.
Then we can calculate the estimates of the acceleration
coefficients a1, a2, b1 and b2 by using Equation (33),

(â1, b̂1, â2, b̂2) = (−7.47,2347,−7.99,2686) and the
reliability estimates under normal stress, by using
Equation (32) Ŝ0(t = 2) =0.8814

.

Fig. 3: Empirical and fitted survival functions of the case1 in

data2

Fig. 4: Empirical and fitted survival functions of the case2 in

data2

7 Simulation study

In this section, we adopted Type-I PHCS scheme,
two-levels of constant stress ALT and two dependent
competing failure modes. Firstly, stress is taken
temperature with s1 = 30◦C = 303 K, s2 = 60◦C =333 K.
The sample size under each stress level si, i = 1, 2 is taken
to be n1 = n2 = 40, 50, 60, 70, m1 = 30, 40, 50, 60. m2

=25, 40, 45, 55. The initial values for the shape
parameters are α1 = 0.6, α2 = 0.8, and the scale
parameters λi j is given by logλi j = a j + b jφ(si),
i = 1,2,3, j = 1,2, where a1 = −5, a2 = −8, b1 = 1600,
and b2 = 2700. The value of λi j, i = 1,2; j = 1,2 is given
by (λ11, λ12, λ21, λ22) = (1.3238, 2.4865, 0.82267,
1.114168).Type-I progressively hybrid censoring sample
is generated according to [30], for competing failure
mode j, j = 1,2 from generalized inverted exponential
distribution GIE(λi j, α j ). We are repeated this process
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Table 4: The generated Type-I PHC data sets for two levels of stress

S1 0.4444 0.5760 0.6343 0.8116 0.9179 1.02417 1.0263 1.2658

1 2 2 2 2 1 1 1

1.2878 1.3369 1.3588 1.5043 1.5882 1.8571 2.5559 2.5761

1 1 1 1 1 1 2 2

2.9775 3.0408 3.04256 3.2826 3.3682 3.7983 6.3784 6.9868

2 2 2 2 2 2 1 1

7.1608 7.5791 9.3350 9.5575 13.7002 18.7324 21.5904 23.937

1 1 1 1 1 2 1 1

25.305 51.9586 68.0655 91.7614 103.868 120.43

1 2 2 2 2 2

S2 0.1796 0.1938 0.3345 0.3754 0.4133 0.4218 0.5730 0.6611

1 1 1 1 2 2 1 1

0.6973 0.7138 0.7604 0.8330 0.9403 1.01419 1.11729 1.4999

2 2 2 2 2 2 2 2

1.6666 1.7452 1.9436 2.1160 2.2764 2.43873 2.5243 2.5677

1 1 2 2 1 2 1 2

2.7732 2.7954 2.9198 3.0260 3.040 3.99007 5.5222 7.7276

2 2 2 2 2 2 2 2

9.8888 10.9556 15.0169 21.6692 30.7255 62.1754 73.2467

2 2 2 1 1 2 1

Table 5. MLEs and 95% CIs of the parameters

Par MLE ACI Boot-P Boot-P CI

α1 0.2949 (0.1637,0.6958) 0.3120 (0.2027,0.6425)

α2 0.5034 (0.2787,0.9054) 0.6585 (0.3147,1.0806)

λ11 1.4419 (0.5534,2.2436) 1.8960 (0.9690,3.6945)

λ12 2.3973 (0.8285,2.4063) 2.9056 (1.6272,6.7192)

λ21 0.7118 (0.3066,1.1135) 0.6845 (0.3783,1.1033)

λ22 1.0786 (0.4825,1.4833) 1.8422 (0.8791,6.5208)

Table 6. Mean estimates and MSEs of the parameters with θ = 1, α1 = 0.6, α2 = 0.8
and (λ11,λ12,λ21,λ22) = (1.324,2.4865,0.8227,1.1142)
n1 n2 m1 m2 scheme λ11 λ12 λ21 λ22 α1 α2

40 40 30 25 R1 = 51,03,51,025
1.2395 3.2288 0.83 1.9198 0.4611 0.7296

R2 = 51,03,51,04,51,015
0.2781 0.9057 0.1269 0.5878 0.0373 0.0381

R1 = 110,020
1.203 3.4243 0.8468 1.8095 0.446 0.7218

R2 = 115,010
0.2429 0.6692 0.1852 0.5118 0.0406 0.0374

R1 = 020,110
1.303 3.4343 0.8568 1.7995 0.486 0.7328

R2 = 010,115
0.2829 0.7692 0.1975 0.618 0.0506 0.0398

50 50 40 40 R1 = 51,03,51,035
1.0927 2.8195 0.7674 2.1459 0.407 0.7389

R2 = 51,03,51,035
0.3413 0.8753 0.0497 0.4999 0.0478 0.0291

R1 = 110,030
1.0362 2.3684 0.7935 2.029 0.3827 0.6919

R2 = 110,030
0.2220 0.6541 0.1768 0.474 0.0581 0.0326

R1 = 030,110
1.0498 2.6412 0.7775 1.8387 0.3716 0.6586

R2 = 030,110
0.3014 0.6929 0.1045 0.4885 0.0614 0.0429

60 60 50 45 R1 = 51,03,51,045
1.1324 3.2587 0.8502 1.8964 0.4143 0.7035

R2 = 51,03,51,04,51,035
0.18483 0.7816 0.2299 0.3936 0.0440 0.0349

R1 = 110,040
1.0436 3.262 0.7948 2.1953 0.4201 0.7558

R2 = 115,030
0.1635 0.5807 0.1067 0.3894 0.0439 0.0373

R1 = 040,110
0.9773 2.8986 0.7688 1.9993 0.3248 0.5342

R2 = 030,115
0.2239 0.6827 0.1683 0.3947 0.0804 0.0836

70 70 60 55 R1 = 51,03,51,055
0.9787 3.6447 0.8794 2.0552 0.4081 0.7562

R2 = 51,03,51,04,51,045
0.1796 0.4709 0.1537 0.2957 0.0507 0.0346

R1 = 110,050
0.9907 3.5417 0.8184 2.0552 0.4081 0.7562

R2 = 115,040
0.1596 0.3709 0.1337 0.2557 0.0408 0.034

R1 = 050,110
0.9938 5.2227 0.653 1.8881 0.3126 0.5563

R2 = 040,115
0.2006 0.5496 0.1729 0.2972 0.0867 0.0830
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Table 7. Coverage percentages (95%) and Average Length of the parameters with, θ = 1,α1 = 0.6,
α2 = 0.8 and (λ11,λ12,λ21,λ22) = (1.324,2.4865,0.8227,1.1142)
m1 m2 scheme λ11 λ12 λ21 λ22 α1 α2

n1 = n2 =40 ACI Boot ACI Boot ACI Boot ACI Boot ACI Boot ACI Boot

30 25 R1=5
1

,0
3

,5
1

,0
25

0.88 0.99 0.87 0.98 0.89 0.96 0.88 0.95 0.88 0.95 0.90 0.96

R2= 1.4128 1.4358 3.7999 6.5182 0.9309 1.0281 2.3402 5.4659 0.4154 0.3368 0.6925 1.3022

5
1

,0
3

,5
1

,0
4

,5
1

,0
15

R1=1
10

,0
20

0.90 1 0.89 0.94 0.88 1 0.92 0.95 0.89 0.92 0.88 0.93

R2=1
15

,0
10

1.3665 1.4312 4.4005 6.0036 0.9540 1.0599 2.1232 5.2029 0.4087 0.3305 0.7002 1.3028

R1=0
20

,1
10

0.89 0.97 0.88 0.96 0.89 0.96 0.88 0.96 0.89 0.95 0.90 0.96

R2=0
10

,1
15

1.4328 1.4758 3.8999 6.7182 0.9609 1.3281 2.6402 5.7659 0.4754 0.3868 0.7925 1.4022

n1=n2=50

40 40 R1=5
1

,0
3

,5
1

,0
35

0.90 0.95 0.89 0.94 0.95 0.96 0.92 0.95 0.89 0.92 0.88 0.93

R2=5
1

,0
3

,5
1

,0
35

1.1639 1.1164 2.745 14.7188 0.7776 0.8132 2.1559 6.1392 0.3081 0.2351 0.5617 1.1506

R1=1
10

,0
30

0.89 0.94 0.90 0.94 0.89 0.96 0.90 0.94 0.89 0.92 0.89 0.93

R2=1
10

,0
30

1.1279 0.9589 2.2399 15.2324 0.8292 0.8491 2.0359 6.1890 0.2976 0.2164 0.5169 1.0313

R1=0
30

,1
10

0.89 0.97 0.87 0.96 0.89 0.96 0.88 0.95 0.88 0.95 0.90 0.96

R2=0
30

,1
10

1.1359 1.0870 2.6095 13.6752 0.8028 0.7387 1.7769 5.7282 0.2876 0.2061 0.5837 1.2637

n1=n2=60

50 45 R1=5
1

,0
3

,5
1

,0
45

0.88 1 0.89 0.95 0.88 0.90 0.89 0.96 0.88 0.95 0.90 0.97

R2= 1.093 0.9761 3.0850 5.5025 0.8200 0.6982 1.7435 5.5777 0.2869 0.2305 0.4975 0.9795

5
1

,0
3

,5
1

,0
4

,5
1

,0
35

R1=1
10

,0
40

0.89 0.97 0.87 0.94 0.88 0.97 0.89 0.96 0.88 0.95 0.89 0.95

R2=1
15

,0
30

0.9853 0.9552 2.9672 3.7091 0.7189 0.6583 2.0667 4.9105 0.2854 0.2387 0.5406 1.0511

R1=0
40

,1
10

0.88 0.97 0.87 0.95 0.88 0.96 0.89 0.97 0.88 0.95 0.89 0.97

R2=0
30

,1
15

0.9881 0.9834 2.8403 5.1651 0.7729 0.8073 1.9885 6.7827 0.2219 0.1503 0.4059 0.5349

n1=n2=70

60 55 R1=5
1

,0
3

,5
1

,0
55

0.93 0.96 0.95 0.95 0.93 0.97 0.95 0.95 0.94 0.93 0.95 0.95

R2= 0.9202 0.9603 3.0656 3.9717 0.8171 0.6219 1.7378 4.9818 0.1947 0.1504 0.4881 0.7414

5
1

,0
3

,5
1

,0
4

,5
1

,0
45

R1=1
10

,0
50

0.94 0.95 0.93 0.94 0.95 0.96 0.96 0.97 0.95 0.95 0.93 0.95

R2=1
15

,0
40

0.8754 0.8368 2.9860 3.1902 0.6881 0.5855 1.7745 4.5072 0.2556 0.215 0.4826 0.9072

R1=0
50

,1
10

0.92 0.96 0.95 0.95 0.94 0.95 0.95 0.96 0.94 0.95 0.92 0.95

R2=0
40

,1
15

0.9402 1.0270 5.1476 3.8017 0.5871 0.6319 1.6378 4.9519 0.1847 0.1305 0.388 0.4741

500 times for different sampling schemes and different
dependence structures. The Gumbel copula parameters is
taken to be θ = 1, 2 or equivalently the Kendall’s τ
association τ = 1/3, 1/5. The estimated average mean of
the parameters and the MSEs are shown in Tables 6 and 8.
The coverage probabilities and the mean of lenght of the
ACIs and Boot-P CIs with parameters are shown in
Tables 7 and 9.

8 Conclusions

In this paper, we considered statistical inference under
copula approach of accelerated dependent generalized
inverted exponential failure time with progressive hybrid
censoring scheme. We are derived the ML and bootstrap
estimators. Also, we build different confidence intervals
using asymptotic distribution of the MLEs and Bootstrap
confidence intervals. For illustrated purposes, we
introduce a numerical examples are given and Monte
Carlo simulation studies are conducted. From the results,
we observe the following points

1.When the effective sample sizes (m j) are increase the
MSEs of the all estimates are decrease.

2.The MSEs are decrease for stronger dependence of
competing failure modes and the corresponding
MLEs become closer to the true values and the results
with θ = 2 is better than the results with θ = 1. these
results have shown that, the problem of dependence
structure is more important in studying competing
risks model.

3.Finally, we observe that, when the sample size is
small, the coverage percentages of ACIs are always
less than the nominal level. Also, we observe the
coverage percentages of ACIs for sample size large is
improved.

Hence, we say that the values of ACIs are considered
for a large sample size. And, generally coverage
percentages of the Boot-P CIs closer to the nominal level.
Then, coverage percentages is improved for larger sample
size. Therefore, especially in hard to get the exact CIs, the
Boot-P CIs have good stability with satisfactory coverage
percentages.
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Table 8. Mean estimates and MSEs of the parameters with θ = 2, α1 = 0.6, α2 = 0.8
and (λ11,λ12,λ21,λ22) = (1.324,2.4865,0.8227,1.1142)
n1 n2 m1 m2 scheme λ11 λ12 λ21 λ22 α1 α2

40 40 30 25 R1 = 51,03,51,025 1.1372 4.3223 0.7858 2.0825 0.3935 0.7009

R2 = 51,03,51,04,51,015 (0.1878) (0.2419) (0.0840) (0.2231) (0.0549) (0.0505)
R1 = 110,020 1.2063 4.4108 0.8945 2.0235 0.4192 0.7161

R2 = 115,010 (0.1899) (0.4194) (0.2915) (0.3634) (0.0474) (0.0536)
R1 = 020,110 1.3096 4.4909 0.8705 1.7944 0.4172 0.6637

R2 = 010,115 (0.6847) (0.578) (0.2137) (0.3811) (0.0475) (0.0628)

50 50 40 40 R1 = 51,03,51,035 1.0495 3.3456 0.7116 2.3152 0.3539 0.7097

R2 = 51,03,51,035 (0.1849) (0.2345) (0.0758) (0.2104) (0.0691) (0.0307)
R1 = 110,030 1.095 3.3938 0.7474 2.3254 0.3734 0.6922

R2 = 110,030 (0.1978) (0.3851) (0.1088) (0.2691) (0.0598) (0.0418)

R1 = 030,110 1.0725 3.0537 0.7107 1.9872 0.3461 0.6335

R2 = 030,110 (0.1949) (0.4695) (0.1581) (0.3511) (0.0720) (0.0494)

60 60 50 45 R1 = 51,03,51,045 1.0372 3.9507 0.7285 2.3038 0.3624 0.7094

R2 = 51,03,51,04,51,035 (0.1837) (0.3936) (0.1380) (0.7812) (0.0657) (0.0345)

R1 = 110,040 1.0057 4.3853 0.7989 2.3788 0.3686 0.7175

R2 = 115,030 (0.1517) (0.377) (0.1777) (0.0957) (0.0637) (0.0382)

R1 = 040,110 1.0127 3.7368 0.6813 2.2304 0.3097 0.5288

R2 = 030,115 (0.2186) (0.686) (0.0782) (0.1399) (0.0885) (0.0397)

70 70 60 55 R1 = 51,03,51,055 1.0535 5.0144 0.7336 2.5623 0.3809 0.7465

R2 = 51,03,51,04,51,045 (0.1695) (0.3506) (0.0829) (0.0835) (0.0569) (0.0444)

R1 = 110,050 1.0355 4.9895 0.7558 2.5379 0.3758 0.7443

R2 = 115,040 (0.1608) (0.3619) (0.1285) (0.0668) (0.0606) (0.0389)

R1 = 050,110 1.1535 5.3144 0.7836 2.7623 0.4809 0.7165

R2 = 040,115 (0.1796) (0.4506) (0.1829) (0.0835) (0.0569) (0.0444)
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