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1 Introduction

Throughout w,χ and ∧ denote the classes of all, gai and
analytic scalar valued single sequences, respectively. We
write w2 for the set of all complex double sequences (xmn),
where m,n ∈ N, the set of positive integers. Then, w2 is a
linear space under the coordinate wise addition and scalar
multiplication.

Some initial works on double sequence spaces is
found in Bromwich[1]. Later on it was investigated by
Hardy [2], Moricz [3], Moricz and Rhoades [4], Basarir
and Solankan [5], Tripathy et al., [6,7,8,9,10,11,12,13,
14,15,16,17], Turkmenoglu [18], Raj [19,20,21,22,23,
24,25] and many others.

Let (xmn) be a double sequence of real or complex
numbers. Then the series ∑∞

m,n=1 xmn is called a double
series. The double series ∑∞

m,n=1 xmn give one space is said

to be convergent if and only if the double sequence (Smn)
is convergent, where

Smn =
m,n

∑
i. j=1

xi j(m,n = 1,2,3, ...)

A double sequence x = (xmn) is said to be double analytic
if

supm,n|xmn|
1

m+n < ∞

The vector space of all double analytic sequences are
usually denoted by ∧2. A sequence x = (xmn) is called
double entire sequence if

|xmn|
1

m+n → 0 as m,n → ∞.

The vector space of all double entire sequences are
usually denoted by Γ 2. Let the set of sequences with this
property be denoted by ∧2 and Γ 2 is a metric space with
the metric

d(x,y) = supm,n{|xmn − ymn|
1

m+n : m,n : 1,2,3, ...,}, (1)

for all x = {xmn} and y = {ymn} in Γ 2. Let
φ = { f inite sequences}.

Consider a double sequence x = (xmn). The (m,n)th

section x[m,n] of the sequence is defined by

x[m,n] = ∑
m,n
i, j=0 xi jδi j for all m,n ∈N,

δmn =













0 0 . . . 0 0 . . .
0 0 . . . 0 0 . . .
...
0 0 . . . 1 0 . . .
0 0 . . . 0 0 . . .













with 1 in the (m,n)th position and zero otherwise. A
double sequence x = (xmn) is called double gai sequence
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if ((m+n)!|xmn|)
1

m+n → 0. as m,n → ∞. The double gai
sequences will be denoted by χ2.

2 Definition and Preliminaries

Definition 1.[26] An Orlicz function is a function

M : [0,∞) → [0,∞) which is continuous, non-decreasing

and convex with M(0) = 0,M(x) > 0, for x > 0 and

M(x) → ∞ as x → ∞. If convexity of Orlicz function M is

replaced by M(x+ y)≤ M(x)+M(y), then this function is

called modulus function. An Orlicz function M is said to

satisfy ∆2−condition for all values u, if there exists K > 0
such that M(2u)≤ KM(u),u ≥ 0.

Lemma 1. Let M be an Orlicz function which satisfies

∆2− condition and let 0 < δ < 1. Then for each t ≥ δ , we

have M(t)< Kδ−1M(2) for some constant K > 0.

Definition 2. A sequence space E is said to be solid or

normal if (αmnxmn) ∈ E whenever (xmn) ∈ E and for all

sequences of scalars (αmn) with |αmn| ≤ 1, for all m,n∈N.

Definition 3. A sequence space E is said to be monotone if

it contains the canonical per-images of all its step spaces.

Definition 4. For a subspace Ψ of a linear space is said

to be sequence algebra if x,y ∈ Ψ implies that

x.y = (xmnymn) ∈Ψ , see Kamptan and Gupta [28].

Definition 5.[27] Let n ∈ N and X be a real vector space

of dimension m, where n ≤ m. A real valued function

dp(x1, ...xn) = ‖(d1(x1,0), ...,dn(xn,0))‖p on X satisfying

the following four conditions:

(i)‖(d1(x1,0), ...,dn(xn,0))‖p = 0 if and only if

d1(x1,0), ...,dn(xn,0) are linearly dependent,

(ii)‖(d1(x1,0), ...,dn(xn,0))‖p is invariant under

permutation,

(iii)‖(αd1(x1,0), ...,αdn(xn,0))‖p

= |α|‖(d1(x1,0), ...,dn(xn,0))‖p,α ∈R,

(iv)dp((x1,y1),(x2,y2), ...,(xn,yn))

= (dX (x1,x2, ...,xn)
p + dY (y1,y2, ...,yn)

p)
1
p

for 1 ≤ p < ∞; (or)

(v)d((x1,y1),(x2,y2), ...,(xn,yn))
:= sup{dX(x1,x2, ...,xn),dY (y1,y2, ...,yn},

for (x1,x2, ...,xn) ∈ X ,y1,y2, ...,yn ∈Y

is called the p product metric of the Cartesian product of

n metric spaces is the p norm of the n-vector of the norms

of the n subspaces.

A trivial example of p product metric of n metric space

is the p norm space is X = R equipped with the following

Euclidean metric in the product space is the p norm:

‖d1(x1,0), ...,(dn,0)‖E = sup(|det(dmn(xmn,0))|)

= sup









∣

∣

∣

∣

∣

∣

∣

∣

d11(x11,0) d12(x12,0) . . . d1n(x1n,0)
d21(x21,0) d22(x22,0) . . . d2n(x2n,0)

...

dn1(xn1,0) dn2(xn2,0) . . . dnn(xnn,0)

∣

∣

∣

∣

∣

∣

∣

∣









where xi = (xi1, ...,xin) ∈R
n for each i = 1,2, ...,n.

If every Cauchy sequence in X converges to some L ∈
X, then X is said to be complete with respect to the p−
metric. Any complete p− metric is said to be p− Banach

metric space.

An interval number x̃ is a closed subset of the real

numbers and denoted as x̃ = [xpq,xrs], where xpq ≤ xrs

and xpq,xrs both are real numbers. let us denote the set of

all real valued closed intervals by R2(I4). The set of all

interval numbers R2(I4) is a metric space with the metric

d(x̃, ỹ) = max{in f{|xpq− ypq|, |xrs − yrs|} ≤ 1}.

Let us define transformation f : N ×N → R2(I4)×R2(I4)
by (m,n) → f (mn) = (x̃mn). Then (x̃mn) is called the

sequence of interval numbers. The x̃mn is called the

(m,n)th term of sequence (x̃mn).

Definition 6. Let M be an sequence of Musielak Orlicz
functions and a sequence (x̃mn) of (R2(I4),d) is said to be

convergent to the interval number 0̃ and we denote it by
writing
[

χ2
M ,‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

= limm,n→∞















[

M

(

(

(m+n)!|x̃mn, 0̃|)
( 1

m
)+n,

‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

)

)]

= 0















.

Thus

= limm,n→∞

{

[M(((m+n)!|x̃mn, 0̃|)
( 1

m
)+n,

‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p)] = 0

}

⇔ limm,n→∞

{

[M(((p+q)!|x̃pq, 0̃|)
( 1

p
)+q,

‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p))] = 0

}

.

and

lim
m,n→∞

{

[M(((r+ s)!|x̃rs, 0̃|)
( 1

r )+s,
‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p))] = 0

}

A four dimensional interval vector is an ordered 4-tuple of

intervals,

x̃ = (x̃11, x̃12, x̃21, x̃22) = ([x11pq,x12pq], [x21rs,x22rs]).

If the absolute value of each element of x̃ is zero, then x̃ is

called zero interval vector and is denoted by

θ̃ = (0̃, 0̃, 0̃, 0̃) = ([0,0], [0,0]).
Let R2(I4) be the set of all four dimensional interval

vector. The scalar multiplication and addition of four

vectors in R2(I4) are defined as follows:

α x̃ = (α x̃11,α x̃12,α x̃21α x̃22)

=

{

([x11pq,x12pq], [x21rs,x22rs]), i f α ≥ 0

([x12pq,x11pq], [x22rs,x21rs]), i f α < 0

x̃+ ỹ = (x̃11, x̃12, x̃21, x̃22)+ (ỹ11, ỹ12, ỹ21, ỹ22)

=

(

[x11pq + y11pq,x12pq + y12pq],
[x21rs+ y21rs,x22rs + y22rs],

)
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Now, we introduce a distance of four vectors in R2(I4),
which is defined as

d(x̃, ỹ)=max

{

in f

{

|x11pq − y11pq|, |x12rs − y12rs|,
|x21pq − y21pq|, |x22rs − y22rs|,

}

≤ 1

}

where

x̃ = (x̃11, x̃12, x̃21, x̃22), ỹ = (ỹ11, ỹ12, ỹ21, ỹ22) ∈ R2(I4).

Definition 7. Two non-negative sequences of interval

vectors x = (x̃mn) and y = (ỹmn) are asymptotically

equivalent θ̃ if

limmn
x̃mn

ỹmn

= θ̃ = (0̃, 0̃, 0̃, 0̃) = ([0,0], [0,0])

and is denoted by x̃ ≡ θ̃ .

3 Main Results

Theorem 1. The set of all four dimensional interval

vectors R2(I4)×R2(I4) forms a metric space with respect

to the metric d(x̃, ỹ) defined above.

Proof./ Easy to prove. Therefore omit the proof.
Let us define transformation

f : N ×N → R2(I4)×R2(I4) by (m,n)→ f (mn) = (x̃mn).
Then (x̃mn) is called the sequence of four dimensional
interval numbers.

Theorem 2./ The space (R2(I4)×R2(I4),d) is a complete

metric space.

Proof.Let (x̃mn) be any Cauchy sequence of
(R2(I4)× R2(I4),d), then there exists a k0, l0 ∈ N such
that

d(x̃, ỹ) = max

{

in f

{

|xmn
11pq − ymn

11pq|, |x
mn
12rs− ymn

12rs|,
|xmn

21pq − ymn
21pq|, |x

mn
22rs − ymn

22rs|

}

≤ 1

}

< ε...∗,∀m,n ≥ k0, l0.

From this inequality, we can write that

max
{

|xmn
11pq − ymn

11pq|, |x
mn
12rs − ymn

12rs|
}

< ε

and
max

{

|xmn
21pq − ymn

21pq|, |x
mn
22rs − ymn

22rs|
}

< ε

Therefore the sequence (x11pq),(x12rs),(x21pq) and (x22rs)

are Cauchy sequence in (R2(I4)×R2(I4),d). But (R2(I4)×
R2(I4),d) is complete. Hence we can write

lim
m,n→∞

(xmn
11pq) = θ̃ , lim

m,n→∞
(xmn

12pq) = θ̃ ,

lim
m,n→∞

(xmn
21rs) = θ̃ , lim

m,n→∞
(xmn

22rs) = θ̃ .

where θ̃ = (0̃, 0̃, 0̃, 0̃) = ([0,0], [0,0]). If we take the limit
for m,n → ∞ in (∗), then we get d(x̃, ỹ) for all m,n ≥ k0, l0.
This completes the proof.

Some sequence spaces of interval vectors:
Let w2(R2(I4) × R2(I4)) denote the set of all

sequences of four dimensional interval vectors of
(R2(I4) × R2(I4)). Since the set (R2(I4) × R2(I4)) is a
quasi vector space, the set w2(R2(I4) × R2(I4)) be
regarded as a quasi vector space. Now we define the
following sequence spaces of Musielak Orlicz of gai and
Musielak Orlicz of analytic sequence of four dimensional
interval vectors;
[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

= limm,n→∞























[

M
(

((m+ n)!|x̃mn|)
( 1

m )+n,

‖(d(x1,0),d(x2,0), ...,

d(xn−1,0))‖p)
)

]

= θ̃























,

[

∧2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

= supm,n























[

M
(

(|x̃mn|)
( 1

m )+n,

‖(d(x1,0),d(x2,0), ...,

d(xn−1,0))‖p)
)

]

< ∞























.

Therefore the space χ2(R2(I4)×R2(I4)) and

∧2(R2(I4)×R2(I4)) are subspaces of w2(R2(I4)×R2(I4)).

Theorem 3.
[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

⊆

[

∧2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

and the inclusion is strict.

Proof. If we take any

x̃ ∈

[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

.

Now, let

x̃ =
(

x̃mn

)

=

(

1
(m+n)!mn

)m+n

,

(

1
(m+n)!

+ 1
(m+n)!mn

)m+n

[(

1
(m+n)!

)m+n

−

(

1
(m+n)!mn

)m+n

,
(

2
(m+n)!

)m+n

+

(

2
(m+n)!mn

)]

,

m,n ∈ N /∈

[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,

d(xn−1,0))‖p

]

M

.
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Example 1. Let

x̃mn =

[(

(−1)mn

(m+n)!

)m+n

,

(

2
(m+n)!

)m+n

+

(

1
(m+n)!mn

)m+n]

,

[(

1
(m+n)!

)m+n

−

(

1
(m+n)!mn

)m+n

,

(

2
(m+n)!

)m+n

+

(

1
(m+n)!mn

)m+n]

,

m,n ∈N ∈

[

∧2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,

d(xn−1,0))‖p

]

M

.

but not in
[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

.

Theorem 4. The spaces

[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

.

and
[

∧2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

.

are complete metric space with the metric

d(x̃, ỹ)=max

{

in f

{

|x11pq − y11pq|, |x12rs − y12rs|,
|x21pq − y21pq|, |x22rs − y22rs|

}

≤ 1

}

where

x = (x̃mn),

y = (ỹmn) ∈

[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,

d(xn−1,0))‖p

]

M

.

and
[

∧2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

.

Proof. It is routine verification. Therefore omit the proof.

Theorem 5. The spaces

[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

.

and
[

∧2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

.

are interval vector metric spaces with the metric

d(x̃, ỹ) = max
{

in f
{

|x11pq|, |x12rs|, |x21pq|, |x22rs|
}

≤ 1
}

,

x̃ = (x̃11, x̃12, x̃21, x̃22) ∈ R2(I4)

where

x = (x̃mn) ∈

[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,

d(xn−1,0))‖p

]

M

.

and
[

∧2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

.

Proof. Now consider

[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

.

Other space is proved by same manner. it is obvious that

(1)d(x̃, θ̃ )≥ 0 and d(x̃, θ̃ ) = 0 if and only if x̃ = θ̃ .
(2)d(x̃, ỹ)

= max

{

in f

{

|x11pq − y11pq|, |x12rs− y12rs|,
|x21pq − y21pq|, |x22rs − y22rs|

}

≤ 1

}

≤ max

{

in f

{

|x11pq, θ̃ |, |x12rs, θ̃ |,
|x21pq, θ̃ |, |x22rs, θ̃ |

}

≤ 1

}

≤ max

{

in f

{

|y11pq, θ̃ |, |y12rs, θ̃ |,
|y21pq, θ̃ |, |y22rs, θ̃ |

}

≤ 1

}

d(x̃, ỹ) = d(x̃, θ̃ )+ d(ỹ, θ̃ ).
(3)d(α x̃, θ̃ )

= max

{

in f

{

|αx11pq, θ̃ |, |αx12rs, θ̃ |,
|αx21pq, θ̃ |, |αx22rs, θ̃ |

}

≤ 1

}

⇒ d(α x̃, θ̃ ) = |α|d(x̃, θ̃ ).
Hence x = (x̃mn) is metric on
[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

.

Theorem 6. The spaces

[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

.

is solid and monotone.

Proof. Let

x = (x̃mn) ∈

[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,

d(xn−1,0))‖p

]

M

.

and y = (ỹmn) be such that d(ỹ, θ̃ )≤ d(x̃, θ̃ )(i.e.,)

max

{

in f

{

|y11pq, θ̃ |, |y12rs, θ̃ |,
|y21pq, θ̃ |, |y22rs, θ̃ |

}

≤ 1

}

c© 2021 NSP
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≤ max

{

in f

{

|x11pq, θ̃ |, |x12rs, θ̃ |,
|x21pq, θ̃ |, |x22rs, θ̃ |

}

≤ 1

}

.

Thus we have obtain
y11pq ≤ x11pq,y12rs ≤ x12rs,y21pq ≤ x21pq,y22rs ≤
x22rs,(i.e.,)y ≤ x. Therefore

y = (ỹmn) ∈

[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,

d(xn−1,0))‖p

]

M

.

Hence
[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

.

is solid.
A solid sequence space is always monotone.[see [28]]

Hence
[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

.

is monotone.

Theorem 7. The space

[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

.

is sequence algebra.

Proof.Let

x = (x̃mn),

y = (ỹmn) ∈

[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,

d(xn−1,0))‖p

]

M

.

then for ε > 0, we can find r1,r2 ∈ N × N such that
d(x̃mn, θ̃ ) < ε , for all m,n ≥ r1, and d(ỹmn, θ̃ ) < ε, for all
m,n ≥ r2,

max
{

|x11pq|, |x12rs|, |x21pq|, |x22rs|
}

< ε, f or all m,n ≥ r1.
(2)

max
{

|y11pq|, |y12rs|, |y21pq|, |y22rs|
}

< ε, f or all m,n ≥ r2.
(3)

Let r3 = maxr1,r2, then for all m,n ≥ r3, we have

d(x̃mn ⊗ ỹmn, θ̃ )

= max















in f















∣

∣

∣

∣

x11pq.y11pq,x11pq.y12rs,

x12rs.y11pq,x12rs.y12rs

∣

∣

∣

∣















≤ 1















,

max

{

in f

{

|x21pq.y11pq,x21pq.y12rs,
x22rs.y11pq,x22rs.y12rs|

}

≤ 1

}

,

max

{

in f

{

|x11pq.y21pq,x11pq.y22rs,
x12rs.y21pq,x12rs.y22rs|

}

≤ 1

}

,

max

{

in f

{

|x21pq.y21pq,x21pq.y22rs,
x22rs.y21pq,x22rs.y22rs|

}

≤ 1

}

< ε2

by (2) and (3). Hence

(x⊗ y) = (x̃mn ⊗ ỹmn) ∈

[

χ2(R2(I4)×R2(I4)),

‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

.

Hence
[

χ2(R2(I4)×R2(I4)),‖(d(x1,0),d(x2,0), ...,d(xn−1,0))‖p

]

M

.

is sequence algebra.
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