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Abstract: In this paper, we have obtained exact and explicit expressions for ratio, inverse and conditional moments of generalized

order statistics (gos) from Kumaraswamy Power function distribution (KPFD) and reduced the aforesaid results for Kumaraswamy

distribution. An exact and analytic expression of Shannon entropy for KPFD based on gos have been obtained. Also, we have derived

the expressions for maximum likelihood estimator (MLE) of all shape parameters, uniformly minimum variance unbiased estimator

(UMVUE) of one of the shape parameter by considering others to be known and best linear unbiased estimator (BLUE) for location

and scale parameters of KPFD based on gos. We have computed means, variance and covariance matrices based on order statistics,

progressive type-II censored order statistics and gos. Further, we have considered a real example for illustration purpose of the findings.
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1 Introduction

Kamps [1] introduced the concept of generalized order statistics (gos) as a unified distribution theoretical setup which
contains several important models of ordered random variables arranged in increasing order of magnitude such as ordinary
order statistics, record values, progressive type II censored order statistics, sequential order statistics etc. and is defined as:
Let n ∈N, n ≥ 2, k > 0, m̃ = (m1,m2, ...,mn−1) ∈R

n−1, Mr = ∑n−1
j=r m j be the parameters such that γr = k+n− r+Mr > 0

for all r ∈ 1,2, ...,n− 1. Then based on the absolute continuous cumulative distribution function (cdf) F with probability
density function (pdf) f , X(1,n, m̃,k) , X(2,n, m̃,k) , . . . , X(n,n, m̃,k) are said to be gos, if their joint pdf is given by

fX(1,n,m̃,k),...,X(n,n,m̃,k)(x1, . . . ,xn) = k

(

n−1

∏
j=1

γ j

)(

n−1

∏
i=1

[F̄(xi)]
mi f (xi)

)

[F̄(xn)]
k−1 f (xn) (1)

on the cone F−1(0) < x1 ≤ x2 ≤ ... ≤ xn < F−1(1) of R
n, where F̄(x) = 1 − F(x) denotes the survival function.

Appropriately choosing the specific values of parameters, (1) can be reduced to ordinary order statistics
(γi = n − i + 1; i = 1,2, ...,n i.e. m1 = m2 = ... = mn−1 = 0,k = 1), kth record values
(γi = k, i = 1,2, ...,n i.e. m1 = m2 = ...= mn−1 =−1, k ∈ N), Pfeifer’s record values (γi = βi; β1, ...,βn > 0), sequential
order statistics (γi = (n − i + 1)δi; δ1,δ2, . . . ,δn > 0), order statistics with non-integral sample size
(γi = α − i + 1; α > 0) and progressive type II censored order statistics (mi = Ri,n = m0 + ∑

m0
j=1 R j,R j ∈ N0 and

γi = n−∑i−1
t=1 Rt − i+1,1 ≤ i ≤ m0) (where m0 is the fixed number of units of failure to be observed and N0 = 0∪N), see

[2]. The following two cases appear in the theory of gos, which are considered separately.
Case I: When γi 6= γ j, i 6= j for all i, j ∈ (1,2, . . . ,n), i.e. γi’s are pairwise different.
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In this case, the pdf of X(r,n, m̃,k) is given by (Kamps and Cramer, 2001):

fX(r,n,m̃,k)(x) = cr−1

(

r

∑
i=1

ai(r)[F̄(x)]γi−1

)

f (x), −∞ < x < ∞ (2)

and the joint pdf of X(r,n, m̃,k) and X(s,n, m̃,k) where 1 ≤ r < s ≤ n, is given by (Kamps and Cramer [3])

fX(r,n,m̃,k),X(s,n,m̃,k)(x,y) = cs−1

(

s

∑
i=r+1

a
(r)
i (s)

[

F̄(y)

F̄(x)

]γi
)(

r

∑
j=1

a j(r)[F̄(x)]γ j

)

f (x)

F̄(x)

f (y)

F̄(y)
, −∞ < x < y < ∞ (3)

therefore, the conditional pdf of X(s,n, m̃,k)|X(r,n, m̃,k) = x, 1 ≤ r < s ≤ n, is given by

fX(s,n,m̃,k)|X(r,n,m̃,k)(y|x) =
cs−1

cr−1

s

∑
i=r+1

a
(r)
i (s)

[

F̄(y)

F̄(x)

]γi f (y)

F̄(y)
, −∞ < x < y < ∞ (4)

similarly, the conditional pdf of X(r,n, m̃,k)|X(s,n, m̃,k) = y, 1 ≤ r < s ≤ n, is given by

fX(r,n,m̃,k)|X(s,n,m̃,k)(x|y) =
∑s

i=r+1 a
(r)
i (s)∑r

j=1 a j(r)
[

F̄(y)
F̄(x)

]γi

[F̄(x)]γ j f (x)
F̄(x)

∑s
t=1 at(s)[F̄(y)]γt

, −∞ < x < y < ∞ (5)

where

cr−1 =
r

∏
i=1

γi, ai(r) =
r

∏
j=1
j 6=i

1

γ j − γi

, γi 6= γ j, 1 ≤ i ≤ r ≤ n

and

ar
j(s) =

s

∏
j=r+1

j 6=i

1

γ j − γi

, γi 6= γ j, r+ 1 ≤ j ≤ s ≤ n.

Case II: When m1 = m2 = . . .= mn−1 = m (say).
In this case, the pdf of X(r,n,m,k) is given by (Kamps [1])

fX(r,n,m,k)(x) =
cr−1

(r− 1)!
[F̄(x)]γr−1gr−1

m (F(x)) f (x), −∞ < x < ∞ (6)

and the joint pdf of X(r,n,m,k) and X(s,n,m,k), 1 ≤ r < s ≤ n, is given by (Kamps [1])

fX(r,n,m,k),X(s,n,m,k)(x,y) =
cs−1

(r− 1)!(s− r− 1)!
[F̄(x)]mgr−1

m (F(x))

× [hm(F(y))− hm(F(x))]s−r−1[F̄(y)]γs−1 f (x) f (y), −∞ < x < y < ∞ (7)

therefore, the conditional pdf of X(s,n,m,k) given X(r,n,m,k) = x, 1 ≤ r < s ≤ n, is given by (Kamps [1])

fX(s,n,m,k)|X(r,n,m,k)(y|x) =
cs−1

cr−1(s− r− 1)!

[hm(F(y))− hm(F(x))]s−r−1[F̄(y)]γs−1 f (y)

[F̄(x)]γr+1
, −∞ < x < y < ∞ (8)

similarly, the conditional pdf of X(r,n,m,k) given X(s,n,m,k) = y, 1 ≤ r < s ≤ n, is given by (Kamps [1])

fX(r,n,m,k)|X(s,n,m,k)(x|y) =
(s− 1)!

(r− 1)!(s− r− 1)!
[F̄(x)]m

×
gr−1

m (F(x))[hm(F(y))− hm(F(x))]s−r−1 f (x)

gs−1
m (F(y))

, −∞ < x < y < ∞ (9)

where

hm(x) =

{

− (1−x)m+1

m+1
, m 6=−1

−ln(1− x), m =−1
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and
gm(x) = hm(x)− hm(0), x ∈ (0,1).

Here, we first consider the case γi 6= γ j and then reduced the results for another case m1 = . . . = mn−1 = m 6= −1. Khan
and Khan [4] defined the relationship between both the cases, I & II and it can be seen for m1 = m2 = . . .= mn−1 =−1,

ai(r) =
(−1)r−i

(m+ 1)r−1(r− 1)!

(

r− 1

r− i

)

(10)

and

a
(r)
j (s) =

(−1)s− j

(m+ 1)s−r−1(s− r− 1)!

(

s− r− 1

s− j

)

(11)

Recently, Kumaraswamy distribution, [5] has received considerable attention among the researcher due to its closed form
of cumulative distribution. Kumaraswamy distribution is very similar to Beta distribution but the major difference is its
invertible form of distribution function over double bounded support. For a comprehensive prospect of Kumaraswamy
distribution, one may refer to [6,7]. The cdf and pdf of Kumaraswamy distribution are given by

F(x|a,b) = 1− (1− xa)b, 0 ≤ x ≤ 1, a,b > 0 (12)

and
f (x|a,b) = abxa−1(1− xa)b−1, 0 ≤ x ≤ 1, a,b > 0 (13)

Cordeiro and De-Castro [8] defined a new family of generalized distribution named Kumaraswamy-G (Kum-G)
distribution which is defined as for an arbitrary baseline cdf G(x), the cdf of Kum-G distribution is given by

F(x) = 1− [1−Ga(x)]b, a,b > 0

and the pdf of Kum-G distribution is

f (x) = abGa−1(x)[1−Ga(x)]b−1, a,b > 0

where, g(x) = dG(x)
dx

. Considering the power function distribution as a baseline distribution, i.e. G(x) = xθ , θ > 0, 0 ≤
x ≤ 1, we get the Kumaraswamy power function distribution (KPFD) with pdf and cdf

f (x|α,β ,θ ) = αβ θxαθ−1(1− xαθ )β−1, 0 ≤ x ≤ 1, α,β ,θ > 0

and F(x|α,β ,θ ) = 1− (1− xαθ)β , 0 ≤ x ≤ 1, α,β ,θ > 0.
(14)

respectively. Clearly, at θ=1, KPFD(a,b,1) reduces to Kumaraswamy distribution.
In last few years, various forms of Kumaraswamy-G family of distributions have appeared in the literature. Mitnik [9]
described some important properties of Kumaraswamy distribution such as closeness under linear transformation,
exponentiation and some limiting form of the distribution under regularity conditions. Cordeiro and De-Castro [8] have
derived the explicit expression for moments of some Kumaraswamy generalized family of distribution using special
functions. Further, these results are extended by Cordeiro and Bager [10] for Kumaraswamy-normal,
Kumaraswamy-gamma, Kumaraswamy-beta and Kumaraswamy-t and Kumaraswamy-F distribution. Hassan and
Elgarhy [11] introduced the Kumaraswamy-Weibull generated family of distribution and derived general explicit
expressions for moments, quantile functions, order statistics. Based on k-records values, the maximum likelihood
estimates and alternative point estimates for the parameters of the Kumaraswamy distribution have been considered by
Wang [12]. Abdul-Moniem [13] discussed a Kumaraswamy-Power function distribution with its properties and
applications. Wang [14] discussed various estimators of progressively censored competing risks data from
Kumaraswamy distributions. For more details see [15,16,17,18,19,20,21,22].

The joint distribution, distribution of product and ratio of two generalized order statistics from Kumaraswamy
distribution have been discussed in [23]. Athar et al. [24] have obtained the explicit expressions for ratio and inverse
moments of gos from Weibull distribution. Khan and Khan [4] obtained the ratio and inverse moments of gos from Burr
distribution using hypergeometric functions. Safi and Ahmed [25] have discussed the MLE for the parameter of
Kumaraswamy distribution based on gos. MLE and Bayesian estimator for the parameter of Kumaraswamy distribution
based on gos have been obtained in [26]. An exact and explicit expression of moments from Topp leone distribution
based on dual gos have been given by Khan and Iqrar [27] and also deduced the expressions for MLE and UMVUE for
the parameter of Topp - Leone distribution. Recurrence relation and expression for single and product moment of
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Kumaraswamy distribution based on gos was obtained by Kumar [28]. However, his results regarding the expressions for
single and product moments were not in closed form. We, in this paper have given a closed form expressions for single
and product moments of KPFD and Kumaraswamy distribution and obtained the exact and explicit expressions for ratio
and inverse moments, conditional moments and Shannon entropy of KPFD based on gos. Further, by simple adjustment
in the power of the main result of moments, it can be reduced for the moments of quotients and moments of the ratio of
two gos of different powers. Also we have obtained MLE and UMVUE for the parameter of KPFD based on gos.

This paper is categorized in several sections. In Section 2, we deduced the exact and explicit expression for single
moments of gos from KPFD. Expression for product moments of gos from KPFD is derived in Section 3. Exact expression
for conditional moments and Shannon entropy of KPFD based on gos are obtained in Section 4 and 5 respectively. In
Section 6, we obtained the expression for MLE of the parameters of KPFD and UMVUE of the single shape parameter. In
this section, we also computed BLUE of location and scale parameter of KPFD. Section 7 included a real example which
is used to interpret the findings obtained in preceding Sections.

Auxiliary results:

Here, we have summarised the results which have been used in the subsequent Sections.
1. Let X be a continuous random variable over the support (0,1). For any a,b ∈ R

+, and 0 < t < 1 we have

Bt(a,b) =

∫ t

0
xa−1(1− x)b−1dx =

ta

a
2F1(a,1− b;a+ 1;t) (15)

(Mathai and Saxena [29, p–43]).
where Bt (a,b) is the upper incomplete beta function with parameters a,b and 2F1(α,β ;γ;ν) is the Gauss hypergeometric
function defined as (Prudnikov et. al. [30, p–430])

2F1(α,β ;γ;ν) =
∞

∑
p=0

(α)p(β )p

(γ)p

ν p

p!

2. Let (X ,Y ) be continuous random variables and (a,b,c,d) are non negative real constants, then the value of integral is
given by

∫ 1

0
ta−1(1− t)b−1

2F1(c,d,e;t)dt = B(a,b) 3F2(c,d,a;e,a+ b;1) (16)

where

µFν(a1,a2, . . . ,aµ ;b1,b2, . . . ,bν ;1) =
∞

∑
t=0

[

µ

∏
k=1

Γ (ak + t)

Γ (ak)

][

ν

∏
k=1

Γ (bk)

Γ (bk + t)

]

1

t!

for µ = ν + 1 and ∑ν
k=1 bk −∑

µ
k=1 ak > 0, (Mathai and Saxena [29]). 3. For any positive real number a, we have

∫ 1

0
za−1 ln(1− z)dz =−

1

a
[Ψ (a+ 1)−Ψ(1)], (17)

where Ψ (z) = d
dz

lnΓ z is digamma function. (Gradshteyn and Ryzhik [31, p–558]).

2 Single moments of gos from KPFD

In this Section, we have derived the explicit expressions for single moments of gos from KPFD in terms of beta function.
Further, by adjusting the parameter m and k, we have deduce the expression for single moment of order statistics,
sequential order statistics and progressive type-II censored order statistics. Means ans variances of KPFD based on order
statistics, progressive type-II censored order statistics and gos for values of the parameters α = 1, θ = 2 and
β = 1,2, . . . ,8 have been computed which are given in table 1 to 6 respectively.

Theorem 2.1: Let X1,X2, . . . ,Xn be n continuous random variables from KPFD defined in (14) and
X(r,n, m̃,k),X(2,n, m̃,k), . . . ,X(n,n, m̃,k) be the corresponding gos, then the single moment of rth gos, 1 ≤ r ≤ n, is
given by

µ
j−p

r,n,m̃,k = E(X j−p(r,n, m̃,k)) = β cr−1

r

∑
i=1

ai(r)B

(

j− p

αθ
+ 1,β γi

)

(18)
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where B(a,b) is complete beta function and j, p are real numbers.

Proof: In view of (2), the single moment of rth gos is given by

E(X j−p
r,n,m̃,k(x)) = cr−1

r

∑
i=1

ai(r)
∫ 1

0
x j−p[F̄ ]γi−1 f (x)dx

on putting the value of f (x) and F̄(x) from (14) and after algebric simplification, we get

= β cr−1

r

∑
i=1

ai(r)

∫ 1

0
t( j−p)/αθ(1− t)β γi−1dt

Now using the result given in (10), we get the theorem.

Corollary 2.1: Considering case II i.e. m1 = m2, . . . ,mn−1 = m 6= −1, from relation (10), the single moment of gos from
KPFD is given by

µ
j−p

r,n,m,k =
β cr−1

(m+ 1)r−1(r− 1)!

r−1

∑
i=0

(−1)r−i

(

r− 1

i

)

B

(

j− p

αθ
+ 1,β γi

)

(19)

Remark 2.1: If we put θ = 1 in (18), we get an exact expression of single moments based on gos from Kumaraswamy
distribution.

Remark 2.2: Putting m = 0,k = 1 in (19), the single moments from KPFD based on order statistics is given by

µ
j−p

r,n,0,1 =
β n!

(n− r)!(r− 1)!

r−1

∑
i=0

(

r− 1

i

)

B

(

j− p

αθ
+ 1,β (n− i+ 1)

)

(20)

Remark 2.3: Putting mi = Ri,n = m0 +∑
m0
j=1 R j, R j ∈ N0 and γi = n−∑i−1

t=1 Rt − i+ 1,1 ≤ j ≤ m0 (where m0 is fixed

number of failure of units to be observed) in (18), we get the single moment based on progressive type II censored order
statistics from KPFD.

Remark 2.4: Putting γi = (n− i+ 1)δi; δ1,δ2, . . . ,δn > 0 in (18), the single moment of KPFD from sequential order
statistics can be obtained.

Remark 2.5: The result given in (18) is more general in the sense that for ( j < p), inverse moments and for ( j > p), the
simple moments of KPFD based on gos can be obtained.

Table 1: Mean of KPFD based on order statistics

n = 6,m = 0,k = 1,α = 1,θ = 2

β=1 β=2 β=3 β=4 β=5 β=6 β=7 β=8

r = 1 0.3410 0.2482 0.2047 0.1781 0.1598 0.1462 0.1355 0.1269

r = 2 0.5115 0.3807 0.3165 0.2766 0.2488 0.2279 0.2116 0.1983

r = 3 0.6394 0.4885 0.4100 0.3602 0.3249 0.2983 0.2774 0.2603

r = 4 0.7459 0.5883 0.4999 0.4419 0.4003 0.3685 0.3433 0.3226

r = 5 0.8392 0.6894 0.5958 0.5316 0.4844 0.4477 0.4183 0.3939

r = 6 0.9231 0.8049 0.7160 0.6496 0.5983 0.5572 0.5235 0.4952

From table 1 to 6, it can be clearly seen that means and variances are decrease as β increases for order statistics and
gos and progressive type-II censored order statistics and gos. Moreover, in table 3 and 4, by putting different values of
Ris, one can obtain mean and variance for various censoring schemes in the similar way.

3 Product moments of gos from KPFD

In this Section, we have deduced the exact and explicit expressions for product moments of KPFD defined in (14) based
on gos in terms of Gauss hypergeometric function. We have also obtained the expression for order statistics, progressive
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Table 2: Variance of KPFD based on order statistics

n = 6,m = 0,k = 1,α = 1,θ = 2

β=1 β=2 β=3 β=4 β=5 β=6 β=7 β=8

r = 1 0.02662 0.01530 0.01070 0.00828 0.00676 0.00563 0.00494 0.00430

r = 2 0.02407 0.01587 0.01163 0.00919 0.00760 0.00646 0.00563 0.00498

r = 3 0.01977 0.01547 0.01210 0.00976 0.00824 0.00712 0.00615 0.00554

r = 4 0.01503 0.01450 0.01220 0.01042 0.00896 0.00791 0.00695 0.00623

r = 5 0.01004 0.01323 0.01262 0.01130 0.01006 0.00906 0.00823 0.00754

r = 6 0.00499 0.01114 0.01304 0.01322 0.01264 0.01193 0.01125 0.01048

Table 3: Mean of KPFD based on progressive type-II censored order statistics

n = 20,m0 = 6,α = 1,θ = 2, censoring scheme (R1,R2,R3,R4,R5,R6) = (2,0,4,0,0,8)
β=1 β=2 β=3 β=4 β=5 β=6 β=7 β=8

r = 1 0.00430 0.00120 0.00053 0.00030 0.00019 0.00014 0.00010 0.00008

r = 2 0.01450 0.00400 0.00180 0.00110 0.00068 0.00048 0.00035 0.00027

r = 3 0.03270 0.00940 0.00440 0.00250 0.00160 0.00120 0.00085 0.00066

r = 4 0.06310 0.01900 0.00900 0.00520 0.00340 0.00240 0.00180 0.00140

r = 5 0.11370 0.03650 0.01770 0.01040 0.00690 0.00490 0.00360 0.00280

r = 6 0.20410 0.07220 0.03640 0.02190 0.01460 0.01040 0.00780 0.00610

Table 4: Variance(×10−3) of KPFD based on progressive type-II censored order statistics

n = 20,m0 = 6,α = 1,θ = 2, censoring scheme (R1,R2,R3,R4,R5,R6) = (2,0,4,0,0,8)
β=1 β=2 β=3 β=4 β=5 β=6 β=7 β=8

r = 1 0.75619 0.05926 0.01294 0.00428 0.00180 0.00088 0.00048 0.00029

r = 2 3.70360 0.32573 0.07389 0.02333 0.01033 0.00510 0.00280 0.00167

r = 3 11.3071 1.12840 0.25981 0.09098 0.03990 0.01807 0.01063 0.00634

r = 4 29.1839 3.32050 0.81270 0.29000 0.12653 0.06344 0.03465 0.02048

r = 5 67.7231 9.67750 2.50000 0.92080 0.40475 0.20567 0.11952 0.07151

r = 6 159.4319 30.87160 8.75040 3.59210 1.67720 0.88860 0.51040 0.30944

Table 5: Mean of KPFD based on gos

n = 6,m = 1,k = 2,α = 1,θ = 2

β=1 β=2 β=3 β=4 β=5 β=6 β=7 β=8

r = 1 0.2482 0.1781 0.1462 0.1269 0.1137 0.1039 0.0963 0.0901

r = 2 0.3807 0.2766 0.2279 0.1983 0.1779 0.1627 0.1508 0.1412

r = 3 0.4885 0.3602 0.2983 0.2603 0.2338 0.2141 0.1986 0.1861

r = 4 0.5883 0.4419 0.3685 0.3226 0.2904 0.2663 0.2473 0.2319

r = 5 0.6894 0.5316 0.4477 0.3939 0.3558 0.3269 0.3040 0.2854

r = 6 0.8049 0.6496 0.5572 0.4952 0.4500 0.4152 0.3874 0.3645

Table 6: Variance of KPFD based on gos

n = 6,m = 1,k = 2,α = 1,θ = 2

β=1 β=2 β=3 β=4 β=5 β=6 β=7 β=8

r = 1 0.01530 0.00828 0.00563 0.00430 0.00347 0.00290 0.00253 0.00218

r = 2 0.01587 0.00919 0.00646 0.00498 0.00405 0.00343 0.00296 0.00256

r = 3 0.01547 0.00976 0.00712 0.00554 0.00454 0.00386 0.00336 0.00297

r = 4 0.01450 0.01042 0.00791 0.00623 0.00517 0.00448 0.00384 0.00342

r = 5 0.01323 0.01130 0.00906 0.00754 0.00631 0.00544 0.00488 0.00435

r = 6 0.01114 0.01322 0.01193 0.01048 0.00920 0.00821 0.00742 0.00674
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type-II censored order statistics and sequential order statistics by adjusting the parameter of gos i.e. m, k. Covariances
based on order statistics, progressive type-II censored order statistics and gos from KPFD for the parameters values
α = 1, θ = 2 and β = 1,2, . . . ,8 have been computed which are given in table 7, 8 and 9 respectively. The result for the
product moment is summarized in form of theorem which is given as:

Theorem 3.1: For any p,q, l ∈ R and γ1:r = min(γ1,γ2, . . . ,γr) > γt ,∀t = r+ 1, . . . ,s, the product moment of rth and sth

gos, 1 ≤ r ≤ s ≤ n from KPFD is given by

µ
q,l−p
r,s,n,m̃,k = E[Xq(r,n, m̃,k)X l−p(s,n, m̃,k)]

=
β 2

(

q
αθ + 1

)cs−1

r

∑
j=1

s

∑
i=r+1

a j(r)a
(r)
i (s)B

(

l − p+ q

αθ
+ 2,β γi

)

×3 F2

(

q

αθ
+ 1,1−β (γ j − γi),

l − p+ q

αθ
+ 2;

q

αθ
+ 2,

l − p+ q

αθ
+β γi + 2;1

)

(21)

where 3F2(a,b,c;d,e; f ) defined in (16).

Proof: The product moment of rth and sth gos is given by

µ
q,l−p
r,s,n,m̃,k = cs−1

r

∑
j=1

s

∑
i=r+1

a j(r)a
(r)
i (s)

∫ 1

0

∫ y

0
xqyl−p

[

F̄(y)

F̄(x)

]γi

[F̄(x)]γ j
f (x)

F̄(x)

f (y)

F̄(y)
dxdy, 0 ≤ x < y ≤ 1

from (14), we can re-write the above equation as

= (αβ θ )2cs−1

r

∑
j=1

s

∑
i=r+1

a j(r)a
(r)
i (s)

×

∫ 1

0

∫ y

0
yl−p+αθ−1(1− yαθ)β γi−1xq+αθ−1(1− xαθ)β (γ j−γi)−1dxdy, 0 ≤ x < y ≤ 1

solving the aforesaid integral by using the results given in (15) and (16), we obtained the theorem.

Corollary 3.1: For m1 = m2, . . . ,mn−1 = m 6= −1, the product moment from KPFD of the gos by using (10) and (11) is
given as

µ
q,l−p
r,s,n,m,k =

cs−1

(m+ 1)s−2(r− 1)!(s− r− 1)!

r−1

∑
i=0

s−r−1

∑
j=0

(−1)i+ j

(

r− 1

i

)(

s− r− 1

j

)

B

(

l − p+ q

αθ
+ 2,β γi

)

× 3F2

(

q

αθ
+ 1,1−β (γ j − γi),

l − p+ q

αθ
+ 2;

q

αθ
+ 2,

l − p+ q

αθ
+β γi + 2;1

)

(22)

Remark 3.1: For θ = 1, we get exact expression for product moments of Kumaraswamy distribution based on gos.

Remark 3.2: Putting m = 0,k = 1 in (22), an exact expression of product moment of order statistics from KPFD is given
by

µ
q,l−p
r,s,n,0,1 =

n!

(n− s)!(r− 1)!(s− r− 1)!

r−1

∑
i=0

s−r−1

∑
j=0

(−1)i+ j

(

r− 1

i

)(

s− r− 1

j

)

B

(

l− p+ q

αθ
+ 2,β (n− i+ 1)

)

× 3F2

(

q

αθ
+ 1,1+β ( j− i),

l − p+ q

αθ
+ 2;

q

αθ
+ 2,

l − p+ q

αθ
+β (n− i+ 1)+ 2;1

)

(23)

Remark 3.3: At mi = Ri,n = m0 +∑
m0
j=1 R j, R j ∈ N0 and γi = n−∑i−1

t=1 Rt − i+ 1,1 ≤ j ≤ m0 (where m0 is fixed number

of failure of units to be observed) in (21), we get the product moment of KPFD from progressive type II censored order
statistics.

Remark 3.4: If we put γi = (n− i+ 1)δi; δ1,δ2, . . . ,δn > 0 in (21), the product moment of KPFD from sequential order
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statistics can be obtained.

Remark 3.5: By simply adjusting l − p in (21), we can see that it contains some interesting results. For example if
l − p =−q, then

µ
q,l−p

r,s,n,m,k =

[

X(r,n, m̃,k)

X(s,n, m̃,k)

]q

gives the moments of quotients. For l− p < 0, µ
q,l−p
r,s,n,m,k represents the moments of the ratio of two gos of different powers

while for l − p > 0, it is a product moments of two gos.

Table 7: Covariance of KPFD based on order statistics

m = 0,k = 1,α = 1,θ = 2,
r s β=1 β=2 β=3 β=4 β=5 β=6 β=7 β=8

1 2 0.11128 0.06211 0.04311 0.03304 0.02674 0.02248 0.01933 0.01704

1 3 0.12486 0.07125 0.04987 0.03835 0.03108 0.02619 0.02261 0.01987

1 4 0.13745 0.08068 0.05707 0.04420 0.03603 0.03033 0.02628 0.02316

1 5 0.14923 0.09089 0.06524 0.05092 0.04179 0.03535 0.03072 0.02711

1 6 0.16022 0.10292 0.07603 0.06031 0.04989 0.04264 0.03717 0.03296

2 3 0.18725 0.11013 0.07784 0.06017 0.04906 0.04142 0.03580 0.03148

2 4 0.20627 0.12433 0.08878 0.06907 0.05651 0.04782 0.04136 0.03653

2 5 0.22385 0.13985 0.10143 0.07956 0.06538 0.05547 0.04819 0.04259

2 6 0.24023 0.15827 0.11789 0.09382 0.07794 0.06671 0.05823 0.05170

3 4 0.25777 0.16052 0.11614 0.09093 0.07464 0.06338 0.05497 0.04853

3 5 0.27972 0.18003 0.13212 0.10422 0.08602 0.07325 0.06376 0.05647

3 6 0.30027 0.20341 0.15324 0.12271 0.10231 0.08769 0.07668 0.06820

4 5 0.32644 0.21793 0.16246 0.12929 0.10719 0.09162 0.08000 0.07093

4 6 0.35046 0.24568 0.18757 0.15154 0.12690 0.10917 0.09578 0.08525

5 6 0.39413 0.28910 0.22541 0.18417 0.15548 0.13444 0.11842 0.10574

Table 8: Covariance(×10−3) of KPFD based on progressive type-II censored order statistics

n = 20,m0 = 6,α = 1,θ = 2, censoring scheme (R1,R2,R3,R4,R5,R6) = (2,0,4,0,0,8)
r s β=1 β=2 β=3 β=4 β=5 β=6 β=7 β=8

1 2 0.86110 0.08234 0.02381 0.00621 0.00263 0.00109 0.00080 0.00066

1 3 0.97125 0.13185 0.02880 0.00863 0.00452 0.00167 0.00122 0.00089

1 4 1.27068 0.15720 0.03635 0.01354 0.00687 0.00288 0.00144 0.00111

1 5 1.97291 0.19579 0.04366 0.01717 0.00815 0.00368 0.00167 0.00128

1 6 2.10292 0.26302 0.06234 0.02003 0.00947 0.00413 0.00199 0.00143

2 3 4.32113 0.46167 0.05012 0.03486 0.01846 0.00712 0.00314 0.00312

2 4 5.52033 0.68971 0.06872 0.04390 0.02138 0.00889 0.00415 0.00386

2 5 7.38454 0.83655 0.09957 0.05589 0.02643 0.01272 0.00656 0.00445

2 6 9.51827 0.94329 0.15674 0.07170 0.03325 0.01542 0.00944 0.00522

3 4 14.66555 1.49928 0.33368 0.09986 0.04791 0.02794 0.01786 0.00987

3 5 17.10680 2.01068 0.43726 0.12647 0.07009 0.03616 0.02039 0.01214

3 6 22.03614 2.62775 0.68789 0.18690 0.09588 0.04269 0.02646 0.01677

4 5 36.19298 5.22588 0.96726 0.37109 0.19881 0.09983 0.05312 0.03772

4 6 49.25673 7.71122 1.79768 0.65485 0.32324 0.13542 0.09911 0.04832

5 6 79.89013 18.08176 5.31742 1.94588 0.89872 0.57747 0.34524 0.14367
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Table 9: Covariance of KPFD based on gos

m = 1,k = 2,α = 1,θ = 2,
r s β=1 β=2 β=3 β=4 β=5 β=6 β=7 β=8

1 2 0.06211 0.03304 0.02248 0.01704 0.01367 0.01150 0.00988 0.00868

1 3 0.07125 0.03835 0.02619 0.01987 0.01602 0.01346 0.01157 0.01013

1 4 0.08068 0.04420 0.03033 0.02316 0.01868 0.01563 0.01349 0.01181

1 5 0.09089 0.05092 0.03535 0.02711 0.02195 0.01844 0.01592 0.01399

1 6 0.10292 0.06031 0.04264 0.03296 0.02684 0.02266 0.01959 0.01726

2 3 0.11013 0.06017 0.04142 0.03148 0.02551 0.02137 0.01835 0.01612

2 4 0.12433 0.06907 0.04782 0.03653 0.02954 0.02477 0.02141 0.01876

2 5 0.13985 0.07956 0.05547 0.04259 0.03460 0.02911 0.02516 0.02210

2 6 0.15827 0.09382 0.06671 0.05170 0.04215 0.03565 0.03088 0.02723

3 4 0.16052 0.09093 0.06338 0.04853 0.03940 0.03309 0.02859 0.02514

3 5 0.18003 0.10422 0.07325 0.05647 0.04591 0.03861 0.03343 0.02939

3 6 0.20341 0.12271 0.08769 0.06820 0.05579 0.04721 0.04086 0.03607

4 5 0.21793 0.12929 0.09162 0.07093 0.05788 0.04885 0.04232 0.03722

4 6 0.24568 0.15154 0.10917 0.08525 0.06992 0.05923 0.05140 0.04537

5 6 0.28910 0.18417 0.13444 0.10574 0.08709 0.07407 0.06443 0.05697

4 Conditional moments of gos from KPFD

In this Section, we have obtained the conditional moments of sth gos given rth gos of the KPFD in terms of Gauss
hypergeometric function. The result can be reduced in form of order statistics, progressive type II censored order
statistics and sequential order statistics by adjusting the parameters of gos.

Theorem 4.1: The conditional moment of sth gos given rth gos (X(s,n, m̃,k)|X(r,n, m̃,k) = x), 1 ≤ r ≤ s ≤ n, from
KPFD is given by

µ
q

s|r,n,m̃,k
(y|x) =

∫ 1

x
yq fs|r(x,y|x = r)dy =

cs−1

cr−1

s

∑
j=r+1

a
(r)
j (s)

γ j
2F1

(

β γ j,−
q

αθ
;β γ j + 1;1− xαθ

)

(24)

provided that q > 0 and 2F1(a,b;c;d) defined in (15).

Proof: In view of (4) and (14), the qth conditional moment of X(s,n, m̃,k) given X(r,n, m̃,k) = x, from the KPFD is
written as

µ
q

X(s,n,m̃,k)|X(r,n,m̃,k)
(y|x) =

∫ 1

x
yq fX(s,n,m̃,k)|X(r,n,m̃,k)(y|x)dy

= αβ θ
cs−1

cr−1

s

∑
j=r+1

ar
j(s)(1− xαθ )−β γ j

∫ 1

x
yq+αθ−1(1− yαθ )β γ j−1dy

Setting z = yαθ and after some algebraic simplification, we get

µ
q

X(s,n,m̃,k)|X(r,n,m̃,k)
(y|x) = β

cs−1

cr−1

s

∑
j=r+1

ar
j(s)(1− xαθ )−β γ j

∫ 1

xαθ
zq/αθ (1− z)β γ j−1dz

Now, by using (15), the result can be established.

Theorem 4.2: For any q > 0, the conditional moment of rth given sth gos (X(r,n, m̃,k)|X(s,n, m̃,k) = y), 1 ≤ r ≤ s ≤ n,
from KPFD is given by

µ
q

r|s,n,m,k(x|y) =
∑r

j=1 ∑s
i=r+1 a j(r)a

(r)
i (s)

∑s
t=1 at(s)

(1− yαθ)β (γ j−γt)

(γ j − γi)
2F1[β (γ j − γi),−

q

αθ
;β (γ j − γi)+ 1;1− yαθ ] (25)

Proof: In view of (5) and (14), we can proof the theorem in the similar way of theorem 4.1.
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5 Shannon entropy of KPFD based on gos

Shannon [32] introduced the concept of entropy and it is a mathematical measure of information which measures the
average reduction of uncertainty of a random variable X . For a continuous X with pdf f (x), the Shannon entropy is
defined as

H(X) =−
∫ +∞

−∞
fX (x) ln fX (x)dx (26)

Wong and Chen [33] have deduced the entropy of order sequence and order statistics. Shannon entropy in record data was
discussed in [34,?]. An exact form of Shannon entropy based on gos from Pareto-type distributions given in [36]. Khan
and Sharma [37] have obtained an analytic and exact expression for shannon entropy based on gos from Nadarajah and
Haghighi distribution. Here, we have deduced an exact and analytical expression of Shanon entropy based on gos from
KPFD.

Let X(n, m̃,k) = (X(1,n, m̃,k), . . . ,X(n,n, m̃,k)) be the vector of first n gos then the joint pdf of these n gos from KPFD
is given by

fX(n,m̃,k)(x) = k(αβ θ )n

(

n−1

∏
j=1

γ j

)(

n−1

∏
j=1

xαθ−1
j (1− xαθ

j )β (m j+1)−1

)

xαθ−1
n (1− xαθ

n )β k−1 (27)

Theorem 5.1: The Shannon entropy of the vector X(n, m̃,k) is given by

H(X(n, m̃,k)) =− lnk− n lnα − n lnβ − n lnθ −
n−1

∑
j=1

lnγ j +

(

1−
1

αθ

)

c j−1

j

∑
i=1

n

∑
j=1

ai( j)

γi

[Ψ(β γi + 1)

−Ψ(1)]+
1

β

j

∑
i=1

n−1

∑
j=1

β (m j + 1)− 1

γi

+
(β k− 1)

β

n

∑
i=1

1

γi

(28)

where Ψ (z) = d
dz

ln Γ z.

Proof: From (26),

H(X(n, m̃,k)) =−E(ln fX(n,m̃,k))

from (27), we have

H(X(n, m̃,k)) =− lnk− n lnα − n lnβ − n lnθ −
n−1

∑
j=1

lnγ j − (αθ − 1)
n

∑
j=1

E(lnx j)−
n−1

∑
j=1

(β (m j + 1)− 1)E(ln(1− xαθ
j ))

− (β k− 1)E[ln(1− xαθ
n )] (29)

In view of (2),

E(lnx j) = αβ θc j−1

j

∑
i=1

ai( j)

∫ 1

0
lnx j xαθ−1

j (1− xαθ
j )β γi−1dx j

putting (1− xαθ
j ) = u and doing some mathematical calculations, we get

E(lnx j) =
β c j−1

αθ

j

∑
i=1

ai( j)
∫ 1

0
uβ γi−1 ln(1− u)du

Using the result given in (17), we get

E(lnx j) =−
c j−1

αθ

j

∑
i=1

ai( j)

γi

[Ψ (β γi + 1)−Ψ(1)] (30)

Similarly, we get

E[ln(1− xαθ
j )] =−

c j−1

β

(

j

∑
i=1

ai( j)

γ2
i

)

=−
1

β

(

j

∑
i=1

1

γi

)

(31)
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and

E[ln(1− xαθ
n )] =−

1

β

(

n

∑
i=1

1

γi

)

(32)

(see [38], p-309).
Putting the values from (30), (31) and (32) in equation (29), we get the theorem.

6 Estimation for the parameters of KPFD based on gos

In this Section, we have obtained MLE and UMVUE for the parameters of KPFD defined in (14) based on gos. MLE is
obtained for all the shape parameters of KPFD and UMVUE is derived for the parameter β . In order to obtain UMVUE,
we have assumed that α and θ to be known. An appropriate literature is available on the theory of estimation for the
continuous random variable based on gos. MLE and Bayesian estimators based on gos for the parameter of Burr type
XII distribution have been obtained by Jaheen [39]. Malinowska et. al. [40] have derived MLE, minimum variance linear
unbiased estimators (MVLUE) and Best linear invariant estimators (BLIE) for the location and scale parameters of Burr-
XII distribution based on gos. El-Deen et. al. [26] obtained the MLE and Bayes estimators using different priors for
Kumaraswamy distribution based on gos. Khan and Iqrar [27] obtained the expressions for MLE and UMVUE for the
parameter of topp-Leone distribution based on dual gos. MLE, UMVUE and Bayes estimates of stress-strength reliability
based on gos for exponential distribution have been obtained in [41].

6.1 MLE of KPFD based on gos

In this Section we have obtained MLE for the parameters of KPFD based on gos. From (1) and (14), the likelihood
function based on gos from KPFD is written as

L(α,β ,θ |X) = k(αβ θ )n

(

n−1

∏
j=1

γ j

)(

n

∏
j=1

xαθ−1
j

)(

n−1

∏
j=1

(1− xαθ
j )β (m j+1)−1

)

(1− xαθ
n )β k−1 (33)

where X = (X(1,n, m̃,k),X(2,n, m̃,k), . . . ,X(n,n, m̃,k)).
Thus, the log-likelihood function is given by

lnL(α,β ,θ |X) = lnk+ n lnα + n lnβ + n lnθ +
n−1

∑
j=1

lnγ j +(αθ − 1)
n

∑
j=1

lnx j +
n−1

∑
j=1

[β (m j + 1)− 1] ln(1− xαθ
j )

+ (β k− 1) ln(1− xαθ
n ) (34)

Differentiating (34) with respect to α , β and θ and equating to zero, we have

n

α
+θ

n

∑
j=1

lnx j −
n−1

∑
j=1

[β (m j + 1)− 1]
θxαθ

j lnx j

1− xαθ
j

− (β k− 1)
θxαθ

n lnxn

1− xαθ
j

= 0 (35)

n

β
+

n−1

∑
j=1

(m j + 1) ln(1− xαθ
j )+ k ln(1− xαθ

n ) = 0 (36)

and

n

θ
+α

n

∑
j=1

lnx j −
n−1

∑
j=1

[β (m j + 1)− 1]
αxαθ

j lnx j

1− xαθ
j

− (β k− 1)
αxαθ

n lnxn

1− xαθ
j

= 0 (37)

Exact expression for MLE of α , β and θ can’t be obtained directly so we use numerical computation technique to obtained
the MLE of α , β and θ .
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6.2 UMVUE of KPFD based on gos

Here, we have obtained UMVUE of parameter β of KPFD by assuming that α and θ are known. The joint pdf of n gos

from KPFD can be re-written as

f (X) = k(αβ θ )n

(

n−1

∏
j=1

γ j

)(

n

∏
j=1

xαθ−1
j

1− xαθ
j

)[

n−1

∏
j=1

(1− xαθ
j )(m j+1)(1− xαθ

n )k

]β

(38)

from (36), we have

β̂ =
n

ζ
(39)

where ζ =−∑n−1
j=1(m j + 1) ln(1− xαθ

j )− k ln(1− xαθ
n ).

Using normalized spacing of gos (Kamps[1], p–81), it can be clearly seen that ζ follows gamma distribution with shape

parameter n and scale parameter β and the bias of β̂ is
β

n−1
. Further, in view of (38), ζ is complete and sufficient statistics

for β . From the property of gamma distribution, an unbiased estimator of ζ is n−1
β . Hence the UMVUE of β is

β̂UMVUE =
n− 1

ζ

6.3 BLUE of KPFD based on gos

The results given in (18) and (21) allows us to evaluate means, variances and covariances of KPFD based on gos. By
inserting location and scale parameter in KPFD, we have the pdf given by

f (x) =
αβ θ

σ

(

x− µ

σ

)αθ−1
[

1−

(

x− µ

σ

)αθ
]β−1

, µ < x ≤ µ +σ , α,β ,θ ,µ ,σ > 0. (40)

Let X(1,n, m̃,k),X(2,n, m̃,k), ...,X(n,n, m̃,k) be the n gos from the distribution given in (40), then

Y (i,n, m̃,k) =
X(i,n, m̃,k)− µ

σ
, i = 1,2, ...,n (41)

be the vector of n gos from a population with pdf given in (40). Thus the best linear unbiased estimators (BLUE) of µ and
σ can be written as

µ̂ = a1X(1,n, m̃,k)+ a2X(2,n, m̃,k)+ . . .+ anX(n,n, m̃,k) (42)

σ̂ = b1X(1,n, m̃,k)+ b2X(2,n, m̃,k)+ . . .+ bnX(n,n, m̃,k) (43)

Here a′is and b′is are the entries of the matrix ∆ = (A′Σ−1A)−1A′Σ−1 with A = (1
∼

µ
∼
), 1′

∼
= (1, ...,1)1×n,

µ
∼

′ = (µ1, ...,µn)1×n, where µ
∼

is the mean vector and Σ−1 is the inverse of covariance matrix Σ = (σr×s)n×n. Moreover,

variances and covariances of these estimators are given by

V (µ̂) = d11σ2, V (σ̂) = d22σ2 and covar(µ̂, σ̂) = d12σ2,

where

D =

(

d11 d12

d21 d22

)

σ2 = (A′Σ−1A)−1.

In context of gos, BLUE for location and scale parameter of Weibull distribution was obtained in [42]. Similarly, in case
of order statistics, record values and progressive type II censoring, the aforesaid written formula is used to obtain BLUE
of location and scale parameter for a family of distribution (for order statistics see [44], in case of records see [45] and in
case of progressive type II censoring, see [46]).
The results given in (18) and (21) can also be used to predict the future gos. Suppose we have observed only first r gos
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i.e. Y
∼
= (Y (1,n, m̃,k),Y (2,n, m̃,k), ...,Y (r,n, m̃,k)) and our target is to predict Y (s,n, m̃,k),1 ≤ r < s, when F belongs to

location scale family of distribution then the formula for best linear unbiased predictor (BLUP) is given by

Ŷ (s,n, m̃,k) = (µ̂ + σ̂ µ
∼
) W ′ Σ−1 (X

∼
− µ̂. 1− σ µ

∼
)

where µ
∼

is the mean of first r gos and W ′ is the vector of the covariances between the sth future gos and the first r recorded

observations.

7 Real Example

In this Section, we consider a real data set as an application of estimation method described in this paper. The real
data deals with the monthly water capacity of Shasta Reservoir in California in the month of Fabruary from 1991 to 2010,
(htt p : //cdec.water.ca.gov/reservoir map.html) and used by several authors for inference purpose, like [22,?,?]. The
maximum capacity of the reservoir is 4,552,000 AF. The data is given in the table-10 which contain the actual capacity
and proportion of total capacity of water. We use proportion of total capacity of water for illustration purpose. Before

Table 10: Monthly capacity for August and proportion of total capacity for Shasta reservoir.

Year Capacity Proportion of Total Capacity Year Capacity Proportion of Total Capacity

1991 1,542,838 0.338936 2001 3,495,969 0.768007

1992 1,966,077 0.431915 2002 3,839,544 0.843485

1993 3,459,209 0.759932 2003 3,584,283 0.787408

1994 3,298,496 0.724626 2004 3,868,600 0.849868

1995 3,448,519 0.757583 2005 3,168,056 0.695970

1996 3,694,201 0.811556 2006 3,834,224 0.842316

1997 3,574,861 0.785339 2007 3,772,193 0.828689

1998 3,567,220 0.783660 2008 2,641,041 0.580194

1999 3,712,733 0.815627 2009 1,960,458 0.430681

2000 3,857,423 0.847413 2010 3,380,147 0.742563

progressing further, first we check whether the given data follows KPFD or not. We use Kolmogorov-Smirnov (K-S) test
which show that the K-S statistics and p-value for KPFD(1,1.5,2,0,1) are 0.25 and 0.5713 respectively. Based on the
value of K-S statistics and p-value, we conclude that that the given data is perfectly fitted for KPFD(1,1.5,2,0,1).

Now, we find the BLUE based on progressive type II censoring for n= 20,m0 = 6,α = 1,β = 1.5andθ = 2, censoring
scheme (R1,R2,R3,R4,R5,R6) = (2,0,4,0,0,8). The Mean and variance-covariance matrix for the aforesaid values are
given by

By following the procedure defined in Section (6.3) and using the values given in table 11-12, the coefficients of
BLUEs are given by

where i = 1,2, . . . ,6, a and b are the coefficient of µ and σ respectively. Also, ∑6
i=1 ai = 1 and ∑6

i=1 bi = 0. The
variance of µ , σ and variance-covariance of µ ,σ are 0.06866991, 4.506055 and -2.740943 respectively. From table 10,
we examine that there are n = 20 units and out of 20 we select m0 = 6 units based on progressive type-II censoring
procedure discussed in [46], for censoring scheme (R1,R2,R3,R4,R5,R6) = (2,0,4,0,0,8) which are
0.580194,0.695970,0.724626,0.78366,0.815627,0.843485. The MLE of α,β and θ are 1.625015 1.013204 and
2.186006 respectively. If we fixed α = 1,θ = 2, the UMVUE for β is 1.303058 and mean squared error is 0.038786 for
the censored samples. Now, by using the values of the coefficients of µ , σ given in table-13, the BLUEs of µ , σ are
given by

Table 11: Mean of KPFD based on progressive type-II censored sample

n = 20,m0 = 6,α = 1,β = 1.5,θ = 2, censoring scheme (R1,R2,R3,R4,R5,R6) = (2,0,4,0,0,8)
r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

0.00200 0.00690 0.01450 0.02990 0.05110 0.07860
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Table 12: Variance-covariance of KPFD based on progressive type-II censored sample

n = 20,m0 = 6,α = 1,β = 1.5,θ = 2, censoring scheme (R1,R2,R3,R4,R5,R6) = (2,0,4,0,0,8)
s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

r = 1 0.00002 0.11689 0.13477 0.15324 0.16870 0.18214

r = 2 0.11689 0.00009 0.18390 0.20889 0.22975 0.24796

r = 3 0.13477 0.18390 0.00025 0.24597 0.27036 0.29166

r = 4 0.15324 0.20889 0.24597 0.00081 0.31107 0.33505

r = 5 0.16870 0.22975 0.27036 0.31107 0.00169 0.37008

r = 6 0.18214 0.24796 0.29166 0.33505 0.37008 0.00302

Table 13: Coefficients of BLUEs for µ and σ

ai 0.363963 0.356948 0.277355 0.147521 0.005978 -0.151767

bi -14.527661 -3.530057 0.443028 3.576835 5.939415 8.098439

µ̂ = 0.580194× 0.363963+0.695970× 0.356948+0.724626×0.277355+0.78366
× 0.147521+ 0.815627×0.005978+0.843485× (−0.151767)
= 0.655401

σ̂ = 0.580194× (−14.527661)+0.695970× (−3.530057)+0.724626×0.443028
+ 0.78366× 3.576835+0.815627×5.939415+0.843485×8.098439
= 3.765914

8 Conclusion

In this paper, we consider the KPFD and Kumaraswamy distribution as the reduced form of KPFD. For these distributions,
we deduce exact and explicit expressions for ratio, inverse and conditional moments based on gos. Moreover, based on
gos, Shannon entropy and statistical estimation by using the methods of MLE, UMVUE and BLUE for the parameters of
underlying distributions. Further, by adjusting the parameter values of gos, we obtain the expressions for order statistics,
progressive type-II censored order statistics and sequential order statistics. Also, means and variance-covariance matrices
based on order statistics, progressive type-II censored order statistics and gos are computed. We also computed MLE,
UMVUE and BLUE for the parameters of KPFD of a real data set based on progressive type-II censored order statistics
which shows that UMVUE perform better than the other described method of estimation.
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