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Abstract: In this paper, we investigate some common fixed point theorems in probabilistic metric spaces. Also, we introduce the
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1 Introduction and Preliminaries

In fixed point theory, contraction mapping theorems have always been an active area of research since 1922 with the
celebrated Banach contraction fixed point theorem {c f .[1]}. The notion of probabilistic metric space (briefly, PM-space)
was first introduced by Menger [2] in 1943. After that, Schweizer and Sklar [3] developed some fixed point theory in the
later part of 1983. Several contraction mapping theorems for commuting mappings have been proved in PM-spaces {c f .
[4],[5],[6],[7] and [8]}. For the convenience of our work, we first introduce the following definitions and notations.

Definition 1.[3] A Probabilistic Metric Space (PM-space) is an ordered pair (X ,F), where X is a non-empty set of

elements and F is probabilistic distance on X such that Fx,y satisfies the following conditions:

(PM1) Fx,y(t) = 1 for all t > 0 iff x = y;

(PM2) Fx,y(0) = 0;
(PM3) Fx,y(t) = Fy,x(t) and

(PM4) If Fx,y(t) = 1 and Fy,z(s) = 1 then Fx,z(t + s) = 1 for all x,y,z ∈ X and t,s ≥ 0.

PM-spaces can be obtained from any metric space by simply introducing the distribution function in that space. Thus,
PM-space is a wide area of research compared to a metric space. Schweizer and Sklar [3] defined triangular norm (briefly
t-norm) and gave the examples of four basic t-norm, namely, ∆D,∆L,∆P, and ∆M.

As regards the pointwise ordering, we have the relation ∆D < ∆L < ∆P < ∆M. We are familiar with the notions of
commutative mappings, weakly commuting mappings, compatible mappings and weakly compatible mappings in the
light of general metric spaces. Similar types of mappings including pointwise R-weakly commuting mappings and
reciprocal continuity of mappings were defined by several Mathematicians in PM-space with the introduction of
distribution functions.

Example 1.Let (X ,d) be a metric space where X = [0,a] and let

Fx,y (t) =











0, if t = 0

1, if t = a
t

t+d(x,y) , if 0 < t < a,
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for all x,y ∈ X . Then (X ,F) is a PM-space.

In 2011, Modi and Pal [9] investigated some interesting theorems in PM-Space. In 2008, Kumar and Pant [10]
investigated a very important lemma, some common fixed point theorems and some corollaries satisfying contractive
conditions with an implicit relation. In the results of Kumar and Pant [10], Φ denotes the class F4, the family of all real
valued continuous functions F : (R+)4 → R.

Now, the following questions arise: What will happen if we introduce lukasiecz t−norm in place of max function in
Theorem 3.1 of Modi and Pal [9] and product t−norm in place of φ−function in Lemma 4.1 and Theorem 4.1 of Kumar
and Pant [10]? The present paper aims to answer the above-mentioned questions. Here, we obtain the following common
fixed point theorems by point-wise R-weakly commuting pair of self mappings and weakly compatible condition satisfying
contractive conditions by improving the results of Modi and Pal [9] as well as Kumar and Pant [10]. Some concepts for
modification have been taken from [11] and [12].

2 Main Results

In this section, we prove some theorems and lemmas to modify the results of Modi and Pal [9] as well as Kumar and Pant
[10]. Also, Lemma 2.1 of [9] and the Lemma 2 of [13] are the effective tools throughout our work.

Theorem 1.Let A,B,P and Q be self maps on a probabilistic metric space satisfying

(a) P(X)⊂ B(X),Q(X)⊂ A(X);
(b)FPx,Qy(kt) ≥ max{FAx,By,∆L(FPx,Ax (t),FQx,Bx(kt))} for all x,y ∈ X , t > 0 and k ∈ (0,1) where ∆L is Lukasiecz

t-norm;

(c) If one of P(X),B(X),Q(X) and A(X) is complete subset of X, then

(i) P and A have a coincident point. (ii) Q and B have a coincident point and if the pair (P,A) and (Q,B) are weakly

compatible, then A,B,P and Q have a unique common fixed point.

Proof.: Since P(X)⊂ B(X) and Q(X)⊂A(X), there exist sequnces {xn} ,{yn}∈ X such that y2n+1 = Px2n
=Bx2n+1

,y2n+2 =
Qx2n+1

= Ax2n+2
for all n = 0,1,2, · · ·. By (b) we have

FPx2n
,Qx2n+1

(kt) ≥ max
{

FAx2n
,Bx

2n+1
(t),∆L(FPx2n

,Ax
2n
(t),FQx2n

,Bx
2n
(kt))

}

i.e., Fy2n+1,y2n+2
(kt) ≥ max

{

Fy2n,y2n+1
(t),max(Fy2n+1,y2n

(t)+Fy2n+1,y2n
(kt)− 1),0

}

⇒ Fy2n+1,y2n+2
(kt)≥ Fy2n

,y2n+1
(t).

Similarly, we can obtain that

Fy2n+2,y2n+3
(kt)≥ Fy2n+1,y2n+2

(t).

In general, for any n and t, we get that

Fyn,yn+1
(kt)≥ Fyn−1

,yn(t).

Hence, by Lemma 2.1 of [9], we get a Cauchy sequence {yn} ∈ X .

By completeness, we get yn → z ∈ X . Thus, the subsequences (y2n),(y2n+1) and (y2n+2) also converges to z. Therefore,
Bx2n+1

,Px2n
,Qx2n+1

and Ax2n
also converges to z. Now suppose A(X) is complete. Here, A(X) contains the subsequence

(y2n+2) which converges to a point, say z in A(X). Let w ∈ A−1(z), then Aw = z. Then, from (b), we get that

FPw,Qx2n+1(kt) ≥ max
{

FAw,Bx2n+1
(t),max{FPw,Aw(t)+FQw,Bw(kt)− 1,0

}

i.e.,FPw,y2n+1(kt) ≥ max
{

FAw,y2n+1
(t),max(FPw,Aw(t)+FQw,Bw(kt)− 1,0)

}

i.e.,FPw,z(kt) ≥ max{Fz,z(t),max(FPw,Aw(t)+FQw,Bw(kt)− 1,0)}when n → ∞

= Fz,z(t) = 1.

Therefore, Pw = z. Since Aw = z, w is a coincident point of P and A. Again, from P(X) ⊂ B(X) and Pw = z, we get
z ∈ B(X). Also, let v ∈ B−1(z), then Bv = z. By (b),

FPx2n,Qv(kt) ≥ max
{

FAx2n,Bv(t),max(FPx2n,Ax2n
(t)+FQx2n

,Bx2n
(kt)− 1,0)

}

i.e., Fy2n+1,Qv(kt) ≥ max
{

Fy2n,Bv(t),max(Fy2n+1,y2n
(t)+Fy2n+1,y2n

(kt)− 1,0)
}

i.e., Fz,Qv(kt) ≥ max{Fz,z(t),max(Fz,z(t)+Fz,z(kt)− 1,0)} ,when n → ∞

i.e., Fz,Qv(kt) ≥ Fz,z(t) = 1.
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So, Fz,Qv(kt) = 1 ⇒ Qv = z. Since Bv = z, v is a coincident point of Q and T .

Therefore, P and A commute at their coincident point being (P,A) is weakly compatible and hence PAω = APω or
Pz = Az. Also, the pair (Q,B) is weakly compatible. Therefore, QBv = BQv or Qz = Bz. By (b), we have

FPz,Qx2n+1
(kt) ≥ max

{

FAz,Bx2n+1
(t),max(FPz,Az(t)+FQz,Bz(kt)− 1,0)

}

i.e., FPz,y2n+2
(kt) ≥ max

{

FAz,y2n+1
(t),max(FPz,Az(t)+FQz,Bz(kt)− 1,0)

}

i.e., FPz,z(kt) ≥ max{Fz,z(t),max(FPz,Az(t)+FQz,Bz(kt)− 1;0)} ,when n → ∞

i.e., FPz,z(kt) ≥ max{Fz,z(t),1} i.e., FPz,z(kt)≥ 1.

Then, Pz = z. Similarly, Qz = z. Again by (b)

FPx2n,Qz(kt) ≥ max
{

FAx2n,Bz(t),max(FPx2n,Ax2n
(t)+FQx2n,Bx2n

(kt)− 1,0)
}

i.e., Fy2n+1,Qz(kt) ≥ max
{

Fy2n,Bz(t),max(Fy2n+1,y2n
(t)+Fy2n+1,y2n

(kt)− 1,0)
}

i.e., Fz,Qz(kt) ≥ max{Fz,Bz(t),max(Fz,z(t)+Fz,z(kt)− 1,0)} ,when n → ∞

i.e., Fz,Qz(kt) ≥ max{Fz,Bz(t),1}

i.e., Fz,Qz(kt) = 1.

Then, Qz = z. Therefore, z is a common fixed point of the mappings A,B,P and Q.
Uniqueness:
For uniqueness, we consider the point ω as another common fixed point. Then, by (b), we get

FPω,Qz(kt) ≥ max{FAω,Bz(t),max(FPω,Aω(t)+FQω,Bω(kt)− 1,0)}

i.e., FPω,Qz(kt) ≥ max{Fω,z(t),max(Fω,ω(t)+Fω,ω(kt)− 1,0)}

i.e., Fω,z(kt) ≥ max{Fω,z(t),1,0}=⇒ Fω,z(kt) = 1 =⇒ ω = z.

Hence, z is only common fixed point of the theorem.

This completes the proof of the theorem.

Lemma 1.Let (X ,F,∆M) be a complete Menger space. Furthermore, let (A,S) and (B,T ) be point-wise R−weakly

commutating pair of self mapping of X satisfying

(I) A(X)⊆ T (X),B(X)⊆ S(X);
(II) ∆P(FAu,Bv (ht),FBv,T v (ht))≥∆P(FSu,T v (t),FAu,Su (t)) for all u,v∈X , t > 0,h∈ (0,1) and ∆P is the product t-norm

on ∆ . Then, the continuity of one of the mapping in the compatible pair (A,S) or (B,T ) on (X ,F) implies their reciprocal

continuity.

Proof.: First assume that S is continuous and the pair A and S are compatible. Let {un} be a sequence such that Aun → z

and Sun → z where z ∈ X as n → ∞. Since S is continuous, we have SAun → Sz and SSun → Sz as n → ∞ and since (A,S)
is compatible, we get FASun ,SAun (t)→ 1, implies FASun ,Sz (t)→ 1 or ASun → Sz when n → ∞.

Using (I), we get some vn ∈ X for which ASun = T vn. Hence, SSun → Sz, SAun → Sz, ASun → Sz and T vn → Sz

whenever ASun = Tvn. Now, we assert that Bvn → Sz as n → ∞. Then, by (II), we have

∆P(FASun,Bvn(ht),FBvn,T vn(ht)) ≥ ∆P(FSSun,T vn(t),FASun,SSun(t))

i.e., ∆P(FS,Bvn(ht),FBvn,Sz(ht)) ≥ ∆P(FSz,Sz(t),FSz,Sz(t))

i.e., FBvn,Sz(ht) ·FBvn,Sz(ht)) ≥ FSz,Sz(t) ·FSz,Sz(t).

Where ∆P(x,y) = x ·y and Fx,y(t) = Fy,x(t). Therefore, we have [FBvn,Sz(ht)]2 ≥ 1 ·1 = 1 i.e., FBvn,Sz(ht)≥ 1, for all t > 0.
Thus, we have FBvn,Sz(ht) = 1 i.e., Bvn → Sz.

Again by (II), we have ∆P(FAz,Bvn(ht),FBvn,T vn(ht))≥ ∆P(FSz,T vn(t),FAz,Sz(t)). By taking limit as n → ∞, we get that

FAz,Sz(ht) ·FSz,Sz(ht) ≥ FSz,Sz(t) ·FAz,Sz(t)

i.e., FAz,Sz(ht) ≥ FAz,Sz(t),

which implies that Az = Sz, by Lemma 2 of [13]. Thus, SAun → Sz and ASun → Sz= Az when n→∞, implies the reciprocal
continuity of A and S on X . Applying similar procedure, we can prove that B and T are reciprocally continuous when T is
continuous.

This proves the lemma.
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Theorem 2.Let (X ,F,∆M) be a complete Menger space. Moreover, let (A,S) and (B,T ) be point-wise R-weakly commuting

pair of self mapping of X satisfying

(I) A(X)⊆ T (X),B(X)⊆ S(X).
(II) ∆P(FAu,Bv(ht),FBv,T v(ht))≥ ∆P(FSu,Tv(t),FAu,Su(t)) for all u,v ∈ X , t > 0,h ∈ (0,1) and P is the product t −norm

on ∆ .
If one of the mappings in compatible pair (A,S) or (B,T ) is continuous, then A,B,S and T have a unique common

fixed point.

Proof.: Let u0 ∈ X . By condition (I), we define the sequence {un} and {vn} in X such that for all n = 0,1,2, · · ·, we have

(a) v2n+1 = Au2n = Tu2n+1,v2n+2 = Bu2n+1 = Su2n+2.

Again by (II), we get that

∆P(FAu2n
,Bu2n+1

(ht),FBu2n+1,Tu2n+1
(ht))≥ ∆P(FSu2n,Tu2n+1

(t),FAu2n,Su2n
(t))

⇒ ∆P(Fv2n+1,v2n+2
(ht),Fv2n+2,v2n+1

(ht))≥ ∆P(Fv2n;v2n+1
(t),Fv2n+1,v2n

(t))

⇒ Fv2n+1,v2n+2
(ht) ·Fv2n+1,v2n+2

(ht))≥ Fv2n,v2n+1
(t) ·Fv2n,v2n+1

(t)

⇒ [Fv2n+1,v2n+2
(ht)]2 ≥ [Fv2n,v2n+1

(t)]2,

which implies that (b) Fv2n+1,v2n+2
(ht) ≥ Fv2n,v2n+1

(t), since Fx,y is non-decreasing and Fx,y ≥ 0. Again by condition (II),
we have

∆P(FAu2n+1,Bu2n+2
(ht),FBu2n+2,Tu2n+2

(ht))≥ ∆P(FSu2n+1,Tu2n+2
(t),FAu2n+1,Su2n+1

(t))

⇒ Fv2n+2,v2n+3
(ht) ·Fv2n+3,v2n+2

(ht)≥ Fv2n+1,v2n+2
(t) ·Fv2n+2,v2n+1

(t)

i.e.,Fv2n+3,v2n+2
(ht)≥ Fv2n+1,v2n+2

(t).

Also, Fvn,vn+1
(ht) ≥ Fvn−1,vn(t) for all n and t. Hence, by Lemma 2.1 of [9], {vn} is a Cauchy sequence in X . Since X is

complete, {vn} converges to z. It’s subsequences {Au2n}, {Bu2n+1}, {Su2n} and {Tu2n+1} also converge to z.
Now, we consider that S is continuous and (A,S) is compatible pair. Then, using Lemma 1, A and S are reciprocally

continuous, so ASu2n → Az, SAu2n → Sz. Also, compatibility of A and S gives FASu2n,SAu2n
(t)→ 1, therefore FAz,Sz(t)→ 1

as n → 1. Hence, Az = Sz. Since A(X)⊆ T (X), there exists a point p in X for which Az = T p.
By condition (II), we have

∆P(FAz,Bp(ht),FBp,T p(ht))≥ ∆P(FSz,T p(t),FAz,Sz(t)),

⇒ FAz,Bp(ht) ·FBp,Az(ht)≥ FSz,Az(t) ·FAz,Sz(t)

⇒ [FAz,Bp(ht)]2 ≥ 1, since Az = Sz

⇒ FAz,Bp(ht)≥ 1, for all t > 0 and h ∈ (0,1),

which gives FAz,Bp(ht) = 1 , so Az = Bp. Thus, Az = Sz = Bp = T p. Since A and S are point-wise R-weakly commuting
mapping, there exists an R > 0 such that

FASz,SAz(t)≥ FAz,Sz(t/R) = 1,

so we have ASz= SAz and AAz=ASz= SAz= SSz. Similarly, since B and T are point-wise R-weakly commuting mapping,
we have BBp = BT p = T Bp = T T p.

Again by condition (II), we have

∆P(FAAz,Bp(ht),FBp,T p(ht))≥ ∆P(FSAz,T p(t),FAAz,SAz(t))

i.e., FAAz,Az(ht) ·FAz;Az(ht)≥ FAAz,Az(t) ·FAAz,AAz(t)

⇒ FAAz,Az(ht) ·1 ≥ FAAz,Az(t) ·1

⇒ FAAz,Az(ht)≥ FAAz,Az(t).

This gives AAz = Az, implying that Az(= AAz = SAz) and Bp(= Az) are the common fixed points of A,S and B,T
respectively and for all mappings A,B,S and T.

Uniqueness:
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Finally, suppose that Ap(6= Az) is another fixed point. By condition (II),

P(FAAz,BAp (ht),FBAp,TAp(ht))≥ ∆P(FSAz,TAp(t),FAAz,SAz(t)),

i.e., FAz,Ap(ht) ·FAp,Ap(ht)≥ FAz,Ap(t) ·FAz,Az(t),

i.e., FAz,Ap(ht) ·1 ≥ FAz,Ap(t) ·1,

i.e., FAz,Ap(ht)≥ FAz,Ap(t).

Which gives that Az = Ap and Az is a unique common fixed point.
This completes the proof of the theorem.

3 Conclusion

In the line of the works as carried out in the paper one may think of the deduction of fixed point theorems using fuzzy
metric, quasi metric, partial metric and other different types of metrics under the flavour of probabilistic metric space.
This may be an active area of research to the future workers in this branch.
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