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Abstract: In this work we are concerned with the full waveform inversion problem. The problem is formulated as one of minimizing
a nonlinear least squares functional. Assuming Fréchet differentiability we use the adjoint state approach to compute the gradient. To
approximate local minima, we develop a discrete framework for descent methods in a finite difference lattice. We describe the methods
of Gradient descent with line search and the positive definite secant update (BFGS) for computation in the lattice. To illustrate the
methods numerical solutions of several examples in 1D are presented. In this case we carry out some analysis and provide a simple
proof for identifiability of wave speeds using the spread and shrink argument. It is argued that we may build on this work and apply
techniques such as regularization or bayesian inference in future investigations.
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1. Introduction

Seismic inversion deals with the problem of determination
of the structure and dynamics of Earth’s interior by means
of wave propagation in an elastic continuum. The under-
lying mathematical models are hyperbolic systems of par-
tial differential equations obtained from Elastodynamics.
In these models, the spatially varying coefficients of these
PDEs describe the medium and hence its properties. Con-
sequently, the inverse problem of concern is to estimate
these coefficients from samples of quantities associated to
the solution of the system of PDEs.
For instance, in oil industry applications reflection seis-
mology is used to map petroleum deposits in the Earth’s
upper crust. The data are time series of pressure collected
at points corresponding to locations of seismic sensors. A
simplifying assumption is that the material does not sup-
port shear stress, thus restricting the problem to linear acous-
tics. In this context, we shall address the problem of es-
timating two spatially dependent parameters of the wave
equation from measurements of the pressure, the time deriva-
tive of the solution, at a finite number of points in a given
domain. We deal with full seismic waveform inversion,
that is, we work with the fully nonlinear inverse problem.

The problem is by no means new but of great interest,
a recent topical review is presented in Symes [15]. Even
the 1D case is far from settled, see the numerical explo-
ration for full seismic waveform inversion in Burstedde
and Ghattas [3]. In line with this work we formulate the
problem as as one of minimizing a nonlinear least squares
functional. The minimization is carried out by descent gra-
dient based methods.

We test the methods for several 1D examples, we show
efficient identification of noisy as well as discontinuous
parameters. It will become apparent that the algorithms are
essentially dimension independent. Consequently, gener-
alization to 2D and 3D scenarios is plausible.

There are numerous computational difficulties pertain-
ing full waveform inversion, see Plassix [12] and Virieux
[16] reviews, and the book by Fichtner [4]. Arguably, one
of the most challenging difficulties of full waveform inver-
sion is the fact that the associated least squares functional
has spurious local minima. On the other hand, full wave-
form inversion requires efficient methods to compute both,
the numerical solution of the wave equation and the gradi-
ent of the least squares functional defined by the misfit be-
tween the observed and the synthetic seismic data obtained
by the numerical solution of the wave equation. The ad-
joint method is regarded as a standard tool to compute the
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gradient of the least squares functional, see [6,5,12,16].
Using variational calculus based on Gáteaux derivative,
Sacks and Santosa [13] develop computational schemes
for sound speed approximation in a similar 1D inverse
problem. Existence and uniqueness conditions for the di-
rect problem are given by Isakov [7]. Isakov also provides
a theorem of existence and uniqueness for the inverse prob-
lem of determining the wave speed of the linear wave equa-
tion. Bamberger 1979 [1] has shown that the one dimen-
sional inverse problem with a source functionf(z, t) =
δ(z)δ(t) has a unique global solution provided exact data
is used. Results on stability of the solution of the inverse
problem are scarce at best, an exemption in 1D is the work
of Symes [14].

Our contribution is in close relationship to these works,
the outline is as follows. In Section 2 we present the formu-
lation of the seismic inverse problem of interest and show
the general setting for descent methods before discretiza-
tion. In Section 3 we develop a finite difference frame-
work to discretize the gradient and the Hessian of the least
squares functional in 1D, 2D and 3D, we consider gradi-
ent descent with line search and the positive definite se-
cant update for the Hessian, the so called BFGS method
[10]. Numerical 1D examples of steepest descent and the
BFGS methods are carried out in Section 4. In 1D the roles
of time and space variables are interchangeable, thus we
prove finite propagation speed in the space direction as the
main step for identification in the spread and shrink argu-
ment of McLaughlin & Yoon [9]. This simple proof of a
known result is the content of Section 5. We derive an ex-
pression for the gradient using the adjoint state approach
in Section 6. We conclude our exposition with some con-
clusions and some thoughts on future research.

2. Problem Formulation

2.1. The direct problem.

Following Fichtner et al [5], we consider as a model for
seismic energy propagation the scalar wave equation with
variable coefficients

ρ(x)∂2u(x,t)
∂t2 −∇ · (µ(x)∇u(x, t)) = g(x, t),

(x, t) ∈ Ω × (0, T ).
(1)

HereΩ is a domain inR3. Initially the system is at
rest, that is

u(x, 0) = ut(x, 0) = 0, x ∈ Ω. (2)

In principle, the domainΩ should be the unbounded
half space{x3 > 0} . For numerical simulation we shall
consider a rectangular prism. Namely,

Ω = (0, X)× (0, Y )× (0, Z) ⊂ R3,

QT = Ω × (0, T ) .

To make a well posed problem the following boundary
conditions are customary

u(x, t) = 0, (x, t) ∈ Γ1 × [0, T ]

∂u(x,t)
∂n = 0, (x, t) ∈ Γ2 × [0, T ]

(3)

whereΓ1 ∪ Γ2 = Γ is the boundary ofΩ, andΓ1 ⊂{
x =(x, y, z) ∈ R3 : z = 0

}
.

2.2. The inverse problem.

Let us denote byYs×Ts, Ys ⊂ Γ1, Ts ⊂ [0, T ], the source
points, namely the support ofg(x, t). The data is gathered
at the receiver pointsYr × Tr ⊂ Γ1× [0, T ] by means of a
functiond,

d ∈ L2 (Yr × Tr)

d ≈ ∂u(x,t)
∂t ≡ (Mu) (x, t) , (x, t) ∈ Yr × Tr.

The problem of identification is to estimateρ andµ
from the datad. As remarked above, most approaches rely
on some sort of linearization. Our aim is to consider the
fully non linear problem in the least squares sense. Namely,
we define the functional

J(ρ, µ) =
1
2
‖Mu− d‖2L2(Yr×Tr)

and consider the problem

min J(ρ, µ)
subject to equations (1)-(3) (4)

The constrained optimization problem is solved by a
descent method. Below is the general form of a continuous
descent algorithm for approximation of a local minimum
of J .
Algorithm. (Continuous descent)

Given a starting point(ρ0, µ0), a convergence toler-
anceε, andk ← 0;
while ‖∇J((ρk, µk)‖ > ε;

Compute search directionpk ≡ pk (∇J((ρk, µk)));
Set(ρk+1, µk+1) = (ρk, µk) + αkpk;
k ← k + 1;

end (while)

We consider gradient descent with line search and the
positive definite secant update for the Hessian, the so called
BFGS method.

In gradient descent

pk = −∇J(ρk, µk),

whereas for BFGS

pk = −Hk∇Jk.
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HereHk is the well known inverse Hessian update.
Notice that in each iteration it is necessary to compute

the gradient∇J. The most efficient approach is by the ad-
joint state method. assuming Fréchet differentiability of
the functionalJ we shall derive the following expression
for the gradient,

∇J((ρ, µ)) =
∫ T

0

(
−∂λ

∂t

∂u

∂t
,∇λ · ∇u

)
dt.

The functionλ is a Lagrange multiplier which is solu-
tion of the adjoint problem

ρ(x)∂2λ(x,t)
∂t2 − ∇ · (µ(x)∇λ(x, t))

= −M∗ (Mu− d) , (x, t) ∈ ΩT .

λ(x, T ) = λt(x, T ) = 0, x ∈ Ω.

λ(x, t) = 0, (x, t) ∈ Γ1 × [0, T ].
∂λ(x,t)

∂n = 0, (x, t) ∈ Γ2 × [0, T ].

(5)

Computation of the gradient depends upon the solu-
tions of wave equations foru and λ. Consequently, we
shall develop a framework for discrete versions of the con-
tinuous descent methods suitable for fast computation.

3. Descent methods in a lattice

Some readers may find this section somewhat elementary,
but besides clarity, it presents in some detail the discrete
version of the method of solution. Numerical implementa-
tions, serial and parallel, are readily applied.

3.1. Inner product spaces in lattices

Consider the uniform grid

0 = x0 < x1 < . . . < xM=1 = X,

0 = y0 < y1 < . . . < yN+1 = Y,

0 = z0 < z1 < . . . < zK+1 = Z,

0 = t0 < t1 < . . . < tL+1 = T.

Let us define the vector space

V = span
{
El

m

}
,

where0 ≤ m1,m2,m3, l ≤ M + 1, N + 1,K + 1, L + 1,
andm = (m1,m2,m3). Let us denote

∑
m

=
M+1∑
m1=0

N+1∑
m2=0

K+1∑
m3=0

.

Foru ∈ V ,

u =
∑
m

L+1∑

l=0

ul
mEl

m.

Recall

(u, v)L2(QT ) =
∫

Ω

∫

(0,T )

u(x, t)v(x, t)dxdt.

From a quadrature on the grid we equipV with the
inner product

(u, v)∆V ∆t = ∆V ∆t
∑
m

L∑

l=0

ul
mvl

m,

where∆V = ∆x∆y∆z.
For space variables we consider the vector space

VΩ = span
{
E(m1,m2,m3) : 0 ≤ m1 ≤ M + 1,
0 ≤ m2 ≤ N + 1, 0 ≤ m3 ≤ K + 1}

and argue as before. We discretize the Initial Boundary
Value Problem (IBVP) (1)-(3) using finite differences and
consider the corresponding inverse problem in the inner
product space(V, (·, ·)∆V ∆t) , the space-time lattice.
Remark. Let H be a Hilbert space andA : H → H a
linear operator. We have that

(Au, v)H = (u,A∗v)H (6)

whereA∗ is the adjoint ofA. We shall use this expression
repeatedly.

3.2. The source term in the adjoint equation

The discrete version of the IBVP (1)-(3) is straightforward.
For the adjoint equation let us derive an expression for the
source termM∗ (Mu− d) in the space-time lattice.

3.2.1. The discreteM operator

Recall that

(Mu) (x, t) =
∂u(x, t)

∂t
, (x, t) ∈ Yr×Tr ⊂ Γ1×[0, T ].

Let us consider a receiver pointx ∈ Γ1, thusx = (x1, x2, 0).
Let us define thetrace operatorτ(·,·,0) : V → V by

(
τ(·,·,0)

)
u =

M+1∑
m1=0

N+1∑
m2=0

L+1∑

l=0

ul
(m1,m2,0)E

l
(m1,m2,0)

We also require a discrete version of the time deriva-
tive. Using an approximation backwards in time we have

∂

∂t
: V → V,

∂

∂t
u =

∑
m

L+1∑

l=1

ul
m − ul−1

m

∆t
El

m.

c© 2012 NSP
Natural Sciences Publishing Cor.



196 M. Capistran, M. A. Moreles, J. Peña: On full seismic waveform inversion

Note the zero components

(
∂

∂t
u

)0

m

= 0.

Let I0 : V → V, S− : V → V given by

I0u =
∑
m

L+1∑

l=1

ul
mEl

(m1,m2,m3)

and

S−u =
∑
m

L+1∑

l=1

ul−1
m El

m.

A simple decomposition of the discrete time derivative
is as follows

∂

∂t
=

1
∆t

(
I0 − S−

)

We conclude that the discreteM operator is the com-
position

M = τ(·,·,0) ◦
∂

∂t
(7)

3.2.2. The discreteM∗ operator

From (7) it follows that

M∗ =
1

∆t

((
I0

)∗ − (
S−

)∗) ◦ (
τ(·,·,0)

)∗
.

Consider the operatorS+ : V → V given by

S+v =
∑
m

L∑

l=0

vl+1
(m1,m2,m3)

El
(m1,m2,m3)

By (6) it is readily seen that

(
S−

)∗ = S+.

Also (
I0
(·)

)∗
=

(
I0
(·)

)
,

and (
τ

(·)
(·,·,0)

)∗
≡ τ

(·)
(·,·,0).

Consequently

M∗ =
(

∂

∂t

)∗
◦

(
τ

(·)
(·,·,0)

)∗

or

M∗ =
1

∆t

(
I0
(·) − S+

)
◦ τ

(·)
(·,·,0).

3.3. The discrete gradient∇J

The gradient∇J is a function in space variables. Thus
we consider the space latticeVΩ = span{E(m1,m2,m3)},
where0 ≤ m1,m2,m3 ≤ M + 1, N + 1,K + 1. Let
u, v ∈ VΩ . Then

u =
∑
m

L+1∑

l=0

ul
mEl

m, v =
∑
m

L+1∑

l=0

vl
mEl

m.

We define the (pointwise) product by the expression

uv =
∑
m

L+1∑

l=0

(
ul
mvl

m

)
El

m.

The discrete integral operator
∫ T

0

: V → VΩ

is (∫ T

0

u

)

m

=

(
∆t

L∑

l=0

ul
m

)
Em.

To construct partial derivatives we define the derivative
Dj,m : VΩ → VΩ in the jth direction in eachm node as
follows. For1 ≤ m1 ≤ M ,

D(1,m)u =
u(m1+1,m2,m3) − u(m1−1,m2,m3)

2∆x
Em.

Form1 = 0,

D(1,m)u =
4u(1,m2,m3) − 3u(0,m2,m3) − u(2,m2,m3)

2∆x
Em.

This is the second order approximation for the deriva-
tive in the boundary. Similarlym2, m3 = 0.

We obtainjth derivatives in the space lattice

Dj =
∑
m

D(j,m), j = 1, 2, 3.

and the discrete gradient∇ : VΩ → (VΩ)3,

∇ = (D1, D2, D3) .

Recall the continuous gradient

∇J((ρ, µ)) =

(∫ T

0

−∂λ

∂t

∂u

∂t
dt,

∫ T

0

∇λ · ∇u dt

)
.

The discrete approximation is for each component

−
(∫ T

0

∂λ

∂t

∂u

∂t

)

m

= −
(

1
∆t

L∑

l=0

[(
I0
(·) − S−

)
λ
]l

m

[(
I0
(·) − S−

)
u
]l

m

)
Em

and(∫ T

0

∇λ · ∇u

)

m

=

(∫ T

0

3∑

k=1

(Dkλ)(Dku)

)

m
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3.4. Finite difference inverse Hessian
approximation

Let us derive an expression for matrix vector multiplica-
tion to be applied in the BFGS method.

If H ∈ L (VΩ × VΩ , VΩ × VΩ) the matrix’s compo-
nents are given by

H
(a,b)
(m,n) = ((Ea, Eb) , H (Em, En))∆V .

This yields the following expression for the required
product

H(p, q) =
∑
a

∑

b

(∑
m

∑
n

(p, q)(m,n)H
(a,b)
(m,n)

)
(Ea, Eb) .

Remark. We have developed a discrete scheme which is
atomic and highly parallelizable. For instance, the approach
in Ortigosa et al [11] seems plausible.

4. Numerical results in 1D

In this section we illustrate that the discrete framework
developed above can be applied effectively for parameter
identification. Here we content ourselves with applications
in 1D for synthetic data.
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Figure 1 Functiong(x, t) with compact support.

We have run extensive experiments with great success.
From our sample we have chosen examples with smooth,
noisy and discontinuous coefficients. For computation we
have used a PC with an AMD Athlon Dual Core processor
running at 1 MHz.

Our initial motivation was to evaluate the performance
of BFGS in this problem of identification. The results are
promising for extension to several dimensions. For com-
parison we also run gradient descent with line search.

For the numerical tests the spatial domain isΩ = [0, 1]
and the time domain is[0, 5]. Fig. 1 shows the function
g(x, t) which is a product of two cubic b-splines,g(x, t) =
β(2x− 1)β(t/2), where

β(x) =





1
6 (3|x| − 6x2 + 4) 0 ≤ |x| < 1,
1
6 (−|x|3 + 6x2 − 12|x|+ 8) 1 ≤ |x| < 2,

0 otherwise.

The position of the receiver isxr = 0.1. At each time
steptl, l = 0, ..., L + 1, a measurement is recorded. The
problem (1)-(3) is solved using a Crank-Nicholson scheme.
One can assume that nearx = 0 the values ofρ andµ are
known. From this information, one can use linear extrapo-
lation to set the initial estimation ofρ andµ.

4.1. Reconstruction ofρ with known constantµ.

From top to bottom, Fig. 2 shows the datad, the initial ap-
proximation obtained using the first estimationρ(0), and
the final approximation. The second plot shows the target
functionρ, the initial guesŝρ(0) and the solution obtained
with the proposal method using the BFGS algorithm. Al-
though the initialization nearx = 1 is not suitable, the
method is able to correct these values and obtain a good
approximation of the true values ofρ. The last two plot in
Fig. 2 shows the behavior of the functionJ(ρ̂(i), µ) and
the reconstruction error‖ρ̂(i) − ρ‖/√M evaluated in the
ith estimated function̂ρ(i) using BFGS and gradient de-
scent. According to these plots, the results are similar, but
the BFGS requires fewer iterations.

Table 1 Comparison of the reconstruction error and the elapsed
time using the two optimization strategies.

Example Algorithm ‖ρ− ρ̂‖/√M Time
1 GD 0.00044 3.63 minutes

(Fig. 2) BFGS 0.00038 0.64 minutes
2 GD 0.00058 7.26 minutes

(Fig. 3) BFGS 0.00070 1.52 minutes
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Figure 2 Reconstruction of non smooth data.

Fig. 3 shows the results when the functionρ has dis-
continuities. The method is able to detect the points where
breaks occur. The performance of both optimization strate-
gies is summarized in Table 1 for the two experiments.

Remark. At present we are not able to show convergence
analysis of the proposed method neither stability. As an
alternative we have carried out numerical experiments on
stability. As example of this experiments see Fig. 4 for a
comparison of the error when the problem is solved by
BFGS using three different discretizations. The number of
iterations is similar but the computation time in minutes
were1.52, 6.78, 42.05 from low to high resolution, respec-
tively.
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Figure 3 Reconstruction of discontinuous spatial data.

4.2. Reconstruction ofµ with known constantρ.

In Fig. 5 is showed the reconstruction of the functionµ
whenρ is a known constant. In general, the reconstructed
function µ̂ is smoother than the true functionµ. The per-
formance of the two optimization algorithms for this ex-
periment is showed in Table 2.

Table 2 Comparison of the reconstruction error and the elapsed
time using the two optimization strategies.

Algorithm ‖µ− µ̂‖/√M Time
GD 0.00196 11.11 minutes
BFGS 0.00081 3.16 minutes
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Figure 4 Behavior of the error in each iteration using BFGS in
three different discretizations.

4.3. Reconstruction ofρ andµ.

Whenρ andµ are unknown, the reconstructed functionsµ̂
and ρ̂ are less accurate, as shown in Figure 6, although
these functions satisfy the condition of reproducing the
data (Figure 7). Also the convergence to the solution is
slower. Using BFGS the elapsed time was 5.48 minutes.
In the end, the datad are reproduced with a precision that
is similar to previous cases. In general, this is the only in-
dicator we have to accept the solution.

5. Identifiability in 1D

We assume that

∂u(0, t)
∂t

, t ∈ [0, T ),

is known. Sinceu is initially at rest, so is

u(0, t), t ∈ [0, T ).

We shall show that with this data and constantµ den-
sity is identifiable. The result is not new, but a simple proof
can be given following the spread argument of McLaugh-
lin & Yoon [9]. The argument consists on applying in tan-
dem a result on finite propagation speed and a unique con-
tinuation principle. We do not aim for generality, thus to
simplify the proofs we shall assume appropriate smooth-
ness.

5.1. Finite speed of propagation

For our problem of identification we need to considerx
as the time variable in order to establish a result on finite
speed of propagation. See O. A. Ladyzhenskaya [8].
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Figure 5 Reconstruction of a non smooth functionµ.

Theorem 1.Assume thatρ ∈ C1 ([0, X]) and
µ ∈ C1 ([0, X]) satisfyρ(x), µ(x) ≥ α0 > 0. Let u ∈
H2 ((0, X)× (0, T )) be a solution to the wave equation

(µux)x − ρutt = f, in (0, X)× (0, T ).

Then for any open intervalBε (t0) = (t0 − ε, t0 + ε) ⊂
(0, X) , u has a finite speed of propagation in(0, X) ×
Bε (t0) with the maximum speed

v = max
x∈[0,X]

√
ρ(x)
µ(x)
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Figure 6 Simultaneous reconstruction ofµ andρ using BFGS.

Proof. Since µ(x) ≥ α0 > 0, we may regardx as the
time variable. Fors < ε

v , we define

Cs = (t0 − (ε− vs) , t0 + (ε− vs))× {x = x0 + s} ,

Λs =
⋃

0<ξ<s

Cξ.

Consider the equation

(µux)x − ρutt = f.

Multiply it by 2µux,

2µux (µux)x − 2ρµuxutt = 2µuxf.

2µux (µux)x−2ρµuxutt−2ρµuxtut+2ρµuxtut = 2µuxf.
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Figure 7 Data with reconstructedµ andρ using BFGS.

∂

∂x
(µux)2 − 2

∂

∂t
(ρµuxut) + ρµ

∂

∂x
(ut)

2 = 2µuxf.

∂

∂x
(µux)2 − 2

∂

∂t
(ρµuxut) + ρµ

∂

∂x
(ut)

2 +

(ut)
2 ∂

∂x
(ρµ)− (ut)

2 ∂

∂x
(ρµ) = 2µuxf.

We obtain the expression

∂

∂x
(µux)2 +

∂

∂x

(
ρµ (ut)

2
)
− 2

∂

∂t
(ρµuxut)

− (ut)
2 ∂

∂x
(ρµ) = 2µuxf,

which can be written in the form

∇ ·
(
(µux)2 + ρµ (ut)

2
,−2ρµuxut

)

= (ut)
2 ∂

∂x
(ρµ) + 2µuxf.

Integrate overΛs to obtain

∫

Λs

∇ ·
(
(µux)2 + ρµ (ut)

2
,−2ρµuxut

)

=
∫

Λs

[
(ut)

2 ∂

∂x
(ρµ) + 2µuxf

]
.

The setΛs is a trapezium with two sides parallel to
the t-axis,C0 andCs respectively. We shall denote byΓ1

the sideC0 and number the other sides counterclockwise.
Then, by the divergence theorem

−
∫

Γ1

(
(µux)2 + ρµ (ut)

2
)

+
∫

Γr

(
(µux)2 + ρµ (ut)

2
)

+
∫

Γ2

1
‖(v,−1)‖

[(
(µux)2 + ρµ (ut)

2
)

v + 2ρµuxut

]

+
∫

Γ4

1
‖(v, 1)‖

[(
(µux)2 + ρµ (ut)

2
)

v − 2ρµuxut

]

=
∫

Λs

[
(ut)

2 ∂
∂x (ρµ) + 2µuxf

]
.
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−
∫

Γ1

(
(µux)2 + ρµ (ut)

2
)

+
∫

Γ3

(
(µux)2 + ρµ (ut)

2
)

+
∫

Γ2

v

‖(v,−1)‖
[(

(µux)2 + ρµ (ut)
2
)

+
2
v
ρµuxut

]

+
∫

Γ4

v

‖(v, 1)‖
[(

(µux)2 + ρµ (ut)
2
)
− 2

v
ρµuxut

]

=
∫

Λs

[
(ut)

2 ∂

∂x
(ρµ) + 2µuxf

]
.

(8)
Consider the inequality

∣∣∣∣
2
v
ρµuxut

∣∣∣∣ = 2 |µux|
∣∣∣ρ
v
ut

∣∣∣ ≤ (µux)2 +
(ρ

v

)2

(ut)
2
.

Hence (ρ

v

)2

≤ ρµ

if and only if √
ρ

µ
≤ v.

From (8) we obtain
∫

Γ3

(
(µux)2 + ρµ (ut)

2
)
−

∫

Γ1

(
(µux)2 + ρµ (ut)

2
)

≤
∫

Λs

[
(ut)

2 ∂

∂x
(ρµ) + 2µuxf

]
. (9)

But ρ andµ areC1 functions, so
∫

Λs

[
(ut)

2 ∂

∂x
(ρµ) + 2µuxf

]

≤ c

∫

Λs

[
(ut)

2 + (µux)2 + |f |2
]

Sinceρ andµ are bounded from below, it follows from
(9) that

∫

Γ3

[
(ux)2 + (ut)2

] ≤ c

∫

Γ1

(
(ux)2 + (ut)

2
)

+ c

∫

Λs

|f |2 + c′
∫

Λs

[
(ut)

2 + (ux)2
]
. (10)

Let us define theenergy

E(σ) =
∫

Γσ

(
(ux)2 + (ut)

2
)

.

We can write (10) in the form

E(s) ≤ c

[
E(0) +

∫

Λs

|f |2
]

+ c′
∫ s

0

E(σ)dσ.

Thus, iff ≡ 0 in Λs, by Gronwall’s lemma

E(s) ≤ cE(0) exp (c′s) .

We conclude finite speedv of propagation.

5.2. Uniqueness of wave speeds

Definition. Let Ω be an open domain inRn, we say that
u ∈ H1

loc (Ω) has a unique continuation principle inΩ if
u = 0 in an open subset ofΩ implies thatu = 0 in Ω.

It is well known that elliptic equations have a unique
continuation principle. We shall apply this principle to the
one dimensional equationutt = 0, wheret is regarded as
space variable.

Theorem 2.. Let µ be a known positive constant. Assume
that ρj ∈ C1 ([0, X]) , j = 1, 2 satisfyρj(x) ≥ α0 > 0.
Letu ∈ H2 ((0, X)× (0, T )) be a common solution to the
wave equation

µuxx − ρjutt = f, in (0, X)× (0, T ).

with zero Cauchy data

u(x, 0) = ut(x, 0) = 0, x ∈ (0, X) .

Let t0 > 0 and ε > 0 be given. Consider the boundary
data condition

u(0, t) = 0, t ∈ (t0 − ε, t0 + ε) .

Then we have

ρ1 = ρ2, in (0, X) \IE ,

where

IE =
⋃{

I ⊂ (0, X) : I open,‖u‖L2(I×(0,T )) = 0
}

.

Proof.Let (0, X) be expressed by the union of disjoint
subsetsI = I0 ∪ I+ ∪ I−, where

I0 = {x ∈ (0, X) : ρ1(x) = ρ2(x)} .

I± = {x ∈ (0, X) : ρ1(x) ≷ ρ2(x)} .

We will show thatI+ ∪ I− ⊂ IE . Fix any pointx0 ∈
I+. Sinceρ1−ρ2 ∈ C0 ([0, X]) , andI+ is an open subset
of (0, X) , there exists an open intervalIε(x0) ⊂ I+ on
which we have

α1 < ρ1 − ρ2 < α2 for someα1, α2 > 0.

We assume thatu(x, t) is a common solution of the
wave equation forρj(x), j = 1, 2.

µuxx − ρ1utt = f,

µuxx − ρ2utt = f.

Subtracting
(ρ2 − ρ1)utt(x, t) = 0.

Thus, ifx ∈ Iε(x0) u satisfies the equation

utt(x, t) = 0, t ∈ (0, T ). (11)
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But because of finite propagation speed,u ≡ 0 in

Cx = {x} × (t0 − (ε− vs) , t0 + (ε− vs)) ,

where

v = max
y∈[0,X]

√
ρ1(y)

µ

If u is solution of (11), then it satisfies a unique con-
tinuation principle andu ≡ 0 in Iε(x0) × (0, T ). Conse-
quentlyI+ ⊂ IE . Similarly we haveI− ⊂ IE , implying
that (0, X) \IE ⊂ (0, X) \ (I+ ∪ I−) ⊂ I0, which com-
pletes the proof.

6. Gradient by the adjoint state method

By assuming Fŕechet differentiability, we derive an ex-
pression for the gradient using the adjoint state approach.
Our contention is that Fréchet differentiability adds clarity
and generality to gradient computation instead of that of
Gáteaux.

For the constrained minimization problem (4) we con-
sider the Lagrangian

L(ρ, µ, u;λ) =
1
2
‖Mu− d‖2L2(Yr×Tr)

+
〈

ρ
∂2u

∂t2
−∇ · (µ∇u)− g, λ

〉

L2(ΩT )

,

whereλ is a Lagrange multiplier.
Let us assume thatL(ρ, µ, u;λ) is Fŕechet differen-

tiable. We denote byDjL the partial derivative ofL with
respect to thej variable.

We shall use freely the rules of differentiation in the
sense of Fŕechet. See Dieudonné [2].

DL(ρ, µ, u; λ) (ξ, ς, η) = D1L(ρ, µ, u; λ)ξ
+ D2L(ρ, µ, u; λ)ς + D3L(ρ, µ, u;λ)η,

where

D1L(ρ, µ, u;λ)ξ =
〈
ξ ∂2u

∂t2 , λ
〉

L2(ΩT )
,

D2L(ρ, µ, u; λ)ς = 〈−∇ · (ς∇u) , λ〉L2(ΩT ) ,

D3L(ρ, µ, u; λ)η = 〈Mη,Mu− d〉L2(Yr×Tr) +〈
ρ∂2η

∂t2 −∇ · (µ∇η) , λ
〉

L2(ΩT )
.

Givenρ, µ let u(ρ, µ) be the solution of the IBVP and
define

U(ρ, µ) = (ρ, µ, u(ρ, µ)) .

Thus
J(ρ, µ) = L(U(ρ, µ); λ).

By the chain rule

DJ(ρ, µ) (ξ, ς) = DL(U(ρ, µ); λ)DU(ρ, µ) (ξ, ς) ,

but

DU(ρ, µ) (ξ, ς) = D1U(ρ, µ)ξ + D2U(ρ, µ)ς,

D1U(ρ, µ)ξ = (ξ, 0, D1u(ρ, µ)ξ) ,

D2U(ρ, µ)ς = (0, ς,D2u(ρ, µ)ξζ) .

Definev = Du(ρ, µ) (ξ, ς). From

DJ(ρ, µ) (ξ, ς) = DL(U(ρ, µ); λ) (ξ, ς,Du(ρ, µ) (ξ, ς))

≡ DL(U(ρ, µ); λ) (ξ, ς, v)

we write

DJ(ρ, µ) (ξ, ς) =
〈
ξ ∂2u

∂t2 , λ
〉

L2(ΩT )

+ 〈−∇ · (ς∇u) , λ〉L2(ΩT )

+ 〈Mv,Mu− d〉L2(Yr×Tr)

+
〈
ρ∂2v

∂t2 −∇ · (µ∇v) , λ
〉

L2(ΩT )

=
〈
ξ ∂2u

∂t2 , λ
〉

L2(ΩT )

+ 〈−∇ · (ς∇u) , λ〉L2(ΩT )

+ 〈v,M∗ (Mu− d)〉L2(ΩT )

+
〈
ρ∂2v

∂t2 −∇ · (µ∇v) , λ
〉

L2(ΩT )

In order to cancel the last two terms we integrate by
parts the last term to obtain the adjoint IBVP forλ

ρ(x)∂2λ(x,t)
∂t2 − ∇ · (µ(x)∇λ(x, t))

= −M∗ (Mu− d) , (x, t) ∈ Ω × (0, T ).

λ(x, T ) = λt(x, T ) = 0, x ∈ Ω.

λ(x, t) = 0, (x, t) ∈ Γ1 × [0, T ].
∂λ(x,t)

∂n = 0, (x, t) ∈ Γ2 × [0, T ].

Then

DJ(ρ, µ) (ξ, ς) =
〈

ξ
∂2u

∂t2
, λ

〉

L2(ΩT )

+ 〈−∇ · (ς∇u) , λ〉L2(ΩT )

Again, integrating by parts the last term

DJ(ρ, µ) (ξ, ς) =
〈

ξ, λ
∂2u

∂t2

〉

L2(ΩT )

+ 〈ς,∇λ · ∇u〉L2(ΩT )

=

〈
(ξ, ς) ,

∫ T

0

(
λ

∂2u

∂t2
,∇λ · ∇u

)
dt

〉

L2(Ω)×L2(Ω)

.
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Hence

∇J((ρ, µ)) =
∫ T

0

(
λ

∂2u

∂t2
,∇λ · ∇u

)
dt

=
∫ T

0

(
−∂λ

∂t

∂u

∂t
,∇λ · ∇u

)
dt.

7. Final Comments

It is apparent that the discrete framework introduced in this
paper can be both, parallelized and extended to 2D and 3D.
Regarding the regularization of the inverse problem, it is
well known that the parameters have large variances, and
the development of strategies to incorporatea priori infor-
mation into the regularization constitute a trendy field of
research. On the other hand, the discrete framework intro-
duced in this paper allowed us to recover discontinuities
on the density in the acoustic approximation. This result
alone highlights the adequacy and our approach. We plan
to report a Bayesian analysis of this problem elsewhere.
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