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Abstract: The first part of this paper reviews the properties of bivariate dependence measures as Spearman’s rho and Kendall’s tau
under the different copula. The second part of this paper derives the bivariate inverted Topp-Leone (BITL) distribution based on Farlie-
Gumbel-Morgenstern (FGM), Ali-Mikhail-Haq (AMH), Plackett, and Clayton copula. The reliability function obtained for bivariate
ITL distributions based on copula. The maximum likelihood estimation method for the parameters of the four bivariate ITL distributions
has been discussed. Asymptotic confidence intervals for the model parameters are also considered. To evaluate the performance of the
models, a Monte Carlo simulation study is conducted to compare the efficiency between the four models. Also, a medical real data set of
diabetic nephropathy is analyzed to investigate the models and useful results are obtained for illustrative purposes. Anderson—Darling-
type statistic and Cramér—von Mises statistic for copula goodness-of-fit testing are obtained.
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1 Introduction

As we considering bivariate distribution, measuring the
dependence between different bivariate data is of
particular interest in a variety of applications. Spearman’s
rho, Kendall’s tau, Blomqvist’s beta, Gini’s gamma, and a
few other lesser-known measures are all classic bivariate
dependence measures. These measures are designed to
assess dependency in bivariate data based on copula
function.

In fact, traditional ’dependence’ measures such as
Pearson’s r, Spearman’s rank correlation, or Kendall’s are
only useful in particular circumstances such as linearity,
monotonicity, concordance, which are symmetric
therefore undirected by design. Implying that the random
variable X is equally dependent on the random variable Y
and vice versa. The famous but often misunderstood
measure of dependency is linear correlation. The
popularity of linear correlation stems from its ease of
calculation, and it is a natural scalar measure of
dependency in elliptical distributions with well-known
members like the multivariate-normal and multivariate-t
distributions. In many real-life cases, the relationship
between random variables is asymmetric. For example,

the linear correlation can result in incorrect risk
assessments in stock market trades which was discussed
by Okimoto [1], inaccurate gene network reconstructions
which discussed by Wang and Huang [2]. Also see,
Al-Sadoon [3], Bardossy and Hérning [4], Coenen and
Weitz [5] and Junker et al. [6].

In the literature review, we found additional more
dependence measures including, e.g., dependence
measures based on copula function which are discussed
by Embrechts et al. [7], Smith et al. [8], distance
correlation R which is discussed by Székely et al. [9], the
maximal information coefficient (MIC) which is
discussed by Reshef et al. [10,11], and robust copula
dependence (RCD) discussed by Chang [12].

A copula is a simple way to describe a bivariate
distribution with a dependency structure. A copula is a
function that joins bivariate distribution functions with
uniform [0, 1] margins, as defined by Nelsen [13].

Theorem 1(Sklar theorem). Assuming that the two
random variables X and Y have distribution functions
F(x) and F(Y). Let C(u,v) is the copula cdf and c¢(u,v) is
the copula pdf. Then the cdf and pdf for bivariate
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distributions based on copula are given as

F(x,y) = C(F(x),F(y)), (M

and
fxy) = f(xX)f)e(F(x),F(y)). )

Many copulas based on Theorem 1 have been used to

define the bivariate distributions. For more information
see Nelsen [13]. For more examples see Elaal and Jarwan
[14], Almetwally et al. [15], Almetwally and Muhammed
[16] and El-Sherpieny et al. [17,18,19].
In the univariate cases, the inverted distributions are
important in a variety of fields, including biological
sciences, life test issues, medicine, and so on. The
inverted conformation distributions have a different
structure than non-inverted conformation distributions in
terms of density and hazard ratio. The cdf and pdf of the
inverted Topp-Leone distribution (ITL) with shape
parameter A > 0 were proposed by Hassan et al. [20] as
follows:

A
F(x;l):]—%; x>0>0 3)
X
and, N
1+2x)*1
f(x;l)Z?Lx%; x>0 4)

Many authors introduced a new distribution based on ITL
distribution such as Almetwally et al. [21] introduced
modified Kies inverted Topp-Leone distribution.
Muhammed [22] introduced the inverted Topp Leone
distribution with different forms. Almetwally [23]
introduced odd Weibull ITL distribution with applications
of COVID-19 data. Abushal et al. [24] introduced power
ITL distribution in acceptance sampling plans. Hassan et
al. [25] introduced Kumaraswamy ITL distribution with
applications of COVID-19 data. Ibrahim et al. [26] alpha
power ITL distribution with different applications.
Kendall’s tau and Spearman’s rho are two essential
indicators of dependency (concordance) that we will
address. They are possibly the best alternatives to the
linear correlation coefficient as a measure of dependency
for non-elliptical distributions, in which the linear
correlation coefficient is mostly ineffective and
misleading.

In this paper, we study the bivariate extension of the
ITL distribution based on different copula functions and
obtain their statistical properties of dependence measure
using Kendall’s tau and Spearman’s rho. Point and
interval estimation of the parameters of BITL distribution
are discussed using maximum likelihood estimation
(MLE).

The present paper is organized as follows. After this
introduction Section 2 reviews the original copula
function with dependence measures. In Section 3, we
introduced different bivariate extension of the ITL
distribution based on different copula functions. In

Section 4 parameter estimation are obtained. Furthermore
in Section 5, the potentiality of the four new models are
illustrated by simulation study. In Section 6, application
of a diabetic nephropathy real data set is discussed.
Finally, Section 7 is devoted to the research perspective.

2 Copula Function

The family of Archimedean copulas is one of the most
common families of copulas. If a copula has the
functional form

Cluv)=0 (¢ () + 9~ '(v))

for a suitable, decreasing function @: (0,e) — [0, 1], with
©(0) = 1 and lime@(x) = 0, it is called an
Archimedean copula. For more information see Genest
and Rivest [27] and Charpentier and Segers [28]. Popular
completely monotone generators of Archimedean copulas
as Clayton, Gumbel, and Ali-Mikhail-Haq (AMH)
copula. Plackett [29] suggested the Plackett family of
bivariate distributions, which were based on the principle
of constant cross-product ratio (or odds ratio). Bekrizadeh
et al. [30] discussed and developed Farlie Gumbel
Morgenstern (FGM) copula.

Spearman’s Rho
Let C be the copula of continuous random variables X and

Y. The population variant of Spearman’s rho for X and Y
is then calculated as follows:

1l
ps = 12/ / C(u,v)dudv —3 5)
o Jo

It’s worth noting that ps corresponds to the correlation
coefficient p between uniform marginal distributions.

Kendall’s Tau

In terms of copula, Kendall’s tau 7 is defined as

1,1
T = 4/ / c(u,v)C(u,v)dudv — 1 6)
0 Jo
The AMH, Clayton, FGM, and Plackett copulas, which are
used to form bivariate distributions, will be discussed.

2.1 FGM Copula

In FGM copula; the cdf of FGM copula with copula
parameter —1 < 0 < 1 is given as following

Clu,v) =uv(0(1 —u)(1—v)) (7)
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the pdf of FGM copula is as following
c(u,v)=1+06(1—2u)(1-2v) (8)

The Spearman’s rho of FGM is

o ®
s 3 N
The Kendall’s tau of FGM is
o 20
k=g

2.2 AMH Copula

In AMH copula; the cdf of AMH copula with copula
parameter —1 < 6 < 1 is given as following

uy
C = 9
W) = i —wa = 2
the pdf of AMH copula is as following
1= 0+201—qtmms
C(M,V): 1-6(1—u)(1—v) (10)

1—0(1—u)(1—v)]

For the AMH copula, Nelsen ([13], p. 172) provides the
following formula for Spearman’s rho

_L2e+1), 24(1-6)
- 3(9+ 12)
0 )

where his “dilogarithm” dilog(x) = polylog(1 —x,2), and
it is the usual definition of the dilogarithm as a special
function.

2.4 Plackett Copula

In Plackett copula; the cdf of Plackett copula with copula
parameter 8 > 0 is given as following

14+ (O0—-1)(u+v)
Clu,v) = 20-1)
(13)
VI +(0—1)(u+v)2—4ub(6-1)
2(0—1)
the pdf of Plackett copula is as following
c(uyv) = 014+ (u—2uv+v)(0—1)) (14)

(14 (8 — 1) (u+v))>—4uv6(6 — 1))
For the Plackett copula the following formula for
Spearman’s rho is given as follows:
20+6%-2(60+1)In(6 +1)
Ps = 92 ?

3 Bivariate I'TL Distribution

In this section, we intorduced four bivariate ITL
distributions based on FGM, AMH, Clayton and Plackett
copulas.

3.1 FGM Bivariate ITL Distribution

By using FGM copula Equations (7,8), Sklar Theorem 1
and ITL distribution in Equations (4,3), we get the FGM
bivariate ITL distribution which can be denoted by
FGMBITL with cdf, pdf and reliability function as
follows in Equations (15, 16,17) respectively. Figure 1
shows the joint pdf of FGM bivariate ITL distribution
with different shapes.

The Kendall’s tau of AMH is - ) < (2t ) (1 (142" )
FGMBITL(X,Y) = | 1 — o) - 7
o ,(1=60)’In(1-6)+6 (142~ (14+y)™
¢ 362 ' 1+9(1+2x)ll (1+2y)"
(1+x)% (14y)%
2.3 Clayton Copula (15)
. : 14 2x)M1 (142y)*!
In Clayton copula; the cdf of Clayton copula with copula X 2ix (
parameter 6 > 0 is as following Frompirs(x.y) = 2A1x (14x)?tl 2 (1 +y)2’12“
-1 (1+2x)M (142y)*
(6, -6 _1\7© 1+0(2—————1 | [2——————-1]],
C(M,V) = (Lt +v 1) (]]) < (1 +X)2)Ll (1 +y 2),2
16)
the pdf of Clayton copula is given as following and (16
261 A A
—1-6(,— - 142x)" (142y)™
c(u,v) = (1+0)(uv) =" (M O v f- 1) () RrGmpire(x,y) = ( z)k ( yz)/l -
(14+x)™" (1+y)™ (a7
The Kendall’s tau of Clayton is (1+ Zx)l‘ (1+ zy)lz
1+0(1———F— | |1 ———— .
L6 (1P (1+y7
T 2ve
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Fig. 1: Joint pdf of FGMBITL distribution

3.2 AMH Bivariate ITL Distribution

By using AMH copula Equations (9,10), Sklar theorem 1
and ITL distribution in Equations (4,3), we get the AMH
bivariate ITL distribution which can be denoted by
AMHBITL with cdf, pdf and reliability function given as
follows in Equations (18, 19, 20) respectively. Figure 2
shows the joint pdf of AMH bivariate ITL distribution
with different shapes.

|- 2ot o
(14x)?M (1+y)*2

(1+20M (14292
(14021 (14y)%2

Famusrre(x,y) = , (18)

(1+2x)l1’1
(] +x)27t|+l

<17(1+2x2)i] ) <]7(1+2y2)22

_ (14x)“"1 (14y)“"2
1= 0+20°—
(1+x)211 (l+y)212

[1 _ gUt2nh <1+zy>*2]2

+2y)l2’1
+y)27tz+l

1
famuprr(x,y) = 2A1x 2y ((1

(1401 (14y)2
(19)
and

(1+20% (129"
(1+x)2M (14y)h
- (1+20)M 1 (1+2y)2 (20)
(1% (142

(120" (142p)%
(14221 (14y)*2

Ramupire(x,y) =

AMHBITL
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Fig. 2: Joint pdf of AMHBITL distribution
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3.4 Plackett Bivariate ITL Distribution
3.3 Clayton Bivariate ITL Distribution
By using Plackett copula Equations (13,14), Sklar
) . theorem 1 and ITL distribution in Equations (4,3), to get
By using Clayton copula Equations (11,12), Sklar o plackett bivariate ITL distribution which can be
theorem 1 and ITL distribution in Equations (4,3), to get  genoted by PBITL with cdf, pdf and reliability function
the Clayton bivariate ITL distribution which can be as follows in Equations (25, 24, 26) respectively. Figure 4

denoted by CBITL with cdf, pdf and reliability function ¢ o the joint pdf of Plackett Bivariate ITL distribution
as follows in Equations (21, 22, 23) respectively. Figure 3 with different shape parameters.

shows the joint pdf of Clayton Bivariate ITL distribution
has different shapes.

M\ K\ ¢ .
(T 20m (14 2y)k! 1420 \M 112y \2\] "
Jemreloy) =2 g P e (1 40) (“(m) )(1_(<1+y>2)

—20-1 22)

(-GE)) (@)
and

R ( )_(1+2x))“+(1+2y)l2_1+ 1 14+2x \ M 76+ 1— 14+2y \* 79_] ’ (23)
CBITL\X,Y —(1+x)ul (1+y)212 (1+x)2 (1+J’)2 .

(1420471 (142y)k]
(1+x)2M+1 Zy(1+y)2l2+1

o([(-())-2(-()) () (- () ) o)

feirL(x,y) =2A1x

24
Fpgiri(x,y) = ey [<1 : ((112)26(;29)511) - <] - <(iii)y2)b)] } 25
(25)
(o0 [(- (") (- () ")]) -5 - (™) (- (33 s
26—1) ’
romo) =
(e n (-G )« () )]) (- (a)") (- () Yoo ™
2(0-1) '
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Fig. 3: Joint pdf of CBITL distribution

4 Maximum Likelihood Estimation (MLE)

In this section, we estimate the unknown parameters of
the bivariate ITL distribution using the MLE method.
Suppose that (x1,y1), (x2,¥2),..,(Xn,ys) is a sample of
size n. The likelihood function of bivariate ITL
distribution with vector of parameters ® = (1;,4,,6)
based on different copulas are as follows:

The log-likelihood function of FGMBITL distribution can
be written in Eqution (27). The log-likelihood function of
AMHBITL distribution can be written in Eqution (28).
The log-likelihood function of CBITL distribution can be
written in Eqution (29). The log-likelihood function of
PBITL distribution can be written in Equation (30). By
obtaining the first derivatives with respect to the unknown
parameters for each log-likelihood function separately,
and by equating them to zero. we can get the likelihood
equations and hence solving them numerically to obtain
the MLEs for each distribution.

In asymptotic confidence intervals (ACI), the asymptotic

PBITL
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0.030
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0.020

0.015

o.010

0.005

A1 =0.85A>=0.650=0.6

PBITL

= - ,,//lll””""“““\\\\\\ - ons

A4 =1.5A.=0.50=5

Fig. 4: Joint pdf of PBITL distribution

normal distribution of the MLE is the most used to
determine parameter confidence intervals of bivariate ITL
distribution. Fisher information matrix /(®), which is
composed of the negative second derivatives of the
natural logarithm of the likelihood function evaluated at
6 = (il,ig,é), is related to the asymptotic
variance-covariance matrix of the MLE of the parameters
of bivariate ITL distribution. Suppose the asymptotic
variance-covariance matrix of the parameter vector @ is

. A
1(0) = FI AR
64, 62, 166

where V(0) =1"'(0)
A 100(1 — )% confidence interval for the vector
parameter ® can be constructed based on the asymptotic

normality of the MLE. lAj +Z0025, /15 550 =1,2
77

and 6 i = Z0.025 Iéj 6,0 where Zj (25 is the percentile of the
standard normal distribution with right tail probability 5.
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[(©) =n[n(4) +1n(A;) +1n(A2)] —|—Zln (xi +Zln Vi +Z]n (UJFLI))—Fi]n (M>

2 e ) TR )
u 1+ 2x)™ 1+ 2y,)"
+Y I |1+6 2%—1 2%—1 ,
=1 (14x;)" (I+y:)™"
n n n (1 _,’_le)l 1—1 n (1 +2)’i)127]
i= = i= i=
IR YA
1—9+29<1 (1) J<lmwfb>
o (125 M 1429k (28)
+ iln (1+x,)2}“1 (1) %2
' 1 — g2t (142y)% ’
(142) 41 (1432
n n n (1+2x n 1+2y)12 |
[(O) :n[ln(4)+1n(l1)+1n()~z)]+Zln(x,-)+Zln(yi)+Z]n 71211“ Z 7212“
i=1 i=1 i=1 (1+x = 1+y
—260—1 (29)

wo({(-G) (-G ) )

n n n X n l?LQ 1
1(©) = n[In(4) + In(A1) + In(A)] +Zln(xi)+21n(yi)+i;1n <((”272M]> +Z1 <%>

=1 -1 I+

o 9(”{(“(3&1&)11)—2(1 ) )( (&2 Az)+(1—(<}j§;’;z)h)}(9_1))
T [(ren](-G)) (-G )]) (- G0 (1 ) oo

(30)

1.5
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5 Simulation and Generation of Bivariate
ITL Sample

In this section; a Monte Carlo simulation is done for
comparison between bivariate ITL under different copulas
by using point, interval estimation and dependence
measures. To generate random variables: Nelsen [13]
discussed generating a sample from a specified joint
distribution by using the conditional distribution method.
we will discuss the generation of bivariate ITL under
different copulas, using the conditional distribution and
iterative algorithms.

Firstly: We generate Q and W independently from a
uniform distribution with lower is 0 and upper is 1.
Secondly: We obtain the conditional distribution of X
given Y for each distribution based on copulas:

In FGM copula

C(vlu) =v(14+6(1 —v)(1—2u)), (31)

and
Clulv)=u(1+6(1 —u)(1—2v)). (32)
In Clayton copula

=11

C(v|u) = (u’e +v - 1) T (33

and
(et
In AMH copula
- v B Ouv(l —v)
M) = == =60 —u)(1 -
(35)
and
- u B Ouv(l —u)
Cel) =T —na -y (1—0(1—u)(1—v))*
(36)

In Plackett copula

Cv|u) =0.5[1—(1+(6—1)(u+v))] —vO

(14 (0= 1) (u+v)2—4uvo(6—1)) >
46-1) ’
. (37)
Clulv) =0.5[1—(1+(0—1)(u+v))]—ub
(14 (6= 1)(u+v))2—4uvo(6—1))
40-1)
(38)

where u is a cdf of ITL distribution with parameter A; and
v is a cdf of ITL distribution with parameter A;.

A simulation algorithm: Simulation experiments were
carried out based on the following data generated from

bivariate ITL distributions under different copulas, where
the values of the parameters A;,A,, and 6 are chosen as in
the following cases for the random variables generation:
Case 1: (A =2.5,6 = 0.4) and A, are change from 0.75
to 3.

Case 2: (A, =0.5,0 = 0.4) and A, are change from 0.75
to 3.

Case 3: (A, =0.75,4; = 0.5) and 6 are change from 0.1
to 0.9.

For different sample size n = 35,70 and 150. The
simulation results are compared using parameter
estimation criteria, which include measuring the Bias,
MSE, length of ACI, and dependence measure for each
model as follows:

Bias = (0 — 0)

Where O is the estimated value of ©.

MSE = Mean(0 — 0)?.

and L.CI=Upper.CI(0)-Lower.CI(®)

The number of repeated samples in simulation was
limited to 5000.

Figure 5 Kendall’s Tau, and Spearman’s Rho coefficients
limiting for BITL distribution. The simulation results of
the methods discussed in this paper for point estimation,
interval estimation, and dependency calculation are
summarized in Tables 1, 2, and 3. The Bias, MSE, and
L.CI for parameter of bivariate ITL distributions under
different copula, Kendall’s Tau, and Spearman’s Rho
values are used to perform the requisite comparison
between different point estimation methods. The
following conclusions can be drawn from these tables:

1.The Bias, MSE, and L.CI decrease as n increases for
actual parameters of bivariate ITL distributions under
different copulas, Kendall’s Tau, and Spearman’s Rho
coefficients.

2.For fixed sample size and case of actual values, we
note that the Bias, MSE, and L.CI for parameters of
bivariate ITL distributions under different copulas,
Kendall’s Tau, and Spearman’s Rho coefficients
increase when A, increases.

3.In case 1 and fixed sample size, we note that the
PBITL has the smallest Bias and MSE for 4,,4,, 0,
while the shortest CI in case of AMHBITL
distribution.

4.For fixed sample size and case of actual values, we
note the Bias, MSE, and L.CI for parameters of
bivariate ITL distributions under different copulas,
Kendall’s Tau, and Spearman’s Rho coefficients
increase when A, increases.

5.For fixed sample size and case of actual values, we
note that the Bias, MSE, and L.CI for parameters of
bivariate ITL distributions under different copulas,
Kendall’s Tau, and Spearman’s Rho coefficients

@© 2021 NSP
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increase when 0 increases.

6 Application

In this section, we used medical data related to
diabetic nephropathy. We focused at the duration of
diabetes and serum creatinine levels (SrCr). We are
measuring the complications that may arise because
of diabetics using SrCr values and non-diabetic
nephropathy (SrCr < 1.4mg/dl). Pathological reports
for these patients were collected from Dr. Lal’s path
lab database between January 2012 and August 2013.
Grover et al. [31] looked at these findings, which
included the average diabetes cycle of 132 patient
Type-II diabetic nephropathy patients over time
intervals. The parameters estimation for each
distribution have been done, see Table 4. And it is
through that we gain access to a model that is
well-suited to the study of fragile relationships and
the degree to which they have an influence and
effectiveness. Table 5 shows the model criterion
selection as Akaike information criterion (AIC),
corrected AIC (CAIC), Hannan-Quinn information
criterion (HQIC) and goodness of fit test of copulas as
Anderson—Darling-type  statistics (ADTS) with
p-value and Cramer-von Mises functional (CVMF)
wiht p-value for FGMBITL, AMHBITL, CBITL and
PBITLF distributions. According to Tables 4 and 5,
we can conclude that the CBITL model is better than
FGMBITL, AMHBITL and PBITL distributions. For
more information of goodness of fit test of copula see
Genest et al. [32].

The plot of the bivariate distribution’s density and
cumulative is more interesting. However, keep in
mind that the scatter plot and density plot may be
deceiving. This is one of the reasons why, if contour
plots are open, we tend to look at them in most cases.
As shown in Figures 6, 7, these four copulas have
correlation properties of various characteristics. The
Clayton copula correlates better than the others
copulas. The correlation structure of the FGM copula
is weaker than the others copulas.

7 Conclusion

In this paper, we have proposed the use of the
bivariate models based on copula functions for
medical data related to diabetic nephropathy. We
showed that the duration of diabetes and SrCr levels
are closely related in a probabilistic way to each other
by analyzing medical data. These empirical facts
authorize our endeavor to bivariate model diabetic
nephropathy based on different copulas. Four copula
models were employed and their accuracy was
examined through fitting to the real data. We have

proposed a new class of bivariate ITL distributions
based on FGM, AMH, Plackett, and Clayton copulas.
Moreover, we obtained the reliability functions for
bivariate ITL distributions based on different copulas
understudy, therefore, it can be used quite effectively
in life testing data. We studied dependence measures
as Kendall’s Tau and Spearman’s Rho. Monte Carlo
simulation is used to compare distributions. The
CBITL distribution is the best model to fit this data.
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Table 1: Point, interval and dependence measure of the bivariate ITL distributions under different copulas: Case 1

A =25,0=04 FGM Clayton AMH Plackett
M n Bias MSE L.CI Bias MSE L.CI Bias MSE L.CI Bias MSE L.CI
A1 | 0.0900 | 0.2782 | 2.0384 | -0.2574 | 0.4908 | 2.5554 | 0.0434 | 0.2709 | 2.0343 | 0.0017 | 0.2412 | 2.0218
Ay | 0.0719 | 0.2056 | 1.7557 | -0.1581 | 0.2815 | 1.9862 | 0.0298 | 0.1902 | 1.7063 | 0.0042 | 0.1886 | 1.7304
35 2] 0.0040 | 0.2210 | 1.8437 | 0.1486 | 0.1508 | 1.4070 | 0.2264 | 0.1308 | 1.1060 | -0.1802 | 0.0426 | 1.1566
7 | 0.0009 | 0.0109 | 0.4097 | 0.0339 | 0.0124 | 0.4162 | 0.0815 | 0.0148 | 0.3534 | -0.1421 | 0.0278 | 0.8729
ps | 0.0013 | 0.0246 | 0.6146 | 0.0448 | 0.0245 | 0.5880 | 0.1179 | 0.0309 | 0.5118 | -0.1899 | 0.0489 | 1.2319
A1 | 0.0506 | 0.1302 | 1.4014 | -0.3834 | 0.4689 | 2.2251 | 0.0090 | 0.1230 | 1.3753 | -0.0312 | 0.1190 | 1.4015
A | 0.0505 | 0.1041 | 1.2499 | -0.2498 | 0.2425 | 1.6641 | 0.0151 | 0.0987 | 1.2308 | -0.0128 | 0.0960 | 1.2503
3 70 6 | -0.0053 | 0.1283 | 1.4049 | 0.0939 | 0.0653 | 0.9321 | 0.2406 | 0.0950 | 0.7556 | -0.1941 | 0.0417 | 0.9371
T | -0.0012 | 0.0063 | 0.3122 | 0.0244 | 0.0061 | 0.2918 | 0.0804 | 0.0106 | 0.2514 | -0.1463 | 0.0250 | 0.7705
ps | -0.0018 | 0.0143 | 0.4683 | 0.0332 | 0.0123 | 0.4156 | 0.1175 | 0.0225 | 0.3653 | -0.1976 | 0.0450 | 1.0949
A1 | 0.0178 | 0.0595 | 0.9541 | -0.4029 | 0.3272 | 1.5923 | -0.0240 | 0.0587 | 0.9454 | -0.0490 | 0.0556 | 0.9498
A | 0.0155 | 0.0450 | 0.8298 | -0.2751 | 0.1670 | 1.1849 | -0.0196 | 0.0438 | 0.8167 | -0.0394 | 0.0414 | 0.8199
150 | 6 | -0.0012 | 0.0632 | 0.9857 | 0.0688 | 0.0287 | 0.6070 | 0.2521 | 0.0804 | 0.5095 | -0.1958 | 0.0402 | 0.7872
7. | -0.0003 | 0.0031 | 0.2190 | 0.0200 | 0.0030 | 0.2007 | 0.0812 | 0.0085 | 0.1729 | -0.1441 | 0.0225 | 0.6957
ps | -0.0004 | 0.0070 | 0.3286 | 0.0280 | 0.0062 | 0.2885 | 0.1194 | 0.0184 | 0.2519 | -0.1956 | 0.0412 | 0.9936
A1 | 0.0287 | 0.0203 | 0.5468 | -0.0204 | 0.0162 | 0.4925 | 0.0178 | 0.0196 | 0.5453 | -0.0124 | 0.0167 | 0.5554
A | 0.1075 | 0.2270 | 1.8203 | -0.0698 | 0.2170 | 1.8063 | 0.0634 | 0.2129 | 1.7925 | 0.0878 | 0.2115 | 1.7570
35 6 | -0.0141 | 0.2431 | 1.9328 | 0.0817 | 0.1121 | 1.2732 | 0.2152 | 0.1406 | 1.2042 | -0.1792 | 0.0433 | 1.2035
7 | -0.0031 | 0.0120 | 0.4295 | 0.0146 | 0.0101 | 0.3909 | 0.0791 | 0.0154 | 0.3740 | -0.1419 | 0.0280 | 0.8829
ps | -0.0047 | 0.0270 | 0.6443 | 0.0177 | 0.0204 | 0.5557 | 0.1142 | 0.0322 | 0.5424 | -0.1896 | 0.0492 | 1.2468
A1 | 0.0129 | 0.0083 | 0.3646 | -0.0359 | 0.0084 | 0.3304 | 0.0029 | 0.0084 | 0.3595 | -0.0251 | 0.0084 | 0.3805
A | 0.0408 | 0.0913 | 1.1744 | -0.1381 | 0.1112 | 1.1907 | 0.0055 | 0.0862 | 1.1510 | 0.0309 | 0.0866 | 1.1238
0.75 | 70 6 | -0.0079 | 0.1188 | 1.3516 | 0.0272 | 0.0442 | 0.8173 | 0.2366 | 0.0914 | 0.7377 | -0.1900 | 0.0405 | 0.9256
T | -0.0018 | 0.0059 | 0.3004 | 0.0036 | 0.0046 | 0.2643 | 0.0788 | 0.0102 | 0.2468 | -0.1426 | 0.0240 | 0.7648
ps | -0.0026 | 0.0132 | 0.4505 | 0.0036 | 0.0094 | 0.3790 | 0.1152 | 0.0216 | 0.3583 | -0.1927 | 0.0433 | 1.0873
A1 | 0.0046 | 0.0040 | 0.2473 | -0.0446 | 0.0052 | 0.2230 | -0.0061 | 0.0038 | 0.2415 | -0.0314 | 0.0045 | 0.2617
A | 0.0185 | 0.0413 | 0.7941 | -0.1541 | 0.0701 | 0.8447 | -0.0176 | 0.0403 | 0.7840 | 0.0202 | 0.0405 | 0.7467
150 | 6 0.0122 | 0.0622 | 0.9770 | 0.0145 | 0.0221 | 0.5805 | 0.2564 | 0.0825 | 0.5080 | -0.1876 | 0.0372 | 0.7862
T | 0.0027 | 0.0031 | 0.2171 | 0.0020 | 0.0024 | 0.1929 | 0.0828 | 0.0088 | 0.1735 | -0.1361 | 0.0203 | 0.6898
ps | 0.0041 | 0.0069 | 0.3257 | 0.0021 | 0.0050 | 0.2778 | 0.1216 | 0.0189 | 0.2526 | -0.1852 | 0.0373 | 0.9869
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Table 2: Point, interval and dependence measure of the bivariate ITL distributions under different copulas: Case 2

A =05,60=0.4 FGM Clayton AMH Plackett
M n Bias MSE L.CI Bias MSE L.CI Bias MSE L.CI Bias MSE L.CI
A1 | 0.0289 | 0.0203 | 0.5470 | -0.0158 | 0.0159 | 0.4903 | 0.0195 | 0.0206 | 0.5571 | 0.0094 | 0.0165 | 0.5399
A | 0.0207 | 0.0090 | 0.3637 | -0.0118 | 0.0071 | 0.3273 | 0.0128 | 0.0087 | 0.3621 | -0.0082 | 0.0071 | 0.3668
35 6 | -0.0183 | 0.2434 | 1.9338 | -0.0031 | 0.0941 | 1.2029 | 0.2126 | 0.1404 | 1.2103 | -0.1436 | 0.0451 | 1.2682
7. | -0.0041 | 0.0120 | 0.4297 | -0.0138 | 0.0104 | 0.3953 | 0.0783 | 0.0152 | 0.3740 | -0.1182 | 0.0244 | 0.8855
ps | -0.0061 | 0.0270 | 0.6446 | -0.0230 | 0.0215 | 0.5679 | 0.1130 | 0.0319 | 0.5428 | -0.1576 | 0.0433 | 1.2550
A1 | 0.0129 | 0.0088 | 0.3644 | -0.0300 | 0.0083 | 0.3374 | 0.0025 | 0.0086 | 0.3630 | -0.0037 | 0.0079 | 0.3618
Ay | 0.0073 | 0.0036 | 0.2349 | -0.0249 | 0.0035 | 0.2108 | 0.0000 | 0.0035 | 0.2314 | -0.0180 | 0.0033 | 0.2412
0.75 | 70 6 | -0.0135 | 0.1187 | 1.3503 | -0.0418 | 0.0415 | 0.7819 | 0.2350 | 0.0914 | 0.7458 | -0.1622 | 0.0338 | 0.9403
7 | -0.0030 | 0.0059 | 0.3001 | -0.0204 | 0.0050 | 0.2652 | 0.0784 | 0.0102 | 0.2490 | -0.1199 | 0.0192 | 0.7600
ps | -0.0045 | 0.0132 | 0.4501 | -0.0312 | 0.0105 | 0.3835 | 0.1145 | 0.0216 | 0.3616 | -0.1626 | 0.0349 | 1.0841
A1 | 0.0046 | 0.0040 | 0.2472 | -0.0397 | 0.0048 | 0.2228 | -0.0063 | 0.0038 | 0.2414 | -0.0091 | 0.0037 | 0.2406
A | 0.0030 | 0.0016 | 0.1586 | -0.0285 | 0.0022 | 0.1437 | -0.0046 | 0.0016 | 0.1566 | -0.0199 | 0.0018 | 0.1673
150 | 6 0.0068 | 0.0614 | 0.9712 | -0.0571 | 0.0214 | 0.5288 | 0.2552 | 0.0822 | 0.5122 | -0.1627 | 0.0298 | 0.7865
7 | 0.0015 | 0.0030 | 0.2158 | -0.0230 | 0.0028 | 0.1869 | 0.0824 | 0.0088 | 0.1746 | -0.1148 | 0.0155 | 0.6809
ps | 0.0023 | 0.0068 | 0.3237 | -0.0343 | 0.0060 | 0.2721 | 0.1210 | 0.0188 | 0.2542 | -0.1571 | 0.0288 | 0.9771
A1 | 0.0864 | 0.2876 | 2.0757 | -0.2209 | 0.4631 | 2.5244 | 0.0392 | 0.2746 | 2.0494 | 0.0935 | 0.2566 | 1.9465
A, | 0.0129 | 0.0087 | 0.3618 | -0.0272 | 0.0076 | 0.3258 | 0.0045 | 0.0079 | 0.3485 | -0.0204 | 0.0073 | 0.3621
35 6 | -0.0008 | 0.2209 | 1.8433 | 0.0395 | 0.0997 | 1.2286 | 0.2250 | 0.1326 | 1.1228 | -0.1566 | 0.0388 | 1.1771
T | -0.0002 | 0.0109 | 0.4096 | 0.0010 | 0.0098 | 0.3879 | 0.0814 | 0.0150 | 0.3583 | -0.1239 | 0.0241 | 0.8695
ps | -0.0003 | 0.0245 | 0.6144 | -0.0016 | 0.0199 | 0.5539 | 0.1176 | 0.0313 | 0.5186 | -0.1658 | 0.0427 | 1.2306
A1 | 0.0499 | 0.1307 | 1.4041 | -0.3231 | 0.3992 | 2.1295 | 0.0066 | 0.1235 | 1.3778 | 0.0578 | 0.1257 | 1.3236
Ay | 0.0093 | 0.0042 | 0.2504 | -0.0340 | 0.0048 | 0.2372 | 0.0022 | 0.0040 | 0.2491 | -0.0227 | 0.0040 | 0.2656
3 70 6 | -0.0102 | 0.1282 | 1.4038 | -0.0035 | 0.0425 | 0.8087 | 0.2391 | 0.0951 | 0.7638 | -0.1739 | 0.0358 | 0.9412
7. | -0.0023 | 0.0063 | 0.3120 | -0.0071 | 0.0048 | 0.2703 | 0.0800 | 0.0106 | 0.2535 | -0.1285 | 0.0206 | 0.7614
ps | -0.0034 | 0.0142 | 0.4679 | -0.0119 | 0.0100 | 0.3896 | 0.1169 | 0.0225 | 0.3683 | -0.1742 | 0.0373 | 1.0853
A1 | 0.0178 | 0.0595 | 0.9539 | -0.3832 | 0.3181 | 1.6233 | -0.0249 | 0.0587 | 0.9450 | 0.0383 | 0.0563 | 0.8687
A | 0.0024 | 0.0018 | 0.1660 | -0.0410 | 0.0033 | 0.1600 | -0.0050 | 0.0018 | 0.1632 | -0.0277 | 0.0023 | 0.1798
150 | 6 | -0.0062 | 0.0629 | 0.9833 | -0.0143 | 0.0170 | 0.5088 | 0.2508 | 0.0801 | 0.5142 | -0.1761 | 0.0335 | 0.7826
7 | -0.0014 | 0.0031 | 0.2185 | -0.0075 | 0.0021 | 0.1763 | 0.0809 | 0.0085 | 0.1742 | -0.1259 | 0.0179 | 0.6841
ps | -0.0021 | 0.0070 | 0.3278 | -0.0115 | 0.0044 | 0.2558 | 0.1188 | 0.0183 | 0.2538 | -0.1719 | 0.0331 | 0.9801
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Table 3: Point, interval and dependence measure of the bivariate ITL distributions under different copulas: Case 3

A =0.751=0.5 FGM Clayton AMH Plackett
°] n Bias MSE L.CI Bias MSE L.CI Bias MSE L.CI Bias MSE L.CI
M 0.0306 | 0.0208 | 0.5526 | -0.0785 | 0.0181 | 0.4291 | -0.0695 | 0.0180 | 0.4495 | 0.0276 | 0.0201 | 0.4002
A -0.0084 | 0.0082 | 0.3527 | -0.0545 | 0.0082 | 0.2823 | -0.0487 | 0.0078 | 0.2896 | 0.0200 | 0.0090 | 0.2579
35 0 -0.3228 | 0.2799 | 1.6442 | -0.2531 | 0.1881 | 1.3811 | -0.1645 | 0.0549 | 0.6543 | 0.0505 | 0.3162 | 1.2103
Ty -0.0717 | 0.0138 | 0.3654 | -0.0784 | 0.0152 | 0.3726 | -0.0640 | 0.0078 | 0.2401 | -0.0207 | 0.0151 | 0.6160
Ps -0.1076 | 0.0311 | 0.5481 | -0.1109 | 0.0297 | 0.5170 | -0.0914 | 0.0160 | 0.3427 | -0.0300 | 0.0324 | 0.9000
M 0.0137 | 0.0086 | 0.3599 | -0.0924 | 0.0138 | 0.2842 | -0.0823 | 0.0125 | 0.2958 | 0.0113 | 0.0088 | 0.2370
A -0.0212 | 0.0036 | 0.2188 | -0.0655 | 0.0064 | 0.1796 | -0.0591 | 0.0058 | 0.1866 | 0.0071 | 0.0037 | 0.1449
09| 70 0 -0.2986 | 0.1804 | 1.1846 | -0.3040 | 0.1543 | 0.9755 | -0.1543 | 0.0353 | 0.4203 | -0.0453 | 0.1179 | 0.7686
Ty -0.0664 | 0.0089 | 0.2633 | -0.0876 | 0.0129 | 0.2830 | -0.0633 | 0.0057 | 0.1630 | -0.0262 | 0.0072 | 0.5046
Ps -0.0995 | 0.0200 | 0.3949 | -0.1223 | 0.0252 | 0.3972 | -0.0896 | 0.0115 | 0.2322 | -0.0386 | 0.0156 | 0.7405
M 0.0049 | 0.0039 | 0.2442 | -0.1004 | 0.0125 | 0.1926 | -0.0896 | 0.0106 | 0.1983 | 0.0036 | 0.0040 | 0.1297
A -0.0250 | 0.0020 | 0.1476 | -0.0693 | 0.0058 | 0.1249 | -0.0630 | 0.0050 | 0.1281 | 0.0035 | 0.0017 | 0.0773
150 0 -0.2755 | 0.1237 | 0.8575 | -0.3260 | 0.1362 | 0.6786 | -0.1477 | 0.0273 | 0.2905 | -0.0517 | 0.0520 | 0.4847
Ty -0.0612 | 0.0061 | 0.1906 | -0.0908 | 0.0109 | 0.2012 | -0.0622 | 0.0047 | 0.1115 | -0.0204 | 0.0037 | 0.4278
Ps -0.0918 | 0.0137 | 0.2858 | -0.1258 | 0.0210 | 0.2830 | -0.0876 | 0.0093 | 0.1598 | -0.0302 | 0.0081 | 0.6304
M 0.0220 | 0.0189 | 0.5326 | 0.0163 | 0.0156 | 0.4858 | 0.0232 | 0.0185 | 0.5255 | -0.1549 | 0.0326 | 0.6230
A 0.0140 | 0.0086 | 0.3592 | 0.0117 | 0.0080 | 0.3468 | 0.0135 | 0.0082 | 0.3511 | -0.1089 | 0.0158 | 0.4215
35 0 0.0242 | 0.2622 | 2.0062 | 0.1487 | 0.0902 | 1.0232 | 0.0565 | 0.2250 | 1.8473 | 0.1121 | 0.0203 | 1.0404
Ty 0.0054 | 0.0130 | 0.4458 | 0.0516 | 0.0127 | 0.3921 | 0.0290 | 0.0141 | 0.4520 | 0.1289 | 0.0230 | 0.7829
Ps 0.0081 | 0.0291 | 0.6687 | 0.0755 | 0.0270 | 0.5722 | 0.0424 | 0.0309 | 0.6687 | 0.1603 | 0.0363 | 1.1064
M 0.0119 | 0.0082 | 0.3512 | 0.0091 | 0.0076 | 0.3395 | 0.0116 | 0.0081 | 0.3499 | -0.1599 | 0.0298 | 0.4737
A 0.0098 | 0.0042 | 0.2524 | 0.0089 | 0.0043 | 0.2534 | 0.0096 | 0.0042 | 0.2522 | -0.1114 | 0.0145 | 0.3376
0.1 70 6 -0.0049 | 0.1436 | 1.4861 | 0.1229 | 0.0421 | 0.6439 | 0.0558 | 0.1251 | 1.3700 | 0.1017 | 0.0135 | 0.7486
Ty -0.0011 | 0.0071 | 0.3303 | 0.0478 | 0.0067 | 0.2605 | 0.0213 | 0.0073 | 0.3241 | 0.1263 | 0.0189 | 0.6643
Ps -0.0016 | 0.0160 | 0.4954 | 0.0707 | 0.0147 | 0.3852 | 0.0316 | 0.0162 | 0.4833 | 0.1552 | 0.0290 | 0.9437
M 0.0043 | 0.0037 | 0.2390 | 0.0027 | 0.0038 | 0.2416 | 0.0038 | 0.0037 | 0.2391 | -0.1640 | 0.0288 | 0.3729
A 0.0030 | 0.0018 | 0.1667 | 0.0015 | 0.0019 | 0.1690 | 0.0027 | 0.0018 | 0.1666 | -0.1150 | 0.0141 | 0.2595
150 0 -0.0004 | 0.0671 | 1.0158 | 0.1136 | 0.0261 | 0.4504 | 0.0767 | 0.0603 | 0.9146 | 0.1022 | 0.0119 | 0.5051
Ty -0.0001 | 0.0033 | 0.2257 | 0.0464 | 0.0044 | 0.1853 | 0.0221 | 0.0037 | 0.2214 | 0.1302 | 0.0183 | 0.5752
Ps -0.0001 | 0.0075 | 0.3386 | 0.0691 | 0.0097 | 0.2752 | 0.0329 | 0.0082 | 0.3309 | 0.1594 | 0.0277 | 0.8207
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Fig. 5: Kendall’s Tau, and Spearman’s Rho coefficients limiting for BITL

Table 4: MLE and dependance measure of FGMBITL, AMHBITL, CBITL and PBITLF distributions for medical data

A Ay 0 T Ps
FGMBITL | 0.5121 | 0.3981 | 0.4670 | 0.1038 | 0.1557
AMHBITL | 0.4083 | 0.2407 | 0.4975 | 0.1280 | 0.1913
CBITL 0.3605 | 0.3409 | 3.0826 | 0.1317 | 0.1964
PBITL 0.3359 | 0.3290 | 1.6633 | 0.1138 | 0.1682

Table 5: The model criterion selection and goodness of fit for FGMBITL, AMHBITL, CBITL and PBITLF distributions for medical

data
AIC CAIC BIC HQIC AD p-value CVM p-value
FGMBITL | 754.0737 | 754.9968 | 758.2773 | 755.4185 | 0.2903 | 0.4000 | 0.02503 | 0.2532
AMHBITL | 749.8751 | 750.7982 | 754.0787 | 751.2199 | 0.2114 | 0.5509 | 0.020513 | 0.4363
CBITL 731.5039 | 732.4270 | 735.7075 | 732.8487 | 0.1442 | 0.7494 | 0.020806 | 0.4744
PBITL 7347395 | 735.6626 | 738.9431 | 736.0843 | 0.2623 | 0.4434 | 0.023196 | 0.2972
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Fig. 7: Comulative contour plot for BITL distribution
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